You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tinySA/sa_cmd.c

1397 lines
31 KiB

/*
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#pragma GCC push_options
#pragma GCC optimize ("Os")
uint32_t xtoi(char *t);
static int points = 101; // For 's' and 'm' commands
VNA_SHELL_FUNCTION(cmd_mode)
{
#ifdef TINYSA3
static const char cmd_low_high[] = "low|high";
#else
static const char cmd_low_high[] = "low";
#endif
static const char cmd_in_out[] = "input|output";
#ifdef TINYSA3
if (argc != 2) {
#else
if (argc != 1 && argc != 2) {
#endif
usage:
#ifdef TINYSA4
shell_printf("usage: mode [low] %s\r\n", cmd_in_out);
#else
shell_printf("usage: mode %s %s\r\n", cmd_low_high,cmd_in_out);
#endif
return;
}
int io = 0;
int lh = 0;
#ifdef TINYSA4
lh = get_str_index(argv[0], cmd_low_high);
if (lh != 0) {
lh = 0;
io = get_str_index(argv[0], cmd_in_out);
} else
io = get_str_index(argv[1], cmd_in_out);
#else
lh = get_str_index(argv[0], cmd_low_high);
io = get_str_index(argv[1], cmd_in_out);
#endif
if (lh < 0 || io<0)
goto usage;
menu_move_top();
switch(lh+io*2)
{
case 0:
set_mode(M_LOW);
ui_mode_normal();
break;
#ifdef TINYSA3
case 1:
set_mode(M_HIGH);
ui_mode_normal();
break;
#endif
case 2:
set_mode(M_GENLOW);
menu_push_lowoutput();
break;
#ifdef TINYSA3
case 3:
set_mode(M_GENHIGH);
menu_push_highoutput();
break;
#endif
}
}
VNA_SHELL_FUNCTION(cmd_modulation )
{
#ifdef TINYSA4
static const char cmd_mod[] = "off|am|fm|freq|depth|deviation";
#else
static const char cmd_mod[] = "off|am|nfm|wfm|extern|freq";
#endif
if (argc < 1) {
usage:
usage_printf("modulation %s 100..6000\r\n", cmd_mod);
return;
}
#ifdef TINYSA4
static const int cmd_mod_val[] = { MO_NONE, MO_AM, MO_WFM, -1, -1, -1};
#else
static const int cmd_mod_val[] = { MO_NONE, MO_AM, MO_NFM, MO_WFM, MO_EXTERNAL, -1};
#endif
int m = get_str_index(argv[0], cmd_mod);
if (m<0)
goto usage;
if (cmd_mod_val[m] >=0)
set_modulation(cmd_mod_val[m]);
else {
if (argc != 2)
goto usage;
int a = my_atoi(argv[1]);
#ifdef TINYSA4
switch(m) {
case 3: set_modulation_frequency(a); break;
case 4: set_depth(a); break;
case 5: set_deviation(a); break;
}
#else
set_modulation_frequency(a);
#endif
}
}
VNA_SHELL_FUNCTION(cmd_calc )
{
int t = 0;
#ifdef TINYSA4
static const char cmd_cal[] = "off|minh|maxh|maxd|aver4|aver16|aver|quasi|log|lin";
#else
static const char cmd_cal[] = "off|minh|maxh|maxd|aver4|aver16|aver|quasi";
#endif
if (argc < 1) {
usage:
usage_printf("calc [{trace#}] %s\r\n%s\r\n", cmd_cal,averageText[setting.average[t]]);
return;
}
int next_arg = 0;
if ('0' <= argv[0][0] && argv[0][0] <= '9') {
t = my_atoi(argv[0]) - 1;
next_arg++;
argc--;
if (t < 0 || t >= TRACES_MAX)
goto usage;
if (argc < 1)
goto usage;
}
int m = get_str_index(argv[next_arg], cmd_cal);
if (m<0)
goto usage;
#ifdef TINYSA4
if (m>=8) {
linear_averaging = (m == 9);
} else
#endif
set_average(t, m);
}
int generic_option_cmd( const char *cmd, const char *cmd_list, int argc, char *argv)
{
if (argc != 1) {
usage:
usage_printf("%s %s\r\n", cmd, cmd_list);
return -1;
}
int m = get_str_index(argv, cmd_list); // this will catch the ?
