add files from funcube-dev/funcubeLib

fc-cpp
Alan Johnston 11 months ago committed by GitHub
parent a3d460c617
commit e46aef1141
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,516 @@
#include <string.h>
#include "codecAO40.h"
/* ---------------------- */
/* AO40 Encoder - Decoder */
/* ---------------------- */
/* Scramble and RS encode 256 byte blocks of data into 5200 bits
* or Descramble and RS decode 5200 bits into the 256 bytes of data
*
* --------------------------------------------------------------------------
* This decoder has evolved extensively through the work of Phil Karn. It draws
* on his own ideas and optimisations, and on the work of others. The lineage
* is as below, and parts of the authors' notices are included here. (JRM)
* AO40 encoder / decoder
* Copyright 2002 Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
* Reed-Solomon coding and decoding
* Phil Karn (karn@ka9q.ampr.org) September 1996
*
* This file is derived from the program "new_rs_erasures.c" by Robert
* Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy
* (harit@spectra.eng.hawaii.edu), Aug 1995
* --------------------------------------------------------------------------
*
* From the RM-Z & HT program:
* The encoding and decoding methods are based on the
* book "Error Control Coding: Fundamentals and Applications",
* by Lin and Costello, Prentice Hall, 1983, ISBN 0-13-283796-X
* Portions of this program are from a Reed-Solomon encoder/decoder
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89.
* --------------------------------------------------------------------------
*
* From the 1989/1991 SR program (also based on Lin and Costello):
* This program may be freely modified and/or given to whoever wants it.
* A condition of such distribution is that the author's contribution be
* acknowledged by his name being left in the comments heading the program,
* Simon Rockliff, 26th June 1991
*
*/
/* Defines for RS Decoder(s) */
#ifndef min
#define min(a,b) ((a) < (b) ? (a) : (b))
#endif
CCodecAO40::CCodecAO40(void)
{
}
CCodecAO40::~CCodecAO40(void)
{
}
int CCodecAO40::mod255(int x) {
while (x >= 255) {
x -= 255;
x = (x >> 8) + (x & 255);
}
return x;
}
int CCodecAO40::decode_rs_8(char *data, int *eras_pos, int no_eras){
int deg_lambda, el, deg_omega;
int i, j, r,k;
unsigned char u,q,tmp,num1,num2,den,discr_r;
unsigned char lambda[NROOTS+1], s[NROOTS]; /* Err+Eras Locator poly and syndrome poly */
unsigned char b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
unsigned char root[NROOTS], reg[NROOTS+1], loc[NROOTS];
int syn_error, count;
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
for(i=0;i<NROOTS;i++)
s[i] = data[0];
for(j=1;j<NN;j++){
for(i=0;i<NROOTS;i++){
if(s[i] == 0){
s[i] = data[j];
} else {
s[i] = data[j] ^ ALPHA_TO[mod255(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
}
}
}
/* Convert syndromes to index form, checking for nonzero condition */
syn_error = 0;
for(i=0;i<NROOTS;i++){
syn_error |= s[i];
s[i] = INDEX_OF[s[i]];
}
if (!syn_error) {
/* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
count = 0;
goto finish;
}
memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
lambda[0] = 1;
if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
lambda[1] = ALPHA_TO[mod255(PRIM*(NN-1-eras_pos[0]))];
for (i = 1; i < no_eras; i++) {
u = mod255(PRIM*(NN-1-eras_pos[i]));
for (j = i+1; j > 0; j--) {
tmp = INDEX_OF[lambda[j - 1]];
if(tmp != A0)
lambda[j] ^= ALPHA_TO[mod255(u + tmp)];
}
}
}
for(i=0;i<NROOTS+1;i++)
b[i] = INDEX_OF[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= NROOTS) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++){
if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
discr_r ^= ALPHA_TO[mod255(INDEX_OF[lambda[i]] + s[r-i-1])];
}
}
discr_r = INDEX_OF[discr_r]; /* Index form */
if (discr_r == A0) {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,NROOTS*sizeof(b[0]));
b[0] = A0;
} else {
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0 ; i < NROOTS; i++) {
if(b[i] != A0)
t[i+1] = lambda[i+1] ^ ALPHA_TO[mod255(discr_r + b[i])];
else
t[i+1] = lambda[i+1];
}
if (2 * el <= r + no_eras - 1) {
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= NROOTS; i++)
b[i] = (lambda[i] == 0) ? A0 : mod255(INDEX_OF[lambda[i]] - discr_r + NN);
} else {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,NROOTS*sizeof(b[0]));
b[0] = A0;
}
memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for(i=0;i<NROOTS+1;i++){
lambda[i] = INDEX_OF[lambda[i]];
if(lambda[i] != A0)
deg_lambda = i;
}
/* Find roots of the error+erasure locator polynomial by Chien search */
memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1,k=IPRIM-1; i <= NN; i++,k = mod255(k+IPRIM)) {
q = 1; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--){
if (reg[j] != A0) {
reg[j] = mod255(reg[j] + j);
q ^= ALPHA_TO[reg[j]];
}
}
if (q != 0)
continue; /* Not a root */
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = k;
/* If we've already found max possible roots,
* abort the search to save time
*/
if(++count == deg_lambda)
break;
}
if (deg_lambda != count) {
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
count = -1;
goto finish;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**NROOTS). in index form. Also find deg(omega).
