First experiment with span in output mode

tinySA
erikkaashoek 6 years ago
parent 01a665f306
commit 495063f5bf

@ -1,5 +1,4 @@
/*
* Copyright (c) 2016-2017, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
@ -116,7 +115,7 @@ const char *info_about[]={
"Platform: " PLATFORM_NAME,
0 // sentinel
};
extern int dirty;
static THD_WORKING_AREA(waThread1, 900);
static THD_FUNCTION(Thread1, arg)
{
@ -126,7 +125,8 @@ static THD_FUNCTION(Thread1, arg)
while (1) {
bool completed = false;
if (sweep_mode&(SWEEP_ENABLE|SWEEP_ONCE)) {
completed = sweep(true);
if (dirty)
completed = sweep(true);
sweep_mode&=~SWEEP_ONCE;
} else if (sweep_mode & SWEEP_SELFTEST) {
self_test(); // call from lowest level to save stack space

@ -444,6 +444,10 @@ void setFreq(int V, unsigned long freq)
{
SI4432_Sel = V;
if (old_freq[V] != freq) {
if (V == 0) {
V = -V;
V = -V;
}
SI4432_Set_Frequency(freq);
old_freq[V] = freq;
}
@ -685,7 +689,7 @@ float perform(bool break_on_operation, int i, int32_t f, int tracking)
long local_IF;
if (MODE_HIGH(setting_mode))
local_IF = 0;
else if (avoid_spur(f))
else if (setting_mode == M_LOW && avoid_spur(f))
local_IF = spur_alternate_IF;
else
local_IF = frequency_IF;
@ -698,7 +702,7 @@ float perform(bool break_on_operation, int i, int32_t f, int tracking)
if (local_IF) {
setFreq (0, local_IF);
}
if (setting_modulation == MO_AM) {
if (MODE_OUTPUT(setting_mode) && setting_modulation == MO_AM) {
int p = setting_attenuate * 2 + modulation_counter;
PE4302_Write_Byte(p);
if (modulation_counter == 3)
@ -706,7 +710,7 @@ float perform(bool break_on_operation, int i, int32_t f, int tracking)
else
modulation_counter++;
chThdSleepMicroseconds(250);
} else if (setting_modulation == MO_NFM || setting_modulation == MO_WFM ) {
} else if (MODE_OUTPUT(setting_mode) && (setting_modulation == MO_NFM || setting_modulation == MO_WFM )) {
SI4432_Sel = 1;
SI4432_Write_Byte(0x79, modulation_counter); // Use frequency hopping channel for FM modulation
if (modulation_counter == 3)
@ -719,16 +723,22 @@ float perform(bool break_on_operation, int i, int32_t f, int tracking)
int t = 0;
do {
int lf = (uint32_t)(f + (int)(t * 500 * actual_rbw));
if (tracking)
if (MODE_INPUT(setting_mode) && tracking)
setFreq (0, local_IF + lf - reffer_freq[setting_refer]); // Offset so fundamental of reffer is visible
#if 0
if (lf >11000000 || lf < 9000000) {
lf = lf;
break;
}
#endif
setFreq (1, local_IF + lf);
if (MODE_OUTPUT(setting_mode))
if (MODE_OUTPUT(setting_mode)) // No substepping in output mode
return(0);
float subRSSI = SI4432_RSSI(lf, MODE_SELECT(setting_mode))+settingLevelOffset()+setting_attenuate;
if (RSSI < subRSSI)
RSSI = subRSSI;
t++;
if ((operation_requested && break_on_operation ) || (MODE_OUTPUT(setting_mode))) // output modes do not step.
if (operation_requested && break_on_operation) // output modes do not step.
break; // abort
} while (t < vbwSteps);
return(RSSI);
@ -747,70 +757,70 @@ static bool sweep(bool break_on_operation)
temppeakLevel = -150;
float temp_min_level = 100;
// spur_old_stepdelay = 0;
//again:
//again:
for (int i = 0; i < sweep_points; i++) {
RSSI = perform(break_on_operation, i, frequencies[i], setting_tracking);
// back to toplevel to handle ui operation
if (operation_requested && break_on_operation)
return false;
// if (setting_spur == 1) { // First pass
// temp_t[i] = RSSI;
// continue; // Skip all other processing
// }
// if (setting_spur == -1) // Second pass
// RSSI = ( RSSI < temp_t[i] ? RSSI : temp_t[i]); // Minimum of two passes
temp_t[i] = RSSI;
if (setting_subtract_stored) {
RSSI = RSSI - stored_t[i] ;
}
// stored_t[i] = (SI4432_Read_Byte(0x69) & 0x0f) * 3.0 - 90.0; // Display the AGC value in thestored trace
if (scandirty || setting_average == AV_OFF) {
actual_t[i] = RSSI;
