Update auto-tune.py add parameters

fiabv4-auto-tune
Alan Johnston 2 months ago committed by GitHub
parent 873f789b42
commit a0dbfdc646
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -2,6 +2,20 @@ from rtlsdr import RtlSdr
import numpy as np
import matplotlib.pyplot as plt
if __name__ == "__main__":
graph = 'n'
center_frequency = 434.9e6
if (len(sys.argv)) > 0:
print("There are arguments!")
center_frequency = float(sys.argv[1])
if (center_frequency == 0):
center_frequency = 434.9e6
if (len(sys.argv)) > 1:
print("There are more arguments")
if (sys.argv[2] == 'g') or (sys.argv[2] == '-g'):
graph = 'y'
# Create a sample signal (sum of two sine waves)
sampling_rate = 1024e3 # 250e3 # Hz
duration = 65536/sampling_rate # 1 # seconds
@ -15,7 +29,7 @@ sdr = RtlSdr()
# configure device
sdr.sample_rate = sampling_rate # 250e3 # 2.4e6
center_frequency = 434.8e6
#center_frequency = 434.8e6
sdr.center_freq = center_frequency
sdr.gain = 4
sdr.direct_sampling = False
@ -39,43 +53,44 @@ positive_frequencies_indices = np.where(frequencies >= 0)
positive_frequencies = frequencies[positive_frequencies_indices]
amplitude_spectrum = 2/n * np.abs(fft_result[positive_frequencies_indices]) # Normalize for amplitude
# Plotting the results
plt.figure(figsize=(12, 6))
if (graph == 'y'):
# Plotting the results
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(t, signal)
plt.title('Time Domain Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.subplot(1, 2, 1)
plt.plot(t, signal)
plt.title('Time Domain Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.subplot(1, 2, 2)
plt.stem(positive_frequencies, amplitude_spectrum, markerfmt=" ", basefmt="-b")
plt.title('Frequency Domain (FFT)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.subplot(1, 2, 2)
plt.stem(positive_frequencies, amplitude_spectrum, markerfmt=" ", basefmt="-b")
plt.title('Frequency Domain (FFT)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
plt.tight_layout()
plt.show()
print(amplitude_spectrum)
# print(amplitude_spectrum)
x = amplitude_spectrum
print(x)
# print(x)
min_value = min(x)
max_value = max(x)
#freq_min = np.argmax(min_value)
print(np.argmax(x))
print(np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
print(sampling_rate)
print(center_frequency)
# print(np.argmax(x))
# print(np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
# print(sampling_rate)
# print(center_frequency)
offset = (np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
freq_max = center_frequency + offset
print(f"The maximum signal is {max_value} at frequency {freq_max}")
print(f" {freq_max} {max_value}")
#print(f"The minimum signal is {min_value} at frequency {freq_min}")
print(min_value)
print(max_value)
#print(min_value)
#print(max_value)

Loading…
Cancel
Save

Powered by TurnKey Linux.