updated for rel 0.19 and also UHF, VHF, and HF profiles together

pull/52/head
alanbjohnston 6 years ago committed by GitHub
parent 32989c1e2a
commit 1613fef27d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -6,6 +6,7 @@ config_webrx: configuration options for OpenWebRX
This file is part of OpenWebRX,
an open-source SDR receiver software with a web UI.
Copyright (c) 2013-2015 by Andras Retzler <randras@sdr.hu>
Copyright (c) 2019-2020 by Jakob Ketterl <dd5jfk@darc.de>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
@ -16,6 +17,7 @@ config_webrx: configuration options for OpenWebRX
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
@ -28,61 +30,55 @@ config_webrx: configuration options for OpenWebRX
(It means that you do not have to redistribute config_rtl.py and
config_webrx.py if you make any changes to these two configuration files,
and use them for running your web service with OpenWebRX.)
portions inspired by http://gephi.michalnovak.eu/config_webrx.py
"""
# configuration version. please only modify if you're able to perform the associated migration steps.
version = 2
# NOTE: you can find additional information about configuring OpenWebRX in the Wiki:
# https://github.com/simonyiszk/openwebrx/wiki
# https://github.com/jketterl/openwebrx/wiki/Configuration-guide
# ==== Server settings ====
web_port=8073
server_hostname="localhost" # If this contains an incorrect value, the web UI may freeze on load (it can't open websocket)
max_clients=20
web_port = 8073
max_clients = 10
# ==== Web GUI configuration ====
receiver_name="AMSAT CubeSat Simulator Ground Station"
receiver_location=""
receiver_qra=""
receiver_asl=0
receiver_ant="monopole"
receiver_device="RTL-SDR"
receiver_admin="ku2y@amsat.org"
receiver_gps=(39.0302,-77.0747)
photo_height=350
photo_title="Panorama of Budapest from Schönherz Zoltán Dormitory"
photo_desc="""
receiver_name = "KU2Y"
receiver_location = "Philadelphia, PA"
receiver_asl = 200
receiver_admin = "ku2y@amsat.org"
receiver_gps = (40.0376, -75.3492)
receiver_gps = {"lat": 40.0376, "lon": -75.3492}
photo_title = "ARISS"
photo_desc = """
You can add your own background photo and receiver information.<br />
Receiver is operated by: <a href="mailto:%[RX_ADMIN]">%[RX_ADMIN]</a><br/>
Device: %[RX_DEVICE]<br />
Antenna: %[RX_ANT]<br />
Website: <a href="http://localhost" target="_blank">http://localhost</a>
Receiver is operated by: <a href="mailto:ku2y@amsat.org">ku2y@amsat.org</a><br/>
Device: RTL-SDR<br />
Antenna: <br />
Website: <a href="http://ariss-radio:8073" target="_blank">http://ariss-radio:8073</a>
"""
# ==== sdr.hu listing ====
# If you want your ham receiver to be listed publicly on sdr.hu, then take the following steps:
# 1. Register at: http://sdr.hu/register
# 2. You will get an unique key by email. Copy it and paste here:
sdrhu_key = ""
# 3. Set this setting to True to enable listing:
sdrhu_public_listing = False
# ==== DSP/RX settings ====
fft_fps=9
fft_size=4096 #Should be power of 2
fft_voverlap_factor=0.3 #If fft_voverlap_factor is above 0, multiple FFTs will be used for creating a line on the diagram.
samp_rate = 250000
# samp_rate = 2400000
center_freq = 434950000
rf_gain = 7 #in dB. For an RTL-SDR, rf_gain=0 will set the tuner to auto gain mode, else it will be in manual gain mode.
ppm = 0
fft_fps = 9
fft_size = 4096 # Should be power of 2
fft_voverlap_factor = (
0.3 # If fft_voverlap_factor is above 0, multiple FFTs will be used for creating a line on the diagram.
