// // cagc.cpp // ambed // // Created by Jean-Luc Deltombe (LX3JL) on 28/04/2017. // Copyright © 2015 Jean-Luc Deltombe (LX3JL). All rights reserved. // // ---------------------------------------------------------------------------- // This file is part of ambed. // // xlxd is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // xlxd is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Foobar. If not, see . // ---------------------------------------------------------------------------- // Geoffrey Merck F4FXL / KC3FRA AGC code borrowed from Liquid DSP // Only took the parts we need qnd recoeded it to be close the XLX coding style // https://github.com/jgaeddert/liquid-dsp/blob/master/src/agc/src/agc.c #include "main.h" #include #include "cagc.h" //////////////////////////////////////////////////////////////////////////////////////// // constructor CAGC::CAGC(float initialLeveldB) { // set internal gain appropriately m_g = powf(10.0f, -initialLeveldB/20.0f); // ensure resulting gain is not arbitrarily low if (m_g < 1e-16f) m_g = 1e-16f; m_scale = 1.0f; m_bandwidth = 1e-2f; m_y2_prime = 1.0f; } void CAGC::Apply(uint8 * voice, int size) { for (int i = 0; i < size; i+=2) { //Get the sample float _x = (float)(short)MAKEWORD(voice[i+1], voice[i]); //apply AGC // apply gain to input sample float _y = _x * m_g; // compute output signal energy float y2 = _y * _y; // smooth energy estimate using single-pole low-pass filter m_y2_prime = (1.0f - m_alpha) * m_y2_prime + m_alpha*y2; // update gain according to output energy if (m_y2_prime > 1e-6f) m_g *= exp( -0.5f * m_alpha * log(m_y2_prime) ); // clamp to 120 dB gain if (m_g > 1e6f) m_g = 1e6f; // apply output scale _y *= m_scale; //write processed sample back to it voice[i] = HIBYTE((short)_y); voice[i+1] = LOBYTE((short)_y); } }