if (m < 0)
goto usage;
return m;
}
#ifdef __SPUR__
VNA_SHELL_FUNCTION(cmd_spur)
{
#ifdef TINYSA4
int m = generic_option_cmd("spur", "off|on|auto", argc, argv[0]);
#else
int m = generic_option_cmd("spur", "off|on", argc, argv[0]);
#endif
if (m>=0) {
set_spur(m);
redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA;
}
}
#endif
#ifdef TINYSA4
VNA_SHELL_FUNCTION(cmd_lna)
{
int m = generic_option_cmd("lna", "off|on", argc, argv[0]);
if (m>=0) {
set_extra_lna(m);
redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA;
}
}
#endif
#ifdef __ULTRA__
VNA_SHELL_FUNCTION(cmd_ultra)
{
const char *ultra_cmd = "off|on|auto|start|harm";
if (argc<1 || argc>2)
goto usage;
if (argv[0][0] == '?')
goto usage;
int m = get_str_index(argv[0], ultra_cmd);
freq_t a = ULTRA_AUTO;
switch(m) {
case 0:
case 1:
config.ultra = m;
update_min_max_freq();
break;
case 2:
goto auto_label;
case 3:
if (argc != 2)
goto usage;
if (get_str_index(argv[1], ultra_cmd)== 2)
goto auto_label;
a = my_atoui(argv[1]);
auto_label:
config.ultra_start = a;
ultra_start = a;
dirty = true;
break;
case 4:
if (argc != 2)
goto usage;
a = my_atoui(argv[1]);
config.harmonic_start = a;
dirty = true;
break;
default:
{
usage:
usage_printf("ultra %s {freq}\r\n", ultra_cmd);
}
}
}
/*
VNA_SHELL_FUNCTION(cmd_ultra_start)
{
if (argc != 1 || argv[0][0] == '?') {
usage_printf("ultra_start {0..4290M}\r\n%QHz\r\n", config.ultra_threshold);
return;
} else {
freq_t a = (freq_t)my_atoi(argv[0]);
config.ultra_threshold = a;
ultra_threshold = (config.ultra_threshold == 0 ? DEFAULT_ULTRA_THRESHOLD : config.ultra_threshold);
dirty = true;
config_save();
}
}
*/
#endif
VNA_SHELL_FUNCTION(cmd_output)
{
#ifdef TINYSA4
int m = generic_option_cmd("output", "on|off|normal|mixer", argc, argv[0]);
#else
int m = generic_option_cmd("output", "on|off", argc, argv[0]);
#endif
switch(m)
{
case 0:
case 1:
setting.mute = m;
break;
#ifdef TINYSA4
case 2:
case 3:
setting.mixer_output = m-2;
#endif
}
dirty = true;
}
VNA_SHELL_FUNCTION(cmd_load)
{
if (argc != 1 || argv[0][0] == '?') {
usage:
usage_printf("load 0..4\r\n");
return;
}
uint16_t a = my_atoui(argv[0]);
if (a > 4)
goto usage;
if (caldata_recall(a) == -1) {
if (a == 0)
reset_settings(setting.mode);
}
}
#ifdef TINYSA4
static uint8_t reg_agc_lna = 0;
VNA_SHELL_FUNCTION(cmd_lna2)
{
int a;
if (argc != 1 || argv[0][0] == '?') {
usage_printf("lna2 0..7|auto\r\n");
return;
}
if (get_str_index(argv[0],"auto") == 0) {
reg_agc_lna &= 0xf0;
} else {
a = my_atoi(argv[0]);
reg_agc_lna &= 0xf0;
reg_agc_lna |= 0x08 | a;
}
SI446x_set_AGC_LNA(reg_agc_lna);
}
VNA_SHELL_FUNCTION(cmd_agc)
{
int a;
if (argc != 1 || argv[0][0] == '?') {
usage_printf("agc 0..7|auto\r\n");
return;
}
if (get_str_index(argv[0],"auto") == 0) {
reg_agc_lna &= 0x0f;
} else {
a = my_atoi(argv[0]);
reg_agc_lna &= 0x0f;
reg_agc_lna |= 0x80 | (a << 4);
}
SI446x_set_AGC_LNA(reg_agc_lna);
}
#endif
VNA_SHELL_FUNCTION(cmd_attenuate)
{
if (argc != 1 || argv[0][0] == '?') {
usage_printf("attenuate 0..31|auto\r\n%4.2F\r\n", get_attenuation());
return;
}
if (get_str_index(argv[0],"auto") == 0) {
if (!setting.auto_attenuation)
set_auto_attenuation();
} else {
int a = my_atoi(argv[0]);