)
audio_compression="adpcm" #valid values: "adpcm", "none"
fft_compression="adpcm" #valid values: "adpcm", "none"
audio_compression = "adpcm" # valid values: "adpcm", "none"
fft_compression = "adpcm" # valid values: "adpcm", "none"
digimodes_enable=False # True #Decoding digimodes come with higher CPU usage.
digimodes_fft_size=1024
digimodes_enable = True # Decoding digimodes come with higher CPU usage.
digimodes_fft_size = 1024
start_rtl_thread=True
# determines the quality, and thus the cpu usage, for the ambe codec used by digital voice modes
# if you're running on a Raspi (up to 3B+) you'll want to leave this on 1
digital_voice_unvoiced_quality = 1
# enables lookup of DMR ids using the radioid api
digital_voice_dmr_id_lookup = True
"""
Note: if you experience audio underruns while CPU usage is 100%, you can:
@ -95,121 +91,759 @@ Note: if you experience audio underruns while CPU usage is 100%, you can:
# ==== I/Q sources ====
# (Uncomment the appropriate by removing # characters at the beginning of the corresponding lines.)
#################################################################################################
# Is my SDR hardware supported? #
# Check here: https://github.com/simonyiszk/openwebrx/wiki#guides-for-receiver-hardware-support #
#################################################################################################
# You can use other SDR hardware as well, by giving your own command that outputs the I/Q samples... Some examples of configuration are available here (default is RTL-SDR):
# >> RTL-SDR via rtl_sdr
start_rtl_command="rtl_sdr -s {samp_rate} -f {center_freq} -p {ppm} -g {rf_gain} -".format(rf_gain=rf_gain, center_freq=center_freq, samp_rate=samp_rate, ppm=ppm)
format_conversion="csdr convert_u8_f"
#lna_gain=8
#rf_amp=1
#start_rtl_command="hackrf_transfer -s {samp_rate} -f {center_freq} -g {rf_gain} -l{lna_gain} -a{rf_amp} -r-".format(rf_gain=rf_gain, center_freq=center_freq, samp_rate=samp_rate, ppm=ppm, rf_amp=rf_amp, lna_gain=lna_gain)
#format_conversion="csdr convert_s8_f"
"""
To use a HackRF, compile the HackRF host tools from its "stdout" branch:
git clone https://github.com/mossmann/hackrf/
cd hackrf
git fetch
git checkout origin/stdout
cd host
mkdir build
cd build
cmake .. -DINSTALL_UDEV_RULES=ON
make
sudo make install
"""
# >> Sound card SDR (needs ALSA)
# I did not have the chance to properly test it.
#samp_rate = 96000
#start_rtl_command="arecord -f S16_LE -r {samp_rate} -c2 -".format(samp_rate=samp_rate)
#format_conversion="csdr convert_s16_f | csdr gain_ff 30"
# >> /dev/urandom test signal source
# samp_rate = 2400000
# start_rtl_command="cat /dev/urandom | (pv -qL `python -c 'print int({samp_rate} * 2.2)'` 2>&1)".format(rf_gain=rf_gain, center_freq=center_freq, samp_rate=samp_rate)
# format_conversion="csdr convert_u8_f"
# >> Pre-recorded raw I/Q file as signal source
# You will have to correctly specify: samp_rate, center_freq, format_conversion in order to correctly play an I/Q file.
#start_rtl_command="(while true; do cat my_iq_file.raw; done) | csdr flowcontrol {sr} 20 ".format(sr=samp_rate*2*1.05)
#format_conversion="csdr convert_u8_f"
#>> The rx_sdr command works with a variety of SDR harware: RTL-SDR, HackRF, SDRplay, UHD, Airspy, Red Pitaya, audio devices, etc.
