Code cleaning

Removed_REF_marker
erikkaashoek 5 years ago
parent f8148134eb
commit f524fc0da0

@ -163,35 +163,13 @@ void PE4302_init(void) {
} }
#define PE4302_DELAY 100 #define PE4302_DELAY 100
#if 0
void PE4302_shiftOut(uint8_t val)
{
uint8_t i;
SI4432_log(SI4432_Sel);
SI4432_log(val);
for (i = 0; i < 8; i++) {
if (val & (1 << (7 - i)))
SPI1_SDI_HIGH;
else
SPI1_SDI_LOW;
// my_microsecond_delay(PE4302_DELAY);
SPI1_CLK_HIGH;
// my_microsecond_delay(PE4302_DELAY);
SPI1_CLK_LOW;
// my_microsecond_delay(PE4302_DELAY);
}
}
#endif
static unsigned char old_attenuation = 255; static unsigned char old_attenuation = 255;
bool PE4302_Write_Byte(unsigned char DATA ) bool PE4302_Write_Byte(unsigned char DATA )
{ {
if (old_attenuation == DATA) if (old_attenuation == DATA)
return false; return false;
// my_microsecond_delay(PE4302_DELAY); old_attenuation = DATA;
// SPI1_CLK_LOW;
// my_microsecond_delay(PE4302_DELAY);
// PE4302_shiftOut(DATA);
set_SPI_mode(SPI_MODE_SI); set_SPI_mode(SPI_MODE_SI);
if (SI4432_SPI_SPEED != PE_SPI_SPEED) if (SI4432_SPI_SPEED != PE_SPI_SPEED)
@ -224,15 +202,9 @@ bool PE4302_Write_Byte(unsigned char DATA )
#define CS_ADF0_LOW palClearLine(LINE_LO_SEL) #define CS_ADF0_LOW palClearLine(LINE_LO_SEL)
#define CS_ADF1_LOW palClearLine(LINE_LO_SEL) #define CS_ADF1_LOW palClearLine(LINE_LO_SEL)
//uint32_t t_R[6] = {0x320000, 0x8008011, 0x4E42, 0x4B3,0x8C803C , 0x580005} ; //25 MHz ref
#ifdef TINYSA4_PROTO
uint32_t registers[6] = {0xC80000, 0x8008011, 0x1800C642, 0x48963,0xA5003C , 0x580005} ; //10 MHz ref uint32_t registers[6] = {0xC80000, 0x8008011, 0x1800C642, 0x48963,0xA5003C , 0x580005} ; //10 MHz ref
#else
uint32_t registers[6] = {0xA00000, 0x8000011, 0x4E42, 0x4B3,0xDC003C , 0x580005} ; //10 MHz ref
#endif
uint32_t old_registers[6]; uint32_t old_registers[6];
bool reg_dirty[6] = {true, true, true, true, true, true};
int debug = 0; int debug = 0;
ioline_t ADF4351_LE[2] = { LINE_LO_SEL, LINE_LO_SEL}; ioline_t ADF4351_LE[2] = { LINE_LO_SEL, LINE_LO_SEL};
//int ADF4351_Mux = 7; //int ADF4351_Mux = 7;
@ -246,29 +218,15 @@ bool ADF4351_frequency_changed = false;
#define DEBUG(X) #define DEBUG(X)
#define DEBUGLN(X) #define DEBUGLN(X)
#ifdef TINYSA4_PROTO #define XTAL 30000000
#define XTAL 29999960
#else
#define XTAL 26000000
#endif
//double RFout; //Output freq in MHz
uint64_t PFDRFout[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000}; //Reference freq in MHz uint64_t PFDRFout[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000}; //Reference freq in MHz
//uint64_t Chrystal[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000};
//double FRACF; // Temp
int64_t int64_t
// INTA, // Temp
ADF4350_modulo = 0, // Linked to spur table!!!!! ADF4350_modulo = 0, // Linked to spur table!!!!!