// if (a < 0 || a>31)
// goto usage;
if (get_attenuation() != a)
set_attenuation(a);
}
redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA;
}
VNA_SHELL_FUNCTION(cmd_level)
{
if (argc != 1 || argv[0][0] == '?') {
if (setting.mode==M_GENLOW)
usage_printf("level -76..-6\r\n");
if (setting.mode==M_GENHIGH)
usage_printf("level -38..13\r\n");
return;
}
float f = my_atof(argv[0]);
set_level(f);
}
VNA_SHELL_FUNCTION(cmd_sweeptime)
{
if (argc != 1 || argv[0][0] == '?') {
usage_printf("sweeptime 0.003..60\r\n%5.3Fs\r\n",((float)setting.actual_sweep_time_us)/ONE_SECOND_TIME);
return;
}
float f = my_atof(argv[0]);
set_sweep_time_us(f*ONE_SECOND_TIME);
}
VNA_SHELL_FUNCTION(cmd_ext_gain)
{
if (argc != 1 || argv[0][0] == '?') {
usage_printf("ext_gain -100.0..+100.0\r\n");
return;
}
float o = my_atof(argv[0]);
set_external_gain(o);
}
VNA_SHELL_FUNCTION(cmd_levelchange)
{
if (argc != 1) {
#ifdef TINYSA4
shell_printf("usage: levelchange -90..+90\r\n");
#else
shell_printf("usage: levelchange -70..+70\r\n");
#endif
return;
}
float f = my_atof(argv[0]);
set_level_sweep(f);
}
VNA_SHELL_FUNCTION(cmd_leveloffset)
{
// 0 1 2
#ifdef TINYSA4
static const char cmd_mode_list[] = "low|switch|receive_switch|out_switch|lna|harmonic|shift|shift1|shift2|shift3|shift4|drive1|drive2|drive3|direct|direct_lna|ultra|ultra_lna|harmonic_lna|adf";
#else
static const char cmd_mode_list[] = "low|high|switch|receive_switch";
#endif
if (argc == 0) {
const char *p = "leveloffset %s %.1f\r\n";
#ifdef TINYSA3
shell_printf(p, "low", config.low_level_offset);
shell_printf(p, "high", config.high_level_offset);
shell_printf(p, "low output", config.low_level_output_offset);
shell_printf(p, "high output", config.high_level_output_offset);
shell_printf(p, "switch", config.switch_offset);
shell_printf(p, "receive_switch",config.receive_switch_offset);
#endif
#ifdef TINYSA4
shell_printf(p, "low", config.low_level_offset);
shell_printf(p, "low output", config.low_level_output_offset);
shell_printf(p, "switch", config.switch_offset);
shell_printf(p, "receive_switch",config.receive_switch_offset);
shell_printf(p, "out_switch", config.out_switch_offset);
shell_printf(p, "lna", config.lna_level_offset);
shell_printf(p, "harmonic", config.harmonic_level_offset);
shell_printf(p, "harmonic_lna", config.harmonic_lna_level_offset);
shell_printf(p, "shift", config.shift_level_offset);
shell_printf(p, "shift1", config.shift1_level_offset);
shell_printf(p, "shift2", config.shift2_level_offset);
shell_printf(p, "shift3", config.shift3_level_offset);
shell_printf(p, "shift4", config.shift4_level_offset);
shell_printf(p, "drive1", config.drive1_level_offset);
shell_printf(p, "drive2", config.drive2_level_offset);
shell_printf(p, "drive3", config.drive3_level_offset);
shell_printf(p, "direct", config.direct_level_offset);
shell_printf(p, "direct_lna", config.direct_lna_level_offset);
shell_printf(p, "ultra", config.ultra_level_offset);
shell_printf(p, "ultra_lna", config.ultra_lna_level_offset);
shell_printf(p, "adf", config.adf_level_offset);
shell_printf(p, "direct output",config.direct_level_output_offset);
#endif
return;
}
if (argv[0][0] == '?')