# It will auto-detect your SDR hardware if the following tools are installed:
# * the vendor provided driver and library,
# * the vendor-specific SoapySDR wrapper library,
# * and SoapySDR itself.
# Check out this article on the OpenWebRX Wiki: https://github.com/simonyiszk/openwebrx/wiki/Using-rx_tools-with-OpenWebRX/
#start_rtl_command="rx_sdr -F CF32 -s {samp_rate} -f {center_freq} -p {ppm} -g {rf_gain} -".format(rf_gain=rf_gain, center_freq=center_freq, samp_rate=samp_rate, ppm=ppm)
#format_conversion=""
# >> gr-osmosdr signal source using GNU Radio (follow this guide: https://github.com/simonyiszk/openwebrx/wiki/Using-GrOsmoSDR-as-signal-source)
#start_rtl_command="cat /tmp/osmocom_fifo"
#format_conversion=""
###############################################################################
# Is my SDR hardware supported? #
# Check here: https://github.com/jketterl/openwebrx/wiki/Supported-Hardware #
###############################################################################
# ==== Misc settings ====
shown_center_freq = center_freq #you can change this if you use an upconverter
client_audio_buffer_size = 5
#increasing client_audio_buffer_size will:
# - also increase the latency
# - decrease the chance of audio underruns
start_freq = center_freq
start_mod = "nfm" #nfm, am, lsb, usb, cw
iq_server_port = 4951 #TCP port for ncat to listen on. It will send I/Q data over its connections, for internal use in OpenWebRX. It is only accessible from the localhost by default.
# Currently supported types of sdr receivers:
# "rtl_sdr", "rtl_sdr_soapy", "sdrplay", "hackrf", "airspy", "airspyhf", "fifi_sdr",
# "perseussdr", "lime_sdr", "pluto_sdr", "soapy_remote"
#
# In order to use rtl_sdr, you will need to install librtlsdr-dev and the connector.
# In order to use sdrplay, airspy or airspyhf, you will need to install soapysdr, the corresponding driver, and the
# connector.
#
# https://github.com/jketterl/owrx_connector
#
# In order to use Perseus HF you need to install the libperseus-sdr
#
# https://github.com/Microtelecom/libperseus-sdr
#
# and do the proper changes to the sdrs object below
# (see also Wiki in https://github.com/jketterl/openwebrx/wiki/Sample-configuration-for-Perseus-HF-receiver).
#
#access_log = "~/openwebrx_access.log"
sdrs = {
"rtlsdr": {
"name": "RTL-SDR VHF/UHF",
"type": "rtl_sdr",
"ppm": 0,
# you can change this if you use an upconverter. formula is:
# center_freq + lfo_offset = actual frequency on the sdr
# "lfo_offset": 0,
"profiles": {
"wx": {
"name": "Weather Band",
"center_freq": 162000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 161500000,
"start_mod": "nfm",
},
"70cm": {
"name": "70cm Band",
"center_freq": 435500000,
"rf_gain": 3,
"samp_rate": 2400000,
"start_freq": 4355000000,
"start_mod": "nfm",
},
"70cm-hi": {
"name": "70cm Band High Gain",
"center_freq": 435500000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 4355000000,
"start_mod": "nfm",
},
"2m": {
"name": "2m Band",
"center_freq": 145000000,
"rf_gain": 15,
"samp_rate": 2400000,
"start_freq": 145725000,
"start_mod": "nfm",
},
"2m-hi": {
"name": "2m Band High Gain",
"center_freq": 145000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 145725000,
"start_mod": "nfm",
},
"fm": {
"name": "FM Band",
"center_freq": 91000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 90000000,
"start_mod": "nfm",
},
"atc": {
"name": "Air Band - ATC",
"center_freq": 134000000,
"rf_gain": 20,
"samp_rate": 2400000,
"start_freq": 134000000,
"start_mod": "am",
},
"atc-hi": {
"name": "Air Band - ATC High Gain",
"center_freq": 134000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 134000000,
"start_mod": "am",
},
"noaa": {
"name": "NOAA Weather Satellites",
"center_freq": 137000000,
"rf_gain": 20,
"samp_rate": 2400000,
"start_freq": 137000000,
"start_mod": "fm",
},
"noaa-hi": {
"name": "NOAA Weather Satellites High Gain",
"center_freq": 137000000,
"rf_gain": 25,
"samp_rate": 2400000,
"start_freq": 137000000,
"start_mod": "fm",
},
"10m": {
"name": "10m Band",
"center_freq": 28000000,
"rf_gain": 25,
"samp_rate": 2400000,
"start_freq": 28500000,