*/
deg_omega = 0;
for (i = 0; i < NROOTS;i++){
tmp = 0;
j = (deg_lambda < i) ? deg_lambda : i;
for(;j >= 0; j--){
if ((s[i - j] != A0) && (lambda[j] != A0))
tmp ^= ALPHA_TO[mod255(s[i - j] + lambda[j])];
}
if(tmp != 0)
deg_omega = i;
omega[i] = INDEX_OF[tmp];
}
omega[NROOTS] = A0;
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count-1; j >=0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != A0)
num1 ^= ALPHA_TO[mod255(omega[i] + i * root[j])];
}
num2 = ALPHA_TO[mod255(root[j] * (FCR - 1) + NN)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
if(lambda[i+1] != A0)
den ^= ALPHA_TO[mod255(lambda[i+1] + i * root[j])];
}
if (den == 0) {
count = -1;
goto finish;
}
/* Apply error to data */
if (num1 != 0) {
data[loc[j]] ^= ALPHA_TO[mod255(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
}
}
finish:
if(eras_pos != NULL){
for(i=0;i<count;i++)
eras_pos[i] = loc[i];
}
return count;
}
/* ---------- */
/* Re-encoder */
/* ---------- */
/* Reference encoder for proposed coded AO-40 telemetry format - v1.0 7 Jan 2002
* Copyright 2002, Phil Karn, KA9Q
* This software may be used under the terms of the GNU Public License (GPL)
*/
/* Adapted from the above enc_ref.c as used by the spacecraft (JRM) */
/* Write one binary channel symbol into the interleaver frame and update the pointers */
void CCodecAO40::interleave_symbol(int c)
{
int row,col;
col=m_ileaver_index/COLUMNS;
row=m_ileaver_index%COLUMNS;
if(c)
{
m_encoded[row*ROWS+col] = 1;
}
m_ileaver_index++;
}
/* Convolutionally encode and interleave one byte */
void CCodecAO40::encode_and_interleave(unsigned char c,int cnt){
while(cnt-- != 0)
{
m_conv_sr = (m_conv_sr << 1) | (c >> 7);
c <<= 1;
interleave_symbol( Partab[m_conv_sr & CPOLYA]);
interleave_symbol(!Partab[m_conv_sr & CPOLYB]); /* Second encoder symbol is inverted */
}
}
/* Scramble a byte, convolutionally encode and interleave into frame */
void CCodecAO40::scramble_and_encode(unsigned char c){
c ^= Scrambler[m_encoded_bytes]; /* Scramble byte */
encode_and_interleave(c,8); /* RS encode and place into reencode buffer */
}
/* Encodes the 256 byte source block RSdecdata[] into 5200 byte block of symbols
* results stored in m_encoded.
* On success encoded buffer is returned, an zeroed buffer on failure
*/
const unsigned char *CCodecAO40::encode(unsigned char *source_bytes, int byte_count)
{
if(BLOCKSIZE != byte_count || NULL == source_bytes )
{
memset(m_encoded, 0, BLOCKSIZE);
return m_encoded;
}
init_encoder();
for(int i=0;i<BLOCKSIZE;i++)
{
encode_byte(source_bytes[i]) ;
}
for(int i=0;i<64;i++)
{
encode_parity();
}
return m_encoded;
}
/* The original three C user's entry points now follow. They are:
init_encoder() Called once before using system.