age[i] = 0;
} else {
switch(setting_average) {
case AV_MIN: if (actual_t[i] > RSSI) actual_t[i] = RSSI; break;
case AV_MAX_HOLD: if (actual_t[i] < RSSI) actual_t[i] = RSSI; break;
case AV_MAX_DECAY:
if (actual_t[i] < RSSI) {
actual_t[i] = RSSI;
age[i] = 0;
} else {
if (age[i] > setting_decay)
actual_t[i] -= 0.5;
else
age[i] += 1;
if (MODE_INPUT(setting_mode)) {
// if (setting_spur == 1) { // First pass
// temp_t[i] = RSSI;
// continue; // Skip all other processing
// }
// if (setting_spur == -1) // Second pass
// RSSI = ( RSSI < temp_t[i] ? RSSI : temp_t[i]); // Minimum of two passes
temp_t[i] = RSSI;
if (setting_subtract_stored) {
RSSI = RSSI - stored_t[i] ;
}
// stored_t[i] = (SI4432_Read_Byte(0x69) & 0x0f) * 3.0 - 90.0; // Display the AGC value in thestored trace
if (scandirty || setting_average == AV_OFF) {
actual_t[i] = RSSI;
age[i] = 0;
} else {
switch(setting_average) {
case AV_MIN: if (actual_t[i] > RSSI) actual_t[i] = RSSI; break;
case AV_MAX_HOLD: if (actual_t[i] < RSSI) actual_t[i] = RSSI; break;
case AV_MAX_DECAY:
if (actual_t[i] < RSSI) {
actual_t[i] = RSSI;
age[i] = 0;
} else {
if (age[i] > setting_decay)
actual_t[i] -= 0.5;
else
age[i] += 1;
}
break;
case AV_4: actual_t[i] = (actual_t[i]*3 + RSSI) / 4.0; break;
case AV_16: actual_t[i] = (actual_t[i]*15 + RSSI) / 16.0; break;
}
break;
case AV_4: actual_t[i] = (actual_t[i]*3 + RSSI) / 4.0; break;
case AV_16: actual_t[i] = (actual_t[i]*15 + RSSI) / 16.0; break;
}
}
#if 1
// START_PROFILE
if (i == 0) {
cur_max = 0; // Always at least one maximum
temppeakIndex = 0;
temppeakLevel = actual_t[i];
max_index[0] = 0;
downslope = true;
}
if (downslope) {
if (temppeakLevel > actual_t[i]) { // Follow down
temppeakIndex = i; // Latest minimum
// START_PROFILE
if (i == 0) {
cur_max = 0; // Always at least one maximum
temppeakIndex = 0;
temppeakLevel = actual_t[i];
} else if (temppeakLevel + setting_noise < actual_t[i]) { // Local minimum found
temppeakIndex = i; // This is now the latest maximum
temppeakLevel = actual_t[i];
downslope = false;
max_index[0] = 0;
downslope = true;
}
} else {
if (temppeakLevel < actual_t[i]) { // Follow up
temppeakIndex = i;
temppeakLevel = actual_t[i];
} else if (temppeakLevel - setting_noise > actual_t[i]) { // Local max found
if (downslope) {
if (temppeakLevel > actual_t[i]) { // Follow down
temppeakIndex = i; // Latest minimum
temppeakLevel = actual_t[i];
} else if (temppeakLevel + setting_noise < actual_t[i]) { // Local minimum found
temppeakIndex = i; // This is now the latest maximum
temppeakLevel = actual_t[i];
downslope = false;
}
} else {
if (temppeakLevel < actual_t[i]) { // Follow up
temppeakIndex = i;
temppeakLevel = actual_t[i];
} else if (temppeakLevel - setting_noise > actual_t[i]) { // Local max found
int j = 0; // Insertion index
while (j<cur_max && actual_t[max_index[j]] >= temppeakLevel) // Find where to insert
@ -819,20 +829,21 @@ static bool sweep(bool break_on_operation)
int k = MAX_MAX-1;
while (k > j) { // Shift to make room for max
max_index[k] = max_index[k-1];
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
k--;
}
max_index[j] = temppeakIndex;
// maxlevel_index[j] = actual_t[temppeakIndex]; // Only for debugging
// maxlevel_index[j] = actual_t[temppeakIndex]; // Only for debugging
if (cur_max < MAX_MAX) {
cur_max++;
}
//STOP_PROFILE
//STOP_PROFILE
}
temppeakIndex = i; // Latest minimum
temppeakLevel = actual_t[i];
downslope = true;
}
}
}
#else
@ -846,75 +857,77 @@ static bool sweep(bool break_on_operation)
temp_min_level = actual_t[i];
#endif
}
// if (setting_spur == 1) {
// setting_spur = -1;
// goto again;
// } else if (setting_spur == -1)
// setting_spur = 1;
// if (setting_spur == 1) {
// setting_spur = -1;
// goto again;
// } else if (setting_spur == -1)