"start_mod": "usb",
},
"6m": {
"name": "6m Band",
"center_freq": 51000000,
"rf_gain": 25,
"samp_rate": 2400000,
"start_freq": 51000000,
"start_mod": "usb",
},
"110MHz": {
"name": "110 MHz",
"center_freq": 110000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 110000000,
"start_mod": "nfm",
},
"112MHz": {
"name": "112 MHz",
"center_freq": 112000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 112000000,
"start_mod": "nfm",
},
"114MHz": {
"name": "114 MHz",
"center_freq": 114000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 114000000,
"start_mod": "nfm",
},
"116mhz": {
"name": "116 MHz",
"center_freq": 116000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 116000000,
"start_mod": "nfm",
},
"118mhz": {
"name": "118 MHz",
"center_freq": 118000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 118000000,
"start_mod": "nfm",
},
"120mhz": {
"name": "120 MHz",
"center_freq": 120000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 120000000,
"start_mod": "nfm",
},
"122mhz": {
"name": "122 MHz",
"center_freq": 122000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 122000000,
"start_mod": "nfm",
},
"124mhz": {
"name": "124 MHz",
"center_freq": 124000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 124000000,
"start_mod": "nfm",
},
"126mhz": {
"name": "126 MHz",
"center_freq": 126000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 126000000,
"start_mod": "nfm",
},
"128mhz": {
"name": "126 MHz",
"center_freq": 128000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 128000000,
"start_mod": "nfm",
},
"130mhz": {
"name": "130 MHz",
"center_freq": 130000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 130000000,
"start_mod": "nfm",
},
"132mhz": {
"name": "132 MHz",
"center_freq": 132000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 132000000,
"start_mod": "nfm",
},
"134mhz": {
"name": "134 MHz",
"center_freq": 134000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 134000000,
"start_mod": "nfm",
},
"136mhz": {
"name": "136 MHz",
"center_freq": 136000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 136000000,
"start_mod": "nfm",
},
"138mhz": {
"name": "138 MHz",
"center_freq": 138000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 138000000,
"start_mod": "nfm",
},
"140mhz": {
"name": "140 MHz",
"center_freq": 140000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 140000000,
"start_mod": "nfm",
},
"142mhz": {
"name": "142 MHz",
"center_freq": 142000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 142000000,
"start_mod": "nfm",
},
"144mhz": {
"name": "144 MHz",
"center_freq": 144000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 144000000,
"start_mod": "nfm",
},
"146mhz": {
"name": "146 MHz",
"center_freq": 146000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 146000000,
"start_mod": "nfm",
},
"148mhz": {
"name": "148 MHz",
"center_freq": 148000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 148000000,
"start_mod": "nfm",
},
"150mhz": {
"name": "150 MHz",
"center_freq": 150000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 150000000,
"start_mod": "nfm",
},
"152mhz": {
"name": "152 MHz",
"center_freq": 152000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 152000000,
"start_mod": "nfm",
},
"154mhz": {
"name": "154 MHz",
"center_freq": 154000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 154000000,
"start_mod": "nfm",
},
"156mhz": {
"name": "156 MHz",
"center_freq": 156000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 156100000,
"start_mod": "nfm",
},
"158mhz": {
"name": "158 MHz",
"center_freq": 158000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 158000000,
"start_mod": "nfm",
},
"160mhz": {
"name": "160 MHz",
"center_freq": 160000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 160000000,
"start_mod": "nfm",
},
"162mhz": {
"name": "162 MHz",
"center_freq": 162000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 162000000,
"start_mod": "nfm",
},
"164mhz": {
"name": "164 MHz",
"center_freq": 164000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 164000000,
"start_mod": "nfm",
},
"166mhz": {
"name": "166 MHz",