encode_byte(unsigned char c) Called with each user byte (i.e. 256 calls)
encode_parity() Called 64 times to finish off
*/
/* This function initializes the encoder. */
void CCodecAO40::init_encoder(void){
int i,j,sr;
m_encoded_bytes = 0;
m_conv_sr = 0;
m_ileaver_index = COLUMNS; /* Sync vector is in first column; data starts here */
for(j=0;j<RSBLOCKS;j++) /* Flush parity array */
{
for(i=0;i<NROOTS;i++)
{
m_RS_block[j][i] = 0;
}
}
/* Clear re-encoded array */
for(i=0;i<SYMPBLOCK;i++)
{
m_encoded[i] = 0;
}
/* Generate sync vector, interleave into re-encode array, 1st column */
sr = 0x7f;
for(i=0;i<65;i++)
{
if(sr & 64)
{
m_encoded[ROWS*i] = 1; /* Every 80th symbol is a sync bit */
}
sr = (sr << 1) | Partab[sr & SYNC_POLY];
}
}
/* This function is called with each user data byte to be encoded into the
* current frame. It should be called in sequence 256 times per frame, followed
* by 64 calls to encode_parity().
*/
void CCodecAO40::encode_byte(unsigned char c){
unsigned char *rp; /* RS block pointer */
int i;
unsigned char feedback;
/* Update the appropriate Reed-Solomon codeword */
rp = m_RS_block[m_encoded_bytes & 1];
/* Compute feedback term */
feedback = INDEX_OF[c ^ rp[0]];
/* If feedback is non-zero, multiply by each generator polynomial coefficient and
* add to corresponding shift register elements
*/
if(feedback != A0){
int j;
/* This loop exploits the palindromic nature of the generator polynomial
* to halve the number of discrete multiplications
*/
for(j=0;j<15;j++){
unsigned char t;
t = ALPHA_TO[mod255(feedback + RS_poly[j])];
rp[j+1] ^= t; rp[31-j] ^= t;
}
rp[16] ^= ALPHA_TO[mod255(feedback + RS_poly[15])];
}
/* Shift 32 byte RS register one position down */
for(i=0;i<31;i++)
rp[i] = rp[i+1];
/* Handle highest order coefficient, which is unity */
if(feedback != A0){
rp[31] = ALPHA_TO[feedback];
} else {
rp[31] = 0;
}
scramble_and_encode(c);
m_encoded_bytes++;
}
/* This function should be called 64 times after the 256 data bytes
* have been passed to update_encoder. Each call scrambles, encodes and
* interleaves one byte of Reed-Solomon parity.
*/
void CCodecAO40::encode_parity(void) {
unsigned char c;
c = m_RS_block[m_encoded_bytes & 1][(m_encoded_bytes-256)>>1];
scramble_and_encode(c);
if(++m_encoded_bytes == 320){
/* Tail off the convolutional encoder (flush) */
encode_and_interleave(0,6);
}
}
void CCodecAO40::descramble_to_rsblocks(unsigned char viterbi_decoded[NBITS_OUT], char rsblocks[RSBLOCKS][NN])
{
/* interleave into Reed Solomon codeblocks */
memset(rsblocks,0,RSBLOCKS*NN); /* Zero rsblocks array */
int di = 0;
int si = 0;
for(int col=RSPAD;col<NN;col++)
{
for(int row=0;row<RSBLOCKS;row++)
{
rsblocks[row][col] = viterbi_decoded[di++] ^ Scrambler[si++]; /* Remove scrambling */
}
}
}
/* -------- */
/* Decoder */
/* -------- */
/* ------------------- */
/* There are two RS decoders, processing 128 bytes each.
*
* If both RS decoders are SUCCESSFUL
* On exit:
* rs_failures = 0
* rserrs[x] = number of errors corrected; range 0 to 16 (x= 0 or 1)
* Data output is in array RSdecdata[256].
*
* If an RS decoder FAILS
* On exit:
* rs_failures = 1 or 2 (i.e. != 0)
* rserrs[x] contains -1
* Data output should not be used.
*/
int CCodecAO40::decode(unsigned char vitdecdata[NBITS_OUT], unsigned char *decoded_data)
{
int row, col, row_errors, total_errors;
char rsblocks[RSBLOCKS][NN];
descramble_to_rsblocks(vitdecdata, rsblocks);
/* Run RS-decoder(s) */
row_errors = total_errors = 0;
for(row=0; row<RSBLOCKS && row_errors!= -1; row++)
{
// decode row, returns -1 on failure or number of corrected errors
row_errors = decode_rs_8(rsblocks[row],NULL,0);
total_errors += row_errors;
}
if(row_errors != -1)
{
/* if frame decoded OK, deinterleave data from RS codeword(s) */
int j = 0;
for(col=RSPAD;col<KK;col++)
{
for(row=0;row<RSBLOCKS;row++)
{
decoded_data[j++] = rsblocks[row][col];
}
}
}
else
{
total_errors = -1;
}
return total_errors;
}
/* Compairs raw input symbols to current buffer of encoded symbols and counts the errors */
int CCodecAO40::count_errors(unsigned char *raw_symbols)
{
int error_count = 0;
for(int i=0;i<SYMPBLOCK;i++)
{
if ( m_encoded[i] != (raw_symbols[i]>>7) )
{
error_count++ ;
}
}
return error_count;
}

@ -0,0 +1,65 @@
/* AO40 encoder / decoder
* Copyright 2002 Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
* See CodecAO40.cpp for lineage
*
* This file is part of FUNcubeLib.