// MOD,
// FRAC, //Temp
target_freq; target_freq;
uint8_t OutputDivider; // Temp
uint8_t lock=2; //Not used
int old_R = 0; int old_R = 0;
// Lock = A4
void ADF4351_Setup(void) void ADF4351_Setup(void)
{ {
// palSetPadMode(GPIOA, 1, PAL_MODE_OUTPUT_PUSHPULL ); // palSetPadMode(GPIOA, 1, PAL_MODE_OUTPUT_PUSHPULL );
@ -297,26 +255,11 @@ void ADF4351_Setup(void)
ADF4351_mux(2); // No led ADF4351_mux(2); // No led
// ADF4351_mux(6); // Show lock on led // ADF4351_mux(6); // Show lock on led
// ADF4351_set_frequency(1,150000000,0);
// ADF4351_Set(0);
// ADF4351_Set(1);
// chThdSleepMilliseconds(1000);
// }
// bitSet (registers[2], 17); // R set to 8
// bitClear (registers[2], 14); // R set to 8
// for (int i=0; i<6; i++) pinMode(ADF4351_LE[i], OUTPUT); // Setup pins
// for (int i=0; i<6; i++) digitalWrite(ADF4351_LE[i], HIGH);
// pinMode(ADF4351_Mux, INPUT);
// SPI.begin(); // Init SPI bus
// SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0));
//SPI.setDataMode(SPI_MODE0); // CPHA = 0 Clock positive
//SPI.setBitOrder(MSBFIRST);
} }
void ADF4351_WriteRegister32(int channel, const uint32_t value) void ADF4351_WriteRegister32(int channel, const uint32_t value)
{ {
// if (reg_dirty[value & 0x07] || (value & 0x07) == 0) { if (old_registers[value & 0x07] != registers[value & 0x07] || (value & 0x07) == 0 ) { // Always write register zero
if (old_registers[value & 0x07] != registers[value & 0x07] || (value & 0x07) == 0 ) {
registers[value & 0x07] = value; registers[value & 0x07] = value;
palClearLine(ADF4351_LE[channel]); palClearLine(ADF4351_LE[channel]);
shiftOut((value >> 24) & 0xFF); shiftOut((value >> 24) & 0xFF);
@ -344,7 +287,6 @@ static freq_t prev_actual_freq = 0;
void ADF4351_force_refresh(void) { void ADF4351_force_refresh(void) {
prev_actual_freq = 0; prev_actual_freq = 0;
// old_R = -1; // Force updating from config.actual_frequency_30MHz
} }
void ADF4351_modulo(int m) void ADF4351_modulo(int m)
@ -355,20 +297,12 @@ void ADF4351_modulo(int m)
uint64_t ADF4351_set_frequency(int channel, uint64_t freq) // freq / 10Hz uint64_t ADF4351_set_frequency(int channel, uint64_t freq) // freq / 10Hz
{ {
// freq -= 71000; uint64_t actual_freq = ADF4351_prepare_frequency(channel,freq);
// SI4463_set_gpio(3,GPIO_HIGH);
// uint32_t offs = ((freq / 1000)* ( 0) )/ 1000;
uint32_t offs = 0;
uint64_t actual_freq = ADF4351_prepare_frequency(channel,freq + offs);
// SI4463_set_gpio(3,GPIO_LOW);
if (actual_freq != prev_actual_freq) { if (actual_freq != prev_actual_freq) {
//START_PROFILE;
ADF4351_frequency_changed = true; ADF4351_frequency_changed = true;
ADF4351_Set(channel); ADF4351_Set(channel);
prev_actual_freq = actual_freq; prev_actual_freq = actual_freq;
} }
//STOP_PROFILE;
return actual_freq; return actual_freq;
} }
@ -383,7 +317,6 @@ void ADF4351_spur_mode(int S)
bitSet (registers[2], 30); // R set to 8 bitSet (registers[2], 30); // R set to 8
else else
bitClear (registers[2], 30); // R set to 8 bitClear (registers[2], 30); // R set to 8
reg_dirty[2] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -410,7 +343,6 @@ void ADF4351_R_counter(int R)
clear_frequency_cache(); // When R changes the possible frequencies will change clear_frequency_cache(); // When R changes the possible frequencies will change
registers[2] &= ~ (((unsigned long)0x3FF) << 14); registers[2] &= ~ (((unsigned long)0x3FF) << 14);
registers[2] |= (((unsigned long)R) << 14); registers[2] |= (((unsigned long)R) << 14);
