Merge pull request #145 from alanbjohnston/bp-vhf

Bp vhf
bp-vhf-rnd
alanbjohnston 4 years ago committed by GitHub
commit 70eb416ccc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,235 @@
import tago
import requests
import json
from datetime import datetime
import time
while (True):
print("Input telemetry string (or Control-C to exit)")
# telem_string = input()
telem_json = requests.get('https://api.aprs.fi/api/get?name=W3YP-11&what=loc&apikey=APIKEY&format=json').json()
lat = float(telem_json['entries'][0]['lat'])
lon = float(telem_json['entries'][0]['lng'])
telem_string = telem_json['entries'][0]['comment']
times = int(telem_json['entries'][0]['time'])
print(lat)
print(lon)
print(telem_string)
chunks = telem_string.split(' ')
#printchunks = str.split(' ')
print(chunks)
temp = 0
pressure = 0
altitude = 0
humidity = 0
timestamp = datetime.utcfromtimestamp(times).strftime('%Y-%m-%d %H:%M:%S')
print(timestamp)
for i in range(len(chunks)):
if (chunks[i] == "BME280"):
print("Found BME280")
temp = chunks[i+1]
pressure = chunks[i+2]
altitude = chunks[i+3]
humidity = chunks[i+4]
print(temp)
print(humidity)
if (chunks[i] == "MPU6050"):
print("Found MPU6050")
x_rotate = chunks[i+1]
y_rotate = chunks[i+2]
z_rotate = chunks[i+3]
x_accel = chunks[i+4]
y_accel = chunks[i+5]
z_accel = chunks[i+6]
if (chunks[i] == "SGP30"):
print("Found SGP30")
tvoc = chunks[i+1]
e_co2 = chunks[i+2]
raw_h2 = chunks[i+3]
raw_ethanol= chunks[i+4]
#print(telem_string)
my_device = tago.Device('a824cdc6-dc87-4c54-a848-41dabb8873ad')
"""
The following code defines the set of data to be sent to TagoIO
data fields:
- variable name
- variable unit
- variable value
- Optional: desired data timestamp
- Optional: lat/long location (associated to your data)
"""
data = {
'variable': 'temperature',
'unit' : 'C',
'value' : temp,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
#print(data)
data = {
'variable': 'pressure',
'unit' : 'kPa',
'value' : pressure,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'altitude',
'unit' : 'm',
'value' : altitude,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'humidity',
'unit' : '%',
'value' : humidity,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'x_rotate',
'unit' : 'dps',
'value' : x_rotate,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'y_rotate',
'unit' : 'dps',
'value' : y_rotate,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'z_rotate',
'unit' : 'dps',
'value' : z_rotate,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'x_accel',
'unit' : 'g',
'value' : x_accel,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'y_accel',
'unit' : 'g',
'value' : y_accel,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'z_accel',
'unit' : 'g',
'value' : z_accel,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'tvoc',
'unit' : 'ppb',
'value' : tvoc,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'e_co2',
'unit' : 'ppm',
'value' : e_co2,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'raw_h2',
'unit' : 'raw',
'value' : raw_h2,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
'variable': 'raw_ethanol',
'unit' : 'raw',
'value' : raw_ethanol,
'time' : timestamp,
'location': {'lat': lat, 'lng': lon}
}
result = my_device.insert(data)
print(result)
data = {
"variable": "location",
"value": "Villanova University HAB-2",
"location": {
"lat": lat,
"lng": lon
}
}
result = my_device.insert(data)
print(result)
time.sleep(60)

@ -955,7 +955,8 @@ void get_tlm(void) {
sprintf(header_str2b, "=%s%c%sShi hi ", header_lat, 0x5c, header_long); // add APRS lat and long sprintf(header_str2b, "=%s%c%sShi hi ", header_lat, 0x5c, header_long); // add APRS lat and long
else else
// sprintf(header_str2b, "=%s%c%c%sShi hi ", header_lat, 0x5c, 0x5c, header_long); // add APRS lat and long // sprintf(header_str2b, "=%s%c%c%sShi hi ", header_lat, 0x5c, 0x5c, header_long); // add APRS lat and long
sprintf(header_str2b, "=%s/%sOhi hi ", header_lat, header_long); // add APRS lat and long // sprintf(header_str2b, "=%s/%sOhi hi ", header_lat, header_long); // add APRS lat and long
sprintf(header_str2b, "=%s/%sOhi %8.1f ", header_lat, header_long, alt_gps); // add APRS lat and long and altitude
printf("\n\nAPRS string is %s \n\n", header_str2b); printf("\n\nAPRS string is %s \n\n", header_str2b);
strcat(str, header_str2b); strcat(str, header_str2b);
} else { } else {