goto usage;
int mode = get_str_index(argv[0], cmd_mode_list);
if (mode < 0) goto usage;
float v;
if (argc == 2){
v = my_atof(argv[1]);
switch (mode){
#ifdef TINYSA3
case 0: config.low_level_offset = v; break;
case 1: config.high_level_offset = v; break;
case 2: config.switch_offset = v; break;
case 3: config.receive_switch_offset = v; break;
#endif
#ifdef TINYSA4
case 0: config.low_level_offset = v; config.input_is_calibrated = true; break;
case 1: config.switch_offset = v; break;
case 2: config.receive_switch_offset = v; break;
case 3: config.out_switch_offset = v; break;
case 4: config.lna_level_offset = v; break;
case 5: config.harmonic_level_offset = v; break;
case 6: config.shift_level_offset = v; break;
case 7: config.shift1_level_offset = v; break;
case 8: config.shift2_level_offset = v; break;
case 9: config.shift3_level_offset = v; break;
case 10: config.shift4_level_offset = v; break;
case 11: config.drive1_level_offset = v; break;
case 12: config.drive2_level_offset = v; break;
case 13: config.drive3_level_offset = v; break;
case 14: config.direct_level_offset = v; break;
case 15: config.direct_lna_level_offset = v; break;
case 16: config.ultra_level_offset = v; break;
case 17: config.ultra_lna_level_offset = v; break;
case 18: config.harmonic_lna_level_offset = v; break;
case 19: config.adf_level_offset = v; break;
#endif
default: goto usage;
}
dirty = true;
return;
}
if (argc == 3 && get_str_index(argv[1], "output") == 0){
v = my_atof(argv[2]);
switch (mode){
case 0: config.low_level_output_offset = v; config.output_is_calibrated = true; break;
case 1: config.high_level_output_offset = v; break;
#ifdef TINYSA4
case 19: config.direct_level_output_offset = v; break;
#endif
default: goto usage;
}
dirty = true;
return;
}
usage:
shell_printf("leveloffset [%s] {output} [-20..+20]\r\n", cmd_mode_list);
}
VNA_SHELL_FUNCTION(cmd_deviceid)
{
if (argc == 0) {
shell_printf("deviceid %d\r\n", config.deviceid);
return;
} else if (argc == 1) {
if (argv[0][0] == '?')
goto usage;
float v = my_atoui(argv[0]);
config.deviceid = v;
} else {
usage:
usage_printf("deviceid [<number>]\r\n");
}
}
#ifdef __SWEEP_OUTPUT__
VNA_SHELL_FUNCTION(cmd_sweep_voltage)
{
float value;
if (argc != 1 || argv[0][0] == '?') {
usage_printf("sweep_voltage {value(0-3.3)}\r\n"\
"current value: %f\r\n", config.sweep_voltage);
return;
}
value = my_atof(argv[0]);
config.sweep_voltage = value;
}
#endif
#ifdef __NOISE_FIGURE__
VNA_SHELL_FUNCTION(cmd_nf)
{
if (argc != 1 || argv[0][0] == '?') {
//usage:
usage_printf("nf {value}\r\n"\
"%f\r\n", config.noise_figure);
return;
}
config.noise_figure = my_atof(argv[0]);
dirty = true;
}
#endif
VNA_SHELL_FUNCTION(cmd_rbw)
{
if (argc != 1 || argv[0][0] == '?') {
usage:
#ifdef TINYSA4
usage_printf("rbw 0.2..850|auto\r\n%.1FHz\r\n", actual_rbw_x10*100.0);
#