reg_dirty[2] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -427,7 +359,6 @@ void ADF4351_mux(int R)
{ {
registers[2] &= ~ (((unsigned long)0x7) << 26); registers[2] &= ~ (((unsigned long)0x7) << 26);
registers[2] |= (((unsigned long)R & (unsigned long)0x07) << 26); registers[2] |= (((unsigned long)R & (unsigned long)0x07) << 26);
reg_dirty[2] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -435,7 +366,6 @@ void ADF4351_csr(int c)
{ {
registers[3] &= ~ (((unsigned long)0x1) << 18); registers[3] &= ~ (((unsigned long)0x1) << 18);
registers[3] |= (((unsigned long)c & (unsigned long)0x01) << 18); registers[3] |= (((unsigned long)c & (unsigned long)0x01) << 18);
reg_dirty[3] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -443,7 +373,6 @@ void ADF4351_fastlock(int c)
{ {
registers[3] &= ~ (((unsigned long)0x3) << 15); registers[3] &= ~ (((unsigned long)0x3) << 15);
registers[3] |= (((unsigned long)c & (unsigned long)0x03) << 15); registers[3] |= (((unsigned long)c & (unsigned long)0x03) << 15);
reg_dirty[3] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -451,7 +380,6 @@ void ADF4351_CP(int p)
{ {
registers[2] &= ~ (((unsigned long)0xF) << 9); registers[2] &= ~ (((unsigned long)0xF) << 9);
registers[2] |= (((unsigned long)p) << 9); registers[2] |= (((unsigned long)p) << 9);
reg_dirty[2] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -460,7 +388,6 @@ void ADF4351_drive(int p)
p &= 0x03; p &= 0x03;
registers[4] &= ~ (((unsigned long)0x3) << 3); registers[4] &= ~ (((unsigned long)0x3) << 3);
registers[4] |= (((unsigned long)p) << 3); registers[4] |= (((unsigned long)p) << 3);
reg_dirty[4] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -469,7 +396,6 @@ void ADF4351_aux_drive(int p)
p &= 0x03; p &= 0x03;
registers[4] &= ~ (((unsigned long)0x3) << 6); registers[4] &= ~ (((unsigned long)0x3) << 6);
registers[4] |= (((unsigned long)p) << 6); registers[4] |= (((unsigned long)p) << 6);
reg_dirty[4] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
#if 0 #if 0
@ -487,6 +413,7 @@ static uint32_t gcd(uint32_t x, uint32_t y)
uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz
{ {
uint8_t OutputDivider;
target_freq = freq; target_freq = freq;
if (freq >= 2200000000) { if (freq >= 2200000000) {
OutputDivider = 1; OutputDivider = 1;
@ -514,7 +441,6 @@ uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz
bitWrite (registers[4], 21, 0); bitWrite (registers[4], 21, 0);
bitWrite (registers[4], 20, 0); bitWrite (registers[4], 20, 0);
} }
reg_dirty[4] = true;
uint32_t PFDR = (uint32_t)PFDRFout[channel]; uint32_t PFDR = (uint32_t)PFDRFout[channel];
uint32_t MOD = ADF4350_modulo; uint32_t MOD = ADF4350_modulo;
@ -561,13 +487,11 @@ uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz
registers[0] = 0; registers[0] = 0;
registers[0] = INTA << 15; // OK registers[0] = INTA << 15; // OK
registers[0] = registers[0] + (FRAC << 3); registers[0] = registers[0] + (FRAC << 3);
reg_dirty[0] = true;
if (MOD == 1) MOD = 2; if (MOD == 1) MOD = 2;
registers[1] = 0; registers[1] = 0;
registers[1] = MOD << 3; registers[1] = MOD << 3;
registers[1] = registers[1] + 1 ; // restore address "001" registers[1] = registers[1] + 1 ; // restore register address "001"
bitSet (registers[1], 27); // Prescaler at 8/9 bitSet (registers[1], 27); // Prescaler at 8/9
reg_dirty[1] = true;
return actual_freq; return actual_freq;
} }
@ -577,7 +501,6 @@ void ADF4351_enable(int s)
bitClear(registers[4], 11); // Inverse logic!!!!! bitClear(registers[4], 11); // Inverse logic!!!!!
