|
|
|
|
@ -36,23 +36,21 @@
|
|
|
|
|
CAGC::CAGC(float initialLeveldB)
|
|
|
|
|
{
|
|
|
|
|
// set internal gain appropriately
|
|
|
|
|
m_g = pow(10.0f, initialLeveldB/20.0f);
|
|
|
|
|
m_Gain = pow(10.0f, initialLeveldB/20.0f);
|
|
|
|
|
//+- 10dB Margin, TODO Move margin to constant
|
|
|
|
|
m_GainMax = pow(10.0f, (initialLeveldB + 10.0f)/20.0f);
|
|
|
|
|
m_GainMin = pow(10.0f, (initialLeveldB - 10.0f)/20.0f);
|
|
|
|
|
|
|
|
|
|
// ensure resulting gain is not arbitrarily low
|
|
|
|
|
if (m_g < 1e-16f)
|
|
|
|
|
m_g = 1e-16f;
|
|
|
|
|
m_EnergyPrime = 1.0f;
|
|
|
|
|
m_targetEnergy = 32768.0f;//TODO : Move to parameter ?
|
|
|
|
|
|
|
|
|
|
m_scale = 32768.0f;
|
|
|
|
|
m_bandwidth = 1e-2f; //TODO : Move to parameter ?
|
|
|
|
|
m_gMax = pow(10.0f, (initialLeveldB + 10.0f)/20.0f);//+- 10dB Margin, TODO Move margin to constant
|
|
|
|
|
m_gMin = pow(10.0f, (initialLeveldB - 10.0f)/20.0f);
|
|
|
|
|
m_alpha = m_bandwidth;
|
|
|
|
|
m_y2_prime = 1.0f;
|
|
|
|
|
m_Bandwidth = 1e-2f;//TODO : Move to parameter ?
|
|
|
|
|
m_Alpha = m_Bandwidth;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float CAGC::GetGain()
|
|
|
|
|
{
|
|
|
|
|
return 20.0f*log10(m_g);
|
|
|
|
|
return 20.0f*log10(m_Gain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CAGC::Apply(uint8 * voice, int size)
|
|
|
|
|
@ -60,30 +58,30 @@ void CAGC::Apply(uint8 * voice, int size)
|
|
|
|
|
for (int i = 0; i < size; i+=2)
|
|
|
|
|
{
|
|
|
|
|
//Get the sample
|
|
|
|
|
float _x = (float)(short)MAKEWORD(voice[i+1], voice[i]);
|
|
|
|
|
float input = (float)(short)MAKEWORD(voice[i+1], voice[i]);
|
|
|
|
|
|
|
|
|
|
//apply AGC
|
|
|
|
|
// apply gain to input sample
|
|
|
|
|
float _y = _x * m_g;
|
|
|
|
|
float output = input * m_Gain;
|
|
|
|
|
|
|
|
|
|
// compute output signal energy
|
|
|
|
|
float y2 = (_y * _y) / m_scale;
|
|
|
|
|
float instantEnergy = (output * output) / m_targetEnergy;
|
|
|
|
|
|
|
|
|
|
// smooth energy estimate using single-pole low-pass filter
|
|
|
|
|
m_y2_prime = (1.0f - m_alpha) * m_y2_prime + m_alpha*y2;
|
|
|
|
|
m_EnergyPrime = (1.0f - m_Alpha) * m_EnergyPrime + m_Alpha * instantEnergy;
|
|
|
|
|
|
|
|
|
|
// update gain according to output energy
|
|
|
|
|
if (m_y2_prime > 1e-6f)
|
|
|
|
|
m_g *= exp( -0.5f * m_alpha * log(m_y2_prime) );
|
|
|
|
|
if (m_EnergyPrime > 1e-6f)
|
|
|
|
|
m_Gain *= exp( -0.5f * m_Alpha * log(m_EnergyPrime) );
|
|
|
|
|
|
|
|
|
|
// clamp gain
|
|
|
|
|
if (m_g > m_gMax)
|
|
|
|
|
m_g = m_gMax;
|
|
|
|
|
else if(m_g < m_gMin)
|
|
|
|
|
m_g = m_gMin;
|
|
|
|
|
if (m_Gain > m_GainMax)
|
|
|
|
|
m_Gain = m_GainMax;
|
|
|
|
|
else if(m_Gain < m_GainMin)
|
|
|
|
|
m_Gain = m_GainMin;
|
|
|
|
|
|
|
|
|
|
//write processed sample back
|
|
|
|
|
voice[i] = HIBYTE((short)_y);
|
|
|
|
|
voice[i+1] = LOBYTE((short)_y);
|
|
|
|
|
voice[i] = HIBYTE((short)output);
|
|
|
|
|
voice[i+1] = LOBYTE((short)output);
|
|
|
|
|
}
|
|
|
|
|
}
|