Update auto-tune.py catch rtl failure

fiabv4-auto-tune
Alan Johnston 2 months ago committed by GitHub
parent 52c0a2a930
commit 4aaa8daabe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -18,74 +18,76 @@ if __name__ == "__main__":
sampling_rate = 1024e3 # 250e3 # Hz
duration = 65536/sampling_rate # 1 # seconds
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
sdr = RtlSdr()
# configure device
sdr.sample_rate = sampling_rate # 250e3 # 2.4e6
#center_frequency = 434.8e6
sdr.center_freq = center_frequency
sdr.gain = 47
sdr.direct_sampling = False
# signal = sdr.read_samples(64*1024) #256
signal = sdr.read_samples(duration*sampling_rate).real #256
# print(f"Center frequency is {center_frequency}")
sdr.close()
# Compute the FFT
fft_result = np.fft.fft(signal)
# Calculate the frequencies corresponding to the FFT output
n = len(signal)
frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
# Take the absolute value for amplitude spectrum and consider only the positive frequencies
positive_frequencies_indices = np.where(frequencies >= 0)
positive_frequencies = frequencies[positive_frequencies_indices]
amplitude_spectrum = 2/n * np.abs(fft_result[positive_frequencies_indices]) # Normalize for amplitude
if (graph == 'y'):
# Plotting the results
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(t, signal)
plt.title('Time Domain Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.subplot(1, 2, 2)
plt.stem(positive_frequencies, amplitude_spectrum, markerfmt=" ", basefmt="-b")
plt.title('Frequency Domain (FFT)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
# print(amplitude_spectrum)
x = amplitude_spectrum
# print(x)
min_value = min(x)
max_value = max(x) * 100
#freq_min = np.argmax(min_value)
# print(np.argmax(x))
# print(np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
# print(sampling_rate)
# print(center_frequency)
offset = (np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
freq_max = center_frequency + offset + 2000
try:
sdr = RtlSdr()
# configure device
sdr.sample_rate = sampling_rate # 250e3 # 2.4e6
#center_frequency = 434.8e6
sdr.center_freq = center_frequency
sdr.gain = 47
sdr.direct_sampling = False
# signal = sdr.read_samples(64*1024) #256
signal = sdr.read_samples(duration*sampling_rate).real #256
# print(f"Center frequency is {center_frequency}")
sdr.close()
# Compute the FFT
fft_result = np.fft.fft(signal)
# Calculate the frequencies corresponding to the FFT output
n = len(signal)
frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
# Take the absolute value for amplitude spectrum and consider only the positive frequencies
positive_frequencies_indices = np.where(frequencies >= 0)
positive_frequencies = frequencies[positive_frequencies_indices]
amplitude_spectrum = 2/n * np.abs(fft_result[positive_frequencies_indices]) # Normalize for amplitude
if (graph == 'y'):
# Plotting the results
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(t, signal)
plt.title('Time Domain Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.subplot(1, 2, 2)
plt.stem(positive_frequencies, amplitude_spectrum, markerfmt=" ", basefmt="-b")
plt.title('Frequency Domain (FFT)')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
# print(amplitude_spectrum)
x = amplitude_spectrum
# print(x)
min_value = min(x)
max_value = max(x) * 100
#freq_min = np.argmax(min_value)
# print(np.argmax(x))
# print(np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
# print(sampling_rate)
# print(center_frequency)
offset = (np.argmax(x)*(150e3 - 10e3)/(9770 - 709))
freq_max = center_frequency + offset + 2000
except: # if no RTL-SDR or in use, stop scanning with high max value and center frequency
max_value = 100
freq_max = center_frequency + 200e3 # should be 434900000
print(f" {freq_max:.0f} {max_value:.0f}")
#print(f"The minimum signal is {min_value} at frequency {freq_min}")
#print(min_value)
#print(max_value)

Loading…
Cancel
Save

Powered by TurnKey Linux.