*
* FUNcubeLib is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* FUNcubeLib is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with FUNcubeLib If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "fecConstants.h"
class CCodecAO40
{
public:
CCodecAO40(void);
virtual ~CCodecAO40(void);
int decode(unsigned char viterbi_decoded[NBITS_OUT], unsigned char *decoded_data);
/* Encodes the 256 byte source block into 5200 byte block of symbols into m_encoded buffer */
const unsigned char *encode(
unsigned char *source_bytes, /* input to encode */
int byte_count); /* input length in bytes */
/* Compares raw input symbols to current buffer of encoded symbols and counts the errors */
int count_errors( unsigned char *raw_symbols);
private:
int mod255(int x);
int decode_rs_8(char *data, int *eras_pos, int no_eras);
void scramble_and_encode(unsigned char c);
void encode_and_interleave(unsigned char c,int cnt);
void descramble_to_rsblocks(
unsigned char viterbi_decoded[NBITS_OUT],
char rsblocks[RSBLOCKS][NN]);
void init_encoder(void);
void encode_byte(unsigned char c);
void encode_parity(void);
void interleave_symbol(int c);
int m_encoded_bytes; /* Byte counter for encode_data() */
int m_ileaver_index; /* Byte counter for interleaver */
unsigned char m_conv_sr; /* Convolutional encoder shift register state */
unsigned char m_RS_block[RSBLOCKS][NROOTS]; /* RS parity blocks */
unsigned char m_encoded[SYMPBLOCK] ; /* encoded symbols */
};

@ -0,0 +1,128 @@
#pragma once
/*
Amsat P3 FEC Encoder/decoder system. Look-up tables
Created by Phil Karn KA9Q and James Miller G3RUH
Last modified 2003 Jun 20
*/
/* Defines for Viterbi Decoder for r=1/2 k=7 (to CCSDS convention) */
#define K 7 /* Constraint length */
#define N 2 /* Number of symbols per data bit */
#define CPOLYA 0x4f /* First convolutional encoder polynomial */
#define CPOLYB 0x6d /* Second convolutional encoder polynomial */
#define SYNC_POLY 0x48 /* Sync vector PN polynomial */
#define NN 255
#define KK 223
#define NROOTS 32 /* NN-KK */
#define A0 (NN)
#define FCR 112
#define PRIM 11
#define IPRIM 116
#define BLOCKSIZE 256 /* Data bytes per frame */
#define RSBLOCKS 2 /* Number of RS decoder blocks */
#define RSPAD 95 /* Unused bytes in block (KK-BLOCKSIZE/RSBLOCKS) */
/* Defines for Interleaver */
#define ROWS 80 /* Block interleaver rows */
#define COLUMNS 65 /* Block interleaver columns */
#define SYMPBLOCK (ROWS*COLUMNS) /* Encoded symbols per block */
/* Number of symbols in an FEC block that are */
/* passed to the Viterbi decoder (320*8 + 6) */
#define NBITS ((BLOCKSIZE+NROOTS*RSBLOCKS)*8+K-1)
/* Number of bits obtained from Viterbi decoder */
#define NBITS_OUT (BLOCKSIZE+NROOTS*RSBLOCKS)
const unsigned char RS_poly[] = {
249, 59, 66, 4, 43,126,251, 97, 30, 3,213, 50, 66,170, 5, 24
};
/* Tables for RS decoder */
/* Galois field log/antilog tables */
const unsigned char ALPHA_TO[] =
{
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd,
0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67,
0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b,
0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26,
0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba,
0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0,
0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a,
0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44,
0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85,