"center_freq": 166000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 166000000,
"start_mod": "nfm",
},
"168mhz": {
"name": "168 MHz",
"center_freq": 168000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 168000000,
"start_mod": "nfm",
},
"170mhz": {
"name": "170 MHz",
"center_freq": 170000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 170000000,
"start_mod": "nfm",
},
"172mhz": {
"name": "172 MHz",
"center_freq": 172000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 172000000,
"start_mod": "nfm",
},
"174mhz": {
"name": "174 MHz",
"center_freq": 174000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 174000000,
"start_mod": "nfm",
},
"433mhz": {
"name": "433 MHz",
"center_freq": 433000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 433000000,
"start_mod": "nfm",
},
"446mhz": {
"name": "446 MHz (PMR)",
"center_freq": 446000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 446000000,
"start_mod": "nfm",
},
"460mhz": {
"name": "460 MHz",
"center_freq": 460000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 460000000,
"start_mod": "nfm",
},
"860mhz": {
"name": "860 MHz",
"center_freq": 860000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 860000000,
"start_mod": "nfm",
},
"862mhz": {
"name": "862 MHz",
"center_freq": 862000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 862000000,
"start_mod": "nfm",
},
"864mhz": {
"name": "864 MHz",
"center_freq": 864000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 864000000,
"start_mod": "nfm",
},
"866mhz": {
"name": "866 MHz",
"center_freq": 866000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 866000000,
"start_mod": "nfm",
},
"868mhz": {
"name": "868 MHz",
"center_freq": 868000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 868000000,
"start_mod": "nfm",
},
"870mhz": {
"name": "870 MHz",
"center_freq": 870000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 870000000,
"start_mod": "nfm",
},
"915mhz": {
"name": "915 MHz",
"center_freq": 915000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 915000000,
"start_mod": "nfm",
},
"1090mhz": {
"name": "1090 MHz",
"center_freq": 1090000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1090000000,
"start_mod": "nfm",
},
"1880mhz": {
"name": "1880 MHz",
"center_freq": 1880000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1880000000,
"start_mod": "nfm",
},
"1882mhz": {
"name": "1882 MHz",
"center_freq": 1882000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1882000000,
"start_mod": "nfm",
},
"1884mhz": {
"name": "1884 MHz",
"center_freq": 1884000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1884000000,
"start_mod": "nfm",
},
"1886mhz": {
"name": "1886 MHz",
"center_freq": 1886000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1886000000,
"start_mod": "nfm",
},
"1888mhz": {
"name": "1888 MHz",
"center_freq": 1888000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1888000000,
"start_mod": "nfm",
},
"1890mhz": {
"name": "1890 MHz",
"center_freq": 1890000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1890000000,
"start_mod": "nfm",
},
"1892mhz": {
"name": "1892 MHz",
"center_freq": 1892000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1892000000,
"start_mod": "nfm",
},
"1894mhz": {
"name": "1894 MHz",
"center_freq": 1894000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1894000000,
"start_mod": "nfm",
},
"1896mhz": {
"name": "1896 MHz",
"center_freq": 1896000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1896000000,
"start_mod": "nfm",
},
"1898mhz": {
"name": "1898 MHz",
"center_freq": 1898000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1898000000,
"start_mod": "nfm",
},
"1900mhz": {
"name": "1900 MHz",
"center_freq": 1900000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1900000000,
"start_mod": "nfm",
},
"23cm": {
"name": "23cm Band",
"center_freq": 1270000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 1270000000,
"start_mod": "nfm",
},
"13cm": {
"name": "13cm Band",
"center_freq": 2370000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 2370000000,
"start_mod": "nfm",
},
"9cm": {
"name": "9cm Band",
"center_freq": 3440000000,
