You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CubeSatSim/stempayload/payload_pico/payload_pico.ino

345 lines
9.5 KiB

// code for Pro Micro or STM32 on the CubeSat Simulator STEM Payload board
// answers "OK" on the serial port Serial1 when queried by the Pi
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BME280 bme;
MPU6050 mpu6050(Wire);
long timer = 0;
int bmePresent;
int RXLED = 17; // The RX LED has a defined Arduino pin
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
float Sensor2 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
int first_time = true;
int first_read = true;
#if defined __AVR_ATmega32U4__
float T2 = 26.3; // Temperature data point 1
float R2 = 167; // Reading data point 1
float T1 = 2; // Temperature data point 2
float R1 = 179; // Reading data point 2
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
float T2 = 25; // Temperature data point 1
float R2 = 671; // Reading data point 1
float T1 = 15.5; // Temperature data point 2
float R1 = 695; // Reading data point 2
#endif
int sensorValue;
float Temp;
float rest;
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(115200); // Pi UART faster speed
// Serial1.begin(9600); // Pi UART faster speed
Serial.println("Starting!");
blink_setup();
blink(500);
delay(250);
blink(500);
delay(250);
led_set(greenLED, HIGH);
delay(250);
led_set(greenLED, LOW);
led_set(blueLED, HIGH);
delay(250);
led_set(blueLED, LOW);
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1)) / 100.0;
float yOffset = ((float)eeprom_word_read(2)) / 100.0;
float zOffset = ((float)eeprom_word_read(3)) / 100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
/**/
}
void loop() {
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
// Serial1.println("OK");
// if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = read_analog();
// Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
if (Serial.available() > 0) {
blink(50);
char result = Serial.read();
// Serial.println(result);
// Serial.println("OK");
// Serial.println(counter++);
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
else if (result == 'C') {
Serial.println("Clearing stored gyro offsets in EEPROM\n");
eeprom_word_write(0, 0x00);
first_time = true;
setup();
}
if ((result == '?') || first_time == true)
{
first_time = false;
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
sensorValue = read_analog();
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
Serial.print(Sensor2);
Serial.print(" (");
Serial.print(sensorValue);
Serial.println(")");
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}
void blink_setup()
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
pinMode(PB9, OUTPUT);
pinMode(PB8, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
pinMode(greenLED, OUTPUT);
pinMode(blueLED,OUTPUT);
#endif
}
void blink(int length)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
delay(length); // wait for a lenth of time
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED0; //TX LED macro to turn LED ON
#endif
}
void led_set(int ledPin, bool state)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
if (ledPin == greenLED)
digitalWrite(PB9, state);
else if (ledPin == blueLED)
digitalWrite(PB8, state);
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(ledPin, state);
#endif
}
int read_analog()
{
int sensorValue;
#if defined __AVR_ATmega32U4__
sensorValue = analogRead(A3);
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
sensorValue = analogRead(PA7);
#endif
return(sensorValue);
}

Powered by TurnKey Linux.