else else
bitSet(registers[4], 11); bitSet(registers[4], 11);
reg_dirty[4] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -587,7 +510,6 @@ void ADF4351_enable_aux_out(int s)
bitSet(registers[4], 8); bitSet(registers[4], 8);
else else
bitClear(registers[4], 8); bitClear(registers[4], 8);
reg_dirty[4] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -602,8 +524,6 @@ void ADF4351_enable_out(int s)
bitSet(registers[2], 5); // Enable power down bitSet(registers[2], 5); // Enable power down
bitSet(registers[2], 11); // Enable VCO power down bitSet(registers[2], 11); // Enable VCO power down
} }
reg_dirty[2] = true;
reg_dirty[4] = true;
ADF4351_Set(0); ADF4351_Set(0);
} }
@ -631,8 +551,7 @@ static void SI4463_set_state(si446x_state_t);
static int SI4463_wait_for_cts(void) static int SI4463_wait_for_cts(void)
{ {
// set_SPI_mode(SPI_MODE_SI); while (!SI4463_READ_CTS) { //CTS is read through GPIO
while (!SI4463_READ_CTS) {
// chThdSleepMicroseconds(100); // chThdSleepMicroseconds(100);
my_microsecond_delay(1); my_microsecond_delay(1);
} }
@ -834,13 +753,6 @@ static uint8_t gpio_state[4] = { 7,8,0,0 };
void SI4463_refresh_gpio(void) void SI4463_refresh_gpio(void)
{ {
#ifndef TINYSA4_PROTO // Force clock to max frequency for ADF
uint8_t data[] =
{
0x11, 0x00, 0x01, 0x01, 0x40 // GLOBAL_CLK_CFG Enable divided clock
};
SI4463_do_api(data, sizeof(data), NULL, 0);
#endif
uint8_t data2[] = uint8_t data2[] =
{ {
0x13, gpio_state[0], gpio_state[1], gpio_state[2], gpio_state[3], 0, 0, 0 0x13, gpio_state[0], gpio_state[1], gpio_state[2], gpio_state[3], 0, 0, 0
@ -944,7 +856,7 @@ void SI4463_start_tx(uint8_t CHANNEL)
} }
SI4463_in_tx_mode = true; SI4463_in_tx_mode = true;
my_microsecond_delay(1000); my_microsecond_delay(1000);
#if 0 #if 0 // Check state for debugging
s = SI4463_get_state(); s = SI4463_get_state();
if (s != SI446X_STATE_TX){ if (s != SI446X_STATE_TX){
my_microsecond_delay(1000); my_microsecond_delay(1000);
@ -964,8 +876,6 @@ void SI4463_start_rx(uint8_t CHANNEL)
SI4463_refresh_gpio(); SI4463_refresh_gpio();
#if 0 #if 0
{ {
uint8_t data[] = uint8_t data[] =
@ -995,7 +905,7 @@ void SI4463_start_rx(uint8_t CHANNEL)
//retry: //retry:
SI4463_do_api(data, sizeof(data), NULL, 0); SI4463_do_api(data, sizeof(data), NULL, 0);
#if 0 #if 0 // Get state for debugging
si446x_state_t s = SI4463_get_state(); si446x_state_t s = SI4463_get_state();
if (s != SI446X_STATE_RX) { if (s != SI446X_STATE_RX) {
my_microsecond_delay(1000); my_microsecond_delay(1000);
@ -1003,7 +913,7 @@ void SI4463_start_rx(uint8_t CHANNEL)
} }
#endif #endif
{ {
uint8_t data2[] = { 0x11, 0x20, 0x01, 0x58, 0x10 }; // set FAST_DELAY to 0x10 uint8_t data2[] = { 0x11, 0x20, 0x01, 0x58, 0x10 }; // set FAST_DELAY to 0x10,
SI4463_do_api(data2, sizeof(data2), NULL, 0); SI4463_do_api(data2, sizeof(data2), NULL, 0);
} }
SI4463_in_tx_mode = false; SI4463_in_tx_mode = false;
@ -1031,10 +941,6 @@ void SI4463_clear_int_status(void)
void set_calibration_freq(int ref) void set_calibration_freq(int ref)
{ {
#ifndef TINYSA4_PROTO
ref = 0; // <--------------------- DISABLED FOR PROTOTYPE!!!!!!!!!!!!!!!!!!!!!!!!!