"rf_gain": 30,
"samp_rate": 2400000,
"start_freq": 3440000000,
"start_mod": "nfm",
},
},
},
"rtl_sdr-2": {
"name": "RTL-SDR HF",
"type": "rtl_sdr_soapy",
"ppm": 0,
"direct_sampling": 2,
"profiles": {
"10m": {
"name": "10m Band",
"center_freq": 29150000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 28283000,
"start_mod": "usb",
},
"19m": {
"name": "19m Broadcast Band",
"center_freq": 16000000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 15400000,
"start_mod": "am",
},
"20m": {
"name": "20m Band",
"center_freq": 14150000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 14070000,
"start_mod": "usb",
},
"30m": {
"name": "30m Band",
"center_freq": 10125000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 10142000,
"start_mod": "usb",
},
"40m": {
"name": "40m Band",
"center_freq": 7100000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 7070000,
"start_mod": "lsb",
},
"49m": {
"name": "49m Broadcast Band",
"center_freq": 6000000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 6070000,
"start_mod": "am",
},
"80m": {
"name": "80m Band",
"center_freq": 3650000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 3570000,
"start_mod": "lsb",
},
"160m": {
"name": "160m Band",
"center_freq": 1700000,
"rf_gain": 10,
"samp_rate": 2400000,
"start_freq": 1440000,
"start_mod": "am",
},
},
},
}
# ==== Color themes ====
#A guide is available to help you set these values: https://github.com/simonyiszk/openwebrx/wiki/Calibrating-waterfall-display-levels
# A guide is available to help you set these values: https://github.com/simonyiszk/openwebrx/wiki/Calibrating-waterfall-display-levels
### default theme by teejez:
waterfall_colors = "[0x000000ff,0x0000ffff,0x00ffffff,0x00ff00ff,0xffff00ff,0xff0000ff,0xff00ffff,0xffffffff]"
waterfall_min_level = -88 #in dB
waterfall_colors = [0x000000FF, 0x0000FFFF, 0x00FFFFFF, 0x00FF00FF, 0xFFFF00FF, 0xFF0000FF, 0xFF00FFFF, 0xFFFFFFFF]
waterfall_min_level = -88 # in dB
waterfall_max_level = -20
waterfall_auto_level_margin = (5, 40)
waterfall_auto_level_margin = {"min": 5, "max": 40}
### old theme by HA7ILM:
#waterfall_colors = "[0x000000ff,0x2e6893ff, 0x69a5d0ff, 0x214b69ff, 0x9dc4e0ff, 0xfff775ff, 0xff8a8aff, 0xb20000ff]"
#waterfall_min_level = -115 #in dB
#waterfall_max_level = 0
#waterfall_auto_level_margin = (20, 30)
# waterfall_colors = "[0x000000ff,0x2e6893ff, 0x69a5d0ff, 0x214b69ff, 0x9dc4e0ff, 0xfff775ff, 0xff8a8aff, 0xb20000ff]"
# waterfall_min_level = -115 #in dB
# waterfall_max_level = 0
# waterfall_auto_level_margin = {"min": 20, "max": 30}
##For the old colors, you might also want to set [fft_voverlap_factor] to 0.
#Note: When the auto waterfall level button is clicked, the following happens:
# [waterfall_min_level] = [current_min_power_level] - [waterfall_auto_level_margin[0]]
# [waterfall_max_level] = [current_max_power_level] + [waterfall_auto_level_margin[1]]
# Note: When the auto waterfall level button is clicked, the following happens:
# [waterfall_min_level] = [current_min_power_level] - [waterfall_auto_level_margin["min"]]
# [waterfall_max_level] = [current_max_power_level] + [waterfall_auto_level_margin["max"]]
#
# ___|____________________________________|____________________________________|____________________________________|___> signal power
# \_waterfall_auto_level_margin[0]_/ |__ current_min_power_level | \_waterfall_auto_level_margin[1]_/
# current_max_power_level __|
# 3D view settings
mathbox_waterfall_frequency_resolution = 128 #bins
mathbox_waterfall_history_length = 10 #seconds
mathbox_waterfall_colors = "[0x000000ff,0x2e6893ff, 0x69a5d0ff, 0x214b69ff, 0x9dc4e0ff, 0xfff775ff, 0xff8a8aff, 0xb20000ff]"
# ___|________________________________________|____________________________________|________________________________________|___> signal power
# \_waterfall_auto_level_margin["min"]_/ |__ current_min_power_level | \_waterfall_auto_level_margin["max"]_/
# current_max_power_level __|
# === Experimental settings ===
#Warning! The settings below are very experimental.
csdr_dynamic_bufsize = False # This allows you to change the buffering mode of csdr.
