Merge pull request #75 from alanbjohnston/dev

code cleanup and Pro Micro and STM32 code improvements
pull/77/head
alanbjohnston 5 years ago committed by GitHub
commit 75e87563b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

File diff suppressed because it is too large Load Diff

@ -0,0 +1,78 @@
/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc
This example code is in the public domain.
modified 8 May 2014
by Scott Fitzgerald
Modified by Roger Clark. www.rogerclark.net for Maple mini 25th April 2015 , where the LED is on PC13
*/
/* Pro Micro Test Code
by: Nathan Seidle
modified by: Jim Lindblom
SparkFun Electronics
date: September 16, 2013
license: Public Domain - please use this code however you'd like.
It's provided as a learning tool.
This code is provided to show how to control the SparkFun
ProMicro's TX and RX LEDs within a sketch. It also serves
to explain the difference between Serial.print() and
Serial1.print().
*/
int RXLED = 17; // The RX LED has a defined Arduino pin
// Note: The TX LED was not so lucky, we'll need to use pre-defined
// macros (TXLED1, TXLED0) to control that.
// (We could use the same macros for the RX LED too -- RXLED1,
// and RXLED0.)
// the setup function runs once when you press reset or power the board
void setup() {
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
#endif
Serial.begin(9600);
}
// the loop function runs over and over again forever
void loop() {
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
Serial.println("LED is on!");
delay(1000); // wait for a second
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED1; //TX LED macro to turn LED ON
#endif
Serial.println("LED is off!");
delay(1000); // wait for a second
}

@ -0,0 +1,266 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BME280 bme;
MPU6050 mpu6050(Wire);
long timer = 0;
int bmePresent;
int RXLED = 17; // The RX LED has a defined Arduino pin
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
int Sensor2 = 0;
float Sensor3 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(9600); // Pi UART
Serial.println("Starting!");
blink_setup();
blink(500);
delay(250);
blink(500);
delay(250);
blink(500);
delay(250);
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1)) / 100.0;
float yOffset = ((float)eeprom_word_read(2)) / 100.0;
float zOffset = ((float)eeprom_word_read(3)) / 100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
}
void loop() {
if (Serial.available() > 0) {
blink(50);
char result = Serial.read();
// Serial.println(result);
if (result == 'R') {
Serial.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
Serial.print(" XS ");
Serial.print(Sensor1);
Serial.print(" ");
Serial.print(Sensor2);
Serial.print(" ");
Serial.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
}
}
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
Serial1.print(" XS ");
Serial1.print(Sensor1);
Serial1.print(" ");
Serial1.print(Sensor2);
Serial1.print(" ");
Serial1.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
}
}
// delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}
void blink_setup()
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
#endif
}
void blink(int length)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
delay(length); // wait for a lenth of time
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
}
Loading…
Cancel
Save

Powered by TurnKey Linux.