// setting_spur = 1;
if (scandirty) {
scandirty = false;
draw_cal_status();
}
#if 1
int i = 0;
int m = 0;
while (i < cur_max) { // For all maxima found
if (MODE_INPUT(setting_mode)) {
int i = 0;
int m = 0;
while (i < cur_max) { // For all maxima found
while (m < MARKERS_MAX) {
if (markers[m].enabled == M_TRACKING_ENABLED) { // Available marker found
markers[m].index = max_index[i];
markers[m].frequency = frequencies[markers[m].index];
m++;
break; // Next maximum
}
m++; // Try next marker
}
i++;
}
while (m < MARKERS_MAX) {
if (markers[m].enabled == M_TRACKING_ENABLED) { // Available marker found
markers[m].index = max_index[i];
if (markers[m].enabled == M_TRACKING_ENABLED ) { // More available markers found
markers[m].index = 0; // Enabled but no max
markers[m].frequency = frequencies[markers[m].index];
m++;
break; // Next maximum
}
m++; // Try next marker
}
i++;
}
while (m < MARKERS_MAX) {
if (markers[m].enabled == M_TRACKING_ENABLED ) { // More available markers found
markers[m].index = 0; // Enabled but no max
markers[m].frequency = frequencies[markers[m].index];
}
m++; // Try next marker
}
if (setting_measurement == M_IMD && markers[0].index > 10) {
markers[1].enabled = search_maximum(1, markers[0].index*2, 8);
markers[2].enabled = search_maximum(2, markers[0].index*3, 12);
markers[3].enabled = search_maximum(3, markers[0].index*4, 16);
} else if (setting_measurement == M_OIP3 && markers[0].index > 10 && markers[1].index > 10) {
int l = markers[0].index;
int r = markers[1].index;
if (r < l) {
l = markers[1].index;
r = markers[0].index;
if (setting_measurement == M_IMD && markers[0].index > 10) {
markers[1].enabled = search_maximum(1, markers[0].index*2, 8);
markers[2].enabled = search_maximum(2, markers[0].index*3, 12);
markers[3].enabled = search_maximum(3, markers[0].index*4, 16);
} else if (setting_measurement == M_OIP3 && markers[0].index > 10 && markers[1].index > 10) {
int l = markers[0].index;
int r = markers[1].index;
if (r < l) {
l = markers[1].index;
r = markers[0].index;
}
markers[2].enabled = search_maximum(2, l - (r-l), 10);
markers[3].enabled = search_maximum(3, r + (r-l), 10);
}
markers[2].enabled = search_maximum(2, l - (r-l), 10);
markers[3].enabled = search_maximum(3, r + (r-l), 10);
}
peakIndex = max_index[0];
peakLevel = actual_t[peakIndex];
peakFreq = frequencies[peakIndex];
peakIndex = max_index[0];
peakLevel = actual_t[peakIndex];
peakFreq = frequencies[peakIndex];
#else
int peak_marker = 0;
markers[peak_marker].enabled = true;
markers[peak_marker].index = peakIndex;
markers[peak_marker].frequency = frequencies[markers[peak_marker].index];
int peak_marker = 0;
markers[peak_marker].enabled = true;
markers[peak_marker].index = peakIndex;
markers[peak_marker].frequency = frequencies[markers[peak_marker].index];
#endif
min_level = temp_min_level;
min_level = temp_min_level;
#if 0 // Auto ref level setting
int scale = get_trace_scale(2);
int rp = (NGRIDY - get_trace_refpos(2)) * scale;
if (scale > 0 && peakLevel > rp && peakLevel - min_level < 8 * scale ) {
SetRefpos((((int)(peakLevel/scale)) + 1) * scale);
}
if (scale > 0 && min_level < rp - 9*scale && peakLevel - min_level < 8 * scale ) {
int new_rp = (((int)((min_level + 9*scale)/scale)) - 1) * scale;
if (new_rp < rp)
SetRefpos(new_rp);
}
int scale = get_trace_scale(2);
int rp = (NGRIDY - get_trace_refpos(2)) * scale;
if (scale > 0 && peakLevel > rp && peakLevel - min_level < 8 * scale ) {
SetRefpos((((int)(peakLevel/scale)) + 1) * scale);
}
if (scale > 0 && min_level < rp - 9*scale && peakLevel - min_level < 8 * scale ) {
int new_rp = (((int)((min_level + 9*scale)/scale)) - 1) * scale;
if (new_rp < rp)
SetRefpos(new_rp);
}
#endif
}
// redraw_marker(peak_marker, FALSE);
palSetPad(GPIOC, GPIOC_LED);
return true;