# Warning! The settings below are very experimental.
csdr_dynamic_bufsize = False # This allows you to change the buffering mode of csdr.
csdr_print_bufsizes = False # This prints the buffer sizes used for csdr processes.
csdr_through = False # Setting this True will print out how much data is going into the DSP chains.
nmux_memory = 50 #in megabytes. This sets the approximate size of the circular buffer used by nmux.
#Look up external IP address automatically from icanhazip.com, and use it as [server_hostname]
"""
print "[openwebrx-config] Detecting external IP address..."
import urllib2
server_hostname=urllib2.urlopen("http://icanhazip.com").read()[:-1]
print "[openwebrx-config] External IP address detected:", server_hostname
"""
csdr_through = False # Setting this True will print out how much data is going into the DSP chains.
nmux_memory = 50 # in megabytes. This sets the approximate size of the circular buffer used by nmux.
google_maps_api_key = ""
# how long should positions be visible on the map?
# they will start fading out after half of that
# in seconds; default: 2 hours
map_position_retention_time = 2 * 60 * 60
# decoder queue configuration
# due to the nature of some operating modes (ft8, ft8, jt9, jt65, wspr and js8), the data is recorded for a given amount
# of time (6 seconds up to 2 minutes) and decoded at the end. this can lead to very high peak loads.
# to mitigate this, the recordings will be queued and processed in sequence.
# the number of workers will limit the total amount of work (one worker will losely occupy one cpu / thread)
decoding_queue_workers = 2
# the maximum queue length will cause decodes to be dumped if the workers cannot keep up
# if you are running background services, make sure this number is high enough to accept the task influx during peaks
# i.e. this should be higher than the number of decoding services running at the same time
decoding_queue_length = 10
# wsjt decoding depth will allow more results, but will also consume more cpu
wsjt_decoding_depth = 3
# can also be set for each mode separately
# jt65 seems to be somewhat prone to erroneous decodes, this setting handles that to some extent
wsjt_decoding_depths = {"jt65": 1}
# JS8 comes in different speeds: normal, slow, fast, turbo. This setting controls which ones are enabled.
js8_enabled_profiles = ["normal", "slow"]
# JS8 decoding depth; higher value will get more results, but will also consume more cpu
js8_decoding_depth = 3
temporary_directory = "/tmp/openwebrx"
services_enabled = False
services_decoders = ["ft8", "ft4", "wspr", "packet"]
# === aprs igate settings ===
# if you want to share your APRS decodes with the aprs network, configure these settings accordingly
aprs_callsign = "N0CALL"
aprs_igate_enabled = False
aprs_igate_server = "euro.aprs2.net"
aprs_igate_password = ""
# beacon uses the receiver_gps setting, so if you enable this, make sure the location is correct there
aprs_igate_beacon = False
# path to the aprs symbols repository (get it here: https://github.com/hessu/aprs-symbols)
aprs_symbols_path = "/opt/aprs-symbols/png"
# === PSK Reporter setting ===
# enable this if you want to upload all ft8, ft4 etc spots to pskreporter.info
# this also uses the receiver_gps setting from above, so make sure it contains a correct locator
pskreporter_enabled = False
pskreporter_callsign = "N0CALL"
# === Web admin settings ===
# this feature is experimental at the moment. it should not be enabled on shared receivers since it allows remote
# changes to the receiver settings. enable for testing in controlled environment only.
# webadmin_enabled = False

Loading…
Cancel
Save

Powered by TurnKey Linux.