@ -0,0 +1,418 @@
// code for Pro Micro or STM32 on the CubeSat Simulator STEM Payload board
// answers "OK" on the serial port Serial1 when queried by the Pi
// includes code by Christy Ammon
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <Adafruit_SGP30.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BME280 bme;
Adafruit_SGP30 sgp;
MPU6050 mpu6050(Wire);
long timer = 0;
int bmePresent;
int RXLED = 17; // The RX LED has a defined Arduino pin
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
float Sensor2 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
void blink_setup();
void blink(int length);
int read_analog();
void led_set(int ledPin, bool state);
int first_time = true;
int first_read = true;
#if defined __AVR_ATmega32U4__
float T2 = 26.3; // Temperature data point 1
float R2 = 167; // Reading data point 1
float T1 = 2; // Temperature data point 2
float R1 = 179; // Reading data point 2
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
float T2 = 25; // Temperature data point 1
float R2 = 671; // Reading data point 1
float T1 = 15.5; // Temperature data point 2
float R1 = 695; // Reading data point 2
#endif
int sensorValue;
float Temp;
float rest;
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(115200); // Pi UART faster speed
// Serial1.begin(9600); // Pi UART faster speed
Serial.println("Starting!");
blink_setup();
blink(500);
delay(250);
blink(500);
delay(250);
led_set(greenLED, HIGH);
delay(250);
led_set(greenLED, LOW);
led_set(blueLED, HIGH);
delay(250);
led_set(blueLED, LOW);
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1)) / 100.0;
float yOffset = ((float)eeprom_word_read(2)) / 100.0;
float zOffset = ((float)eeprom_word_read(3)) / 100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
/**/
if (! sgp.begin()){
Serial.println("SGP30 sensor not found :(");
} else {
Serial.print("Found SGP30 serial #");
Serial.print(sgp.serialnumber[0], HEX);
Serial.print(sgp.serialnumber[1], HEX);
Serial.println(sgp.serialnumber[2], HEX);
}
// If you have a baseline measurement from before you can assign it to start, to 'self-calibrate'
//sgp.setIAQBaseline(0x8E68, 0x8F41); // Will vary for each sensor!
}
void loop() {
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
// Serial1.println("OK");
// if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = read_analog();
// Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
/*
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
*/
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
//SGP SENSOR DATA
if (! sgp.IAQmeasure()) {
// Serial.println("SGP 30 Measurement failed");
Serial1.print(" SGP30 0 0 ");
} else {
Serial1.print(" SGP30 ");
Serial1.print(sgp.TVOC);
Serial1.print(" ");
//Serial.print("eCO2 ");
Serial1.print(sgp.eCO2);
Serial1.print(" ");
}
if (! sgp.IAQmeasureRaw()) {
// Serial.println(" SGP 30 Raw Measurement failed");
Serial1.println(" 0 0 ");
} else {
//Serial.print("Raw H2 ");
Serial1.print(sgp.rawH2);
Serial1.print(" ");
//Serial.print("Raw Ethanol ");
Serial1.print(sgp.rawEthanol);
Serial1.println(" ");
}
}
}
if (Serial.available() > 0) {
blink(50);
char result = Serial.read();
// Serial.println(result);
// Serial.println("OK");
// Serial.println(counter++);
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
else if (result == 'C') {
Serial.println("Clearing stored gyro offsets in EEPROM\n");
eeprom_word_write(0, 0x00);
first_time = true;
setup();
}
if ((result == '?') || first_time == true)
{
first_time = false;
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
sensorValue = read_analog();
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
/*
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
Serial.print(Sensor2);
Serial.print(" (");
Serial.print(sensorValue);
Serial.print(")");
*/
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
//SGP SENSOR DATA
if (! sgp.IAQmeasure()) {
// Serial.println("SGP 30 Measurement failed");
Serial.print(" SGP30 0 0 ");
} else {
Serial.print(" SGP30 ");
Serial.print(sgp.TVOC);
Serial.print(" ");
//Serial.print("eCO2 ");
Serial.print(sgp.eCO2);
Serial.print(" ");
}
if (! sgp.IAQmeasureRaw()) {
// Serial.println("SGP 30 Raw Measurement failed");
Serial.println("0 0");
} else {
//Serial.print("Raw H2 ");
Serial.print(sgp.rawH2);
Serial.print(" ");
//Serial.print("Raw Ethanol ");
Serial.print(sgp.rawEthanol);
Serial.println(" ");
uint16_t TVOC_base, eCO2_base;
if (! sgp.getIAQBaseline(&eCO2_base, &TVOC_base)) {
Serial.println("Failed to get baseline readings");
}
Serial.print("****Baseline values: eCO2: 0x"); Serial.print(eCO2_base, HEX);
Serial.print(" & TVOC: 0x"); Serial.println(TVOC_base, HEX);
}
}
}
delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}
void blink_setup()
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
pinMode(PB9, OUTPUT);
pinMode(PB8, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
pinMode(greenLED, OUTPUT);
pinMode(blueLED,OUTPUT);
#endif
}
void blink(int length)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
delay(length); // wait for a lenth of time
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED0; //TX LED macro to turn LED ON
#endif
}
void led_set(int ledPin, bool state)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
if (ledPin == greenLED)
digitalWrite(PB9, state);
else if (ledPin == blueLED)
digitalWrite(PB8, state);
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(ledPin, state);
#endif
}
int read_analog()
{
int sensorValue;
#if defined __AVR_ATmega32U4__
sensorValue = analogRead(A3);
#endif
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
sensorValue = analogRead(PA7);
#endif
return(sensorValue);
}
Loading…
Cancel
Save

Powered by TurnKey Linux.