@ -131,6 +131,8 @@ byte SI4432_Read_Byte( byte ADR )
void SI4432_Reset(void)
{
int count = 0;
SI4432_Read_Byte ( 0x03 ); // Clear pending interrupts
SI4432_Read_Byte ( 0x04 );
// always perform a system reset (don't send 0x87)
SI4432_Write_Byte( 0x07, 0x80);
chThdSleepMilliseconds(50);
@ -225,7 +227,7 @@ void SI4432_Set_Frequency ( long Freq ) {
int N = Freq / 10000000;
Carrier = ( 4 * ( Freq - N * 10000000 )) / 625;
int Freq_Band = ( N - 24 ) | ( hbsel << 5 ) | ( sbsel << 6 );
#if 0
#if 1
SI4432_Write_Byte ( 0x75, Freq_Band );
SI4432_Write_Byte ( 0x76, (Carrier>>8) & 0xFF );
SI4432_Write_Byte ( 0x77, Carrier & 0xFF );
@ -266,6 +268,20 @@ float SI4432_RSSI(uint32_t i, int s)
void SI4432_Sub_Init(void)
{
SI4432_Reset();
//set VCO and PLL Only for SI4432 V2
SI4432_Write_Byte(0x72, 0x1F); //write 0x1F to the Frequency Deviation register
SI4432_Write_Byte(0x5A, 0x7F); //write 0x7F to the VCO Current Trimming register
SI4432_Write_Byte(0x58, 0x80); //write 0xD7 to the ChargepumpCurrentTrimmingOverride register
SI4432_Write_Byte(0x59, 0x40); //write 0x40 to the Divider Current Trimming register
//set the AGC
SI4432_Write_Byte(0x6A, 0x0B); //write 0x0B to the AGC Override 2 register
//set ADC reference voltage to 0.9V
SI4432_Write_Byte(0x68, 0x04); //write 0x04 to the Deltasigma ADC Tuning 2 register
SI4432_Write_Byte(0x1F, 0x03); //write 0x03 to the Clock Recovery Gearshift Override register
SI4432_Write_Byte(0x05, 0x0);
SI4432_Write_Byte(0x06, 0x0);
// Enable receiver chain

@ -570,6 +570,7 @@ const menuitem_t menu_lowoutputmode[] = {
{ MT_FORM | MT_KEYPAD, KM_CENTER, "FREQ: %s", NULL},
{ MT_FORM | MT_KEYPAD, KM_LOWOUTLEVEL, "LEVEL: %s", NULL},
{ MT_FORM | MT_SUBMENU, 0, "MODULATION: %s", menu_modulation},
{ MT_FORM | MT_KEYPAD, KM_SPAN, "SPAN: %s", NULL},
{ MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};
@ -579,6 +580,7 @@ const menuitem_t menu_highoutputmode[] = {
{ MT_FORM | MT_KEYPAD, KM_CENTER, "FREQ: %s", NULL},
{ MT_FORM | MT_SUBMENU, 0, "LEVEL: %s", menu_drive_wide},
{ MT_FORM | MT_SUBMENU, 0, "MODULATION: %s", menu_modulation},
{ MT_FORM | MT_KEYPAD, KM_SPAN, "SPAN: %s", NULL},
{ MT_FORM | MT_CANCEL, 0, S_LARROW" BACK",NULL },
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};

Loading…
Cancel
Save

Powered by TurnKey Linux.