0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf,
0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58,
0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24,
0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64,
0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x00,
};
const unsigned char INDEX_OF[]=
{
0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a,
0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3,
0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4,
0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38,
0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48,
0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15,
0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10,
0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b,
0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a,
0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb,
0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf,
0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86,
0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc,
0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44,
0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97,
0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7,
};
/* 8-bit parity table */
const unsigned char Partab[] = {
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
};
/* Scramble byte table */
const unsigned char Scrambler[]=
{
0xff, 0x48, 0x0e, 0xc0, 0x9a, 0x0d, 0x70, 0xbc, 0x8e, 0x2c, 0x93, 0xad, 0xa7, 0xb7, 0x46, 0xce,
0x5a, 0x97, 0x7d, 0xcc, 0x32, 0xa2, 0xbf, 0x3e, 0x0a, 0x10, 0xf1, 0x88, 0x94, 0xcd, 0xea, 0xb1,
0xfe, 0x90, 0x1d, 0x81, 0x34, 0x1a, 0xe1, 0x79, 0x1c, 0x59, 0x27, 0x5b, 0x4f, 0x6e, 0x8d, 0x9c,
0xb5, 0x2e, 0xfb, 0x98, 0x65, 0x45, 0x7e, 0x7c, 0x14, 0x21, 0xe3, 0x11, 0x29, 0x9b, 0xd5, 0x63,
0xfd, 0x20, 0x3b, 0x02, 0x68, 0x35, 0xc2, 0xf2, 0x38, 0xb2, 0x4e, 0xb6, 0x9e, 0xdd, 0x1b, 0x39,
0x6a, 0x5d, 0xf7, 0x30, 0xca, 0x8a, 0xfc, 0xf8, 0x28, 0x43, 0xc6, 0x22, 0x53, 0x37, 0xaa, 0xc7,
0xfa, 0x40, 0x76, 0x04, 0xd0, 0x6b, 0x85, 0xe4, 0x71, 0x64, 0x9d, 0x6d, 0x3d, 0xba, 0x36, 0x72,
0xd4, 0xbb, 0xee, 0x61, 0x95, 0x15, 0xf9, 0xf0, 0x50, 0x87, 0x8c, 0x44, 0xa6, 0x6f, 0x55, 0x8f,
0xf4, 0x80, 0xec, 0x09, 0xa0, 0xd7, 0x0b, 0xc8, 0xe2, 0xc9, 0x3a, 0xda, 0x7b, 0x74, 0x6c, 0xe5,
0xa9, 0x77, 0xdc, 0xc3, 0x2a, 0x2b, 0xf3, 0xe0, 0xa1, 0x0f, 0x18, 0x89, 0x4c, 0xde, 0xab, 0x1f,
0xe9, 0x01, 0xd8, 0x13, 0x41, 0xae, 0x17, 0x91, 0xc5, 0x92, 0x75, 0xb4, 0xf6, 0xe8, 0xd9, 0xcb,
0x52, 0xef, 0xb9, 0x86, 0x54, 0x57, 0xe7, 0xc1, 0x42, 0x1e, 0x31, 0x12, 0x99, 0xbd, 0x56, 0x3f,
0xd2, 0x03, 0xb0, 0x26, 0x83, 0x5c, 0x2f, 0x23, 0x8b, 0x24, 0xeb, 0x69, 0xed, 0xd1, 0xb3, 0x96,
0xa5, 0xdf, 0x73, 0x0c, 0xa8, 0xaf, 0xcf, 0x82, 0x84, 0x3c, 0x62, 0x25, 0x33, 0x7a, 0xac, 0x7f,
0xa4, 0x07, 0x60, 0x4d, 0x06, 0xb8, 0x5e, 0x47, 0x16, 0x49, 0xd6, 0xd3, 0xdb, 0xa3, 0x67, 0x2d,
0x4b, 0xbe, 0xe6, 0x19, 0x51, 0x5f, 0x9f, 0x05, 0x08, 0x78, 0xc4, 0x4a, 0x66, 0xf5, 0x58, 0xff,
0x48, 0x0e, 0xc0, 0x9a, 0x0d, 0x70, 0xbc, 0x8e, 0x2c, 0x93, 0xad, 0xa7, 0xb7, 0x46, 0xce, 0x5a,
0x97, 0x7d, 0xcc, 0x32, 0xa2, 0xbf, 0x3e, 0x0a, 0x10, 0xf1, 0x88, 0x94, 0xcd, 0xea, 0xb1, 0xfe,
0x90, 0x1d, 0x81, 0x34, 0x1a, 0xe1, 0x79, 0x1c, 0x59, 0x27, 0x5b, 0x4f, 0x6e, 0x8d, 0x9c, 0xb5,
0x2e, 0xfb, 0x98, 0x65, 0x45, 0x7e, 0x7c, 0x14, 0x21, 0xe3, 0x11, 0x29, 0x9b, 0xd5, 0x63, 0xfd,
};
Loading…
Cancel
Save

Powered by TurnKey Linux.