#endif
if (ref >= 0) { if (ref >= 0) {
SI4463_set_gpio(0, 7); // GPIO 0 is clock out SI4463_set_gpio(0, 7); // GPIO 0 is clock out
@ -1134,10 +1040,12 @@ again:
SI4463_wait_for_cts(); SI4463_wait_for_cts();
uint8_t state = getFRR(SI446X_CMD_READ_FRR_B); uint8_t state = getFRR(SI446X_CMD_READ_FRR_B);
#endif #endif
#if 0 // Only for debugging
if (state == 255) { if (state == 255) {
my_microsecond_delay(100); my_microsecond_delay(100);
goto again; goto again;
} }
#endif
if(state == SI446X_STATE_TX_TUNE) if(state == SI446X_STATE_TX_TUNE)
state = SI446X_STATE_TX; state = SI446X_STATE_TX;
else if(state == SI446X_STATE_RX_TUNE) else if(state == SI446X_STATE_RX_TUNE)
@ -1638,7 +1546,7 @@ static int refresh_count = 0;
freq_t SI4463_set_freq(freq_t freq) freq_t SI4463_set_freq(freq_t freq)
{ {
// SI4463_set_gpio(3,GPIO_HIGH); // SI4463_set_gpio(3,GPIO_HIGH); // For measuring duration of set_freq
int S = 4 ; // Approx 100 Hz channels int S = 4 ; // Approx 100 Hz channels
SI4463_channel = 0; SI4463_channel = 0;
if (freq >= 822000000 && freq <= 1130000000) { // 822 to 1130MHz if (freq >= 822000000 && freq <= 1130000000) { // 822 to 1130MHz
@ -1671,7 +1579,7 @@ freq_t SI4463_set_freq(freq_t freq)
uint64_t MOD = 524288; // = 2^19 uint64_t MOD = 524288; // = 2^19
uint32_t F = ((freq * SI4463_outdiv*MOD) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)) - R*MOD; uint32_t F = ((freq * SI4463_outdiv*MOD) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)) - R*MOD;
freq_t actual_freq = (R*MOD + F) * (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)/ SI4463_outdiv/MOD; freq_t actual_freq = (R*MOD + F) * (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)/ SI4463_outdiv/MOD;
#if 0 #if 0 // Only for debugging
int delta = freq - actual_freq; int delta = freq - actual_freq;
if (delta < -100 || delta > 100 ){ if (delta < -100 || delta > 100 ){
while(1) while(1)
@ -1712,7 +1620,7 @@ freq_t SI4463_set_freq(freq_t freq)
SI4463_do_api(data, sizeof(data), NULL, 0); SI4463_do_api(data, sizeof(data), NULL, 0);
} }
SI4463_frequency_changed = true; SI4463_frequency_changed = true;
// SI4463_set_gpio(3,GPIO_LOW); // SI4463_set_gpio(3,GPIO_LOW); // For measuring duration of set_freq
return actual_freq; return actual_freq;
} }
#if 0 #if 0
@ -1779,16 +1687,13 @@ freq_t SI4463_set_freq(freq_t freq)
} }
// SI4463_clear_int_status();
if (SI4463_in_tx_mode) if (SI4463_in_tx_mode)
SI4463_start_tx(0); SI4463_start_tx(0);
else { else {
SI4463_start_rx(SI4463_channel); SI4463_start_rx(SI4463_channel);
} }
SI4463_wait_for_cts(); // SI4463_wait_for_cts();
// SI4463_set_gpio(3,GPIO_LOW); // SI4463_set_gpio(3,GPIO_LOW); // For measuring duration of set_freq
