Revert to Payload_BME280_MPU6050_XS.ino for cleanup

pull/294/head
Alan Johnston 2 years ago committed by GitHub
parent ec9e5f6f34
commit 2856702a92
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,44 +1,51 @@
// code for Pro Micro or STM32 on the CubeSat Simulator STEM Payload board
// answers "OK" on the serial port Serial1 when queried by the Pi
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#include "Adafruit_SI1145.h"
#include <Adafruit_LIS3MDL.h>
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BME280 bme;
MPU6050 mpu6050(Wire);
Adafruit_SI1145 uv = Adafruit_SI1145();
Adafruit_LIS3MDL lis3mdl;
long timer = 0;
int bmePresent;
int uvPresent;
int magPresent;
int RXLED = 17; // The RX LED has a defined Arduino pin
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
float Sensor2 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
int first_time = true;
int first_read = true;
#if defined __AVR_ATmega32U4__
float T2 = 26.3; // Temperature data point 1
float R2 = 167; // Reading data point 1
float T1 = 2; // Temperature data point 2
float R1 = 179; // Reading data point 2
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
float T2 = 25; // Temperature data point 1
float R2 = 671; // Reading data point 1
float T1 = 15.5; // Temperature data point 2
float R1 = 695; // Reading data point 2
#endif
int sensorValue;
float Temp;
float rest;
float magRaw = 0;
float magRawAbs = 0;
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(115200); // Pi UART faster speed
// Serial1.begin(9600); // Pi UART faster speed
Serial.println("Starting!");
@ -58,24 +65,10 @@ void setup() {
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("BME280 sensor fault");
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
if (! uv.begin()) {
Serial.println("Si1145 sensor fault");
uvPresent = 0;
} else {
uvPresent = 1;
}
if (! lis3mdl.begin_I2C()) {
Serial.println("LIS3MDL sensor fault");
magPresent = 0;
} else {
magPresent = 1;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
@ -108,20 +101,93 @@ void setup() {
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
pinMode(greenLED, OUTPUT);
pinMode(blueLED, OUTPUT);
/**/
}
void loop() {
if ((Serial.available() > 0) || first_time == true) {
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
// Serial1.println("OK");
// if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = read_analog();
// Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
if (Serial.available() > 0) {
blink(50);
char result = Serial.read();
// Serial.println(result);
// Serial.println("OK");
// Serial.println(counter++);
if (result == 'R') {
Serial.println("OK");
Serial1.println("OK");
delay(100);
first_time = true;
first_read = true;
setup();
}
else if (result == 'C') {
@ -130,6 +196,7 @@ void loop() {
first_time = true;
setup();
}
if ((result == '?') || first_time == true)
{
first_time = false;
@ -162,117 +229,23 @@ void loop() {
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
sensorValue = analogRead(A3);
Temp = T1 + (sensorValue - R1) * ((T2 - T1) / (R2 - R1));
sensorValue = read_analog();
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
if (uvPresent) {
Serial.print(uv.readVisible());
Serial.print(" ");
Serial.print(uv.readIR());
Serial.print(" ");
} else
{
Serial.print("0.0 0.0 ");
}
if (magPresent) {
lis3mdl.read();
magRaw = (((lis3mdl.x + lis3mdl.y + lis3mdl.z) / 3));
magAbs = abs(magRaw);
Serial.println(magAbs);
} else
{
Serial.println("0.0");
}
float rotation = sqrt(mpu6050.getGyroX() * mpu6050.getGyroX() + mpu6050.getGyroY() * mpu6050.getGyroY() + mpu6050.getGyroZ() * mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX() * mpu6050.getAccX() + mpu6050.getAccY() * mpu6050.getAccY() + mpu6050.getAccZ() * mpu6050.getAccZ());
if (acceleration > 1.2)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
Serial.print(Sensor2);
Serial.print(" (");
Serial.print(sensorValue);
Serial.println(")");
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = analogRead(A3);
Temp = T1 + (sensorValue - R1) * ((T2 - T1) / (R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
if (uvPresent) {
Serial1.print(uv.readVisible());
Serial1.print(" ");
Serial1.print(uv.readIR());
Serial1.print(" ");
} else
{
Serial1.print("0.0 0.0 ");
}
if (magPresent) {
lis3mdl.read();
magRaw = (((lis3mdl.x + lis3mdl.y + lis3mdl.z) / 3));
magAbs = abs(magRaw);
Serial1.println(magAbs);
} else
{
Serial1.println("0.0");
}
float rotation = sqrt(mpu6050.getGyroX() * mpu6050.getGyroX() + mpu6050.getGyroY() * mpu6050.getGyroY() + mpu6050.getGyroZ() * mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX() * mpu6050.getAccX() + mpu6050.getAccY() * mpu6050.getAccY() + mpu6050.getAccZ() * mpu6050.getAccZ());
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
@ -290,7 +263,7 @@ void loop() {
led_set(blueLED, LOW);
}
}
delay(100);
}
void eeprom_word_write(int addr, int val)
@ -317,7 +290,7 @@ void blink_setup()
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
pinMode(greenLED, OUTPUT);
pinMode(blueLED, OUTPUT);
pinMode(blueLED,OUTPUT);
#endif
}
@ -357,3 +330,15 @@ void led_set(int ledPin, bool state)
digitalWrite(ledPin, state);
#endif
}
int read_analog()
{
int sensorValue;
#if defined __AVR_ATmega32U4__
sensorValue = analogRead(A3);
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
sensorValue = analogRead(PA7);
#endif
return(sensorValue);
}

Loading…
Cancel
Save

Powered by TurnKey Linux.