SI4463_frequency_changed = true; SI4463_frequency_changed = true;
prev_band = SI4463_band; prev_band = SI4463_band;
return actual_freq; return actual_freq;
@ -1803,71 +1708,26 @@ void SI4463_init_rx(void)
my_microsecond_delay(1000); my_microsecond_delay(1000);
SI_SDN_LOW; SI_SDN_LOW;
my_microsecond_delay(1000); my_microsecond_delay(1000);
#ifdef __SI4468__
for(uint16_t i=0;i<sizeof(SI4468_config);i++) for(uint16_t i=0;i<sizeof(SI4468_config);i++)
{ {
SI4463_do_api((void *)&SI4468_config[i+1], SI4468_config[i], NULL, 0); SI4463_do_api((void *)&SI4468_config[i+1], SI4468_config[i], NULL, 0);
i += SI4468_config[i]; i += SI4468_config[i];
} }
#endif
clear_frequency_cache(); clear_frequency_cache();
SI4463_start_rx(SI4463_channel); SI4463_start_rx(SI4463_channel);
// Si446x_getInfo(&SI4463_info); // Si446x_getInfo(&SI4463_info);
prev_band = -1; // 433MHz prev_band = -1; // 433MHz
} }
#if 0
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_tx.h"
static const uint8_t SI4463_config_tx[] =
RADIO_CONFIGURATION_DATA_ARRAY;
#endif
void SI4463_init_tx(void) void SI4463_init_tx(void)
{ {
#if 0
reset:
SI_SDN_LOW;
my_microsecond_delay(100);
SI_SDN_HIGH;
my_microsecond_delay(1000);
SI_SDN_LOW;
my_microsecond_delay(1000);
#ifdef __SI4468__
for(uint16_t i=0;i<sizeof(SI4463_config_tx);i++)
{
SI4463_do_api((void *)&SI4463_config_tx[i+1], SI4463_config_tx[i], NULL, 0);
i += SI4463_config_tx[i];
}
#endif
#endif
SI4463_start_tx(0);
#if 0
si446x_state_t s ;
again: SI4463_start_tx(0);
Si446x_getInfo(&SI4463_info);
// s = SI4463_get_state();
// SI4463_clear_int_status();
my_microsecond_delay(15000);
s = SI4463_get_state();
if (s != SI446X_STATE_RX) {
ili9341_drawstring_7x13("Waiting for RX", 50, 200);
osalThreadSleepMilliseconds(3000);
goto reset;
}
ili9341_drawstring_7x13("Waiting ready ", 50, 200);
#endif
prev_band = -1; // 433MHz prev_band = -1; // 433MHz
} }
void enable_extra_lna(int s) void enable_extra_lna(int s)
{ {
#ifdef TINYSA4_PROTO
static int old_extra_lna = -1; static int old_extra_lna = -1;
if (s != old_extra_lna) { if (s != old_extra_lna) {
if (s) if (s)
@ -1877,14 +1737,10 @@ void enable_extra_lna(int s)
old_extra_lna = s; old_extra_lna = s;
osalThreadSleepMilliseconds(500); osalThreadSleepMilliseconds(500);
} }
#else
(void)s;
#endif
} }
void enable_ultra(int s) void enable_ultra(int s)
{ {
#ifdef TINYSA4_PROTO
static int old_ultra = -1; static int old_ultra = -1;
if (s != old_ultra) { if (s != old_ultra) {
if (s) if (s)
@ -1893,9 +1749,6 @@ static int old_ultra = -1;
palSetLine(LINE_ULTRA); palSetLine(LINE_ULTRA);
old_ultra = s; old_ultra = s;
} }
#else
(void)s;
#endif
} }
void enable_rx_output(int s) void enable_rx_output(int s)

Loading…
Cancel
Save

Powered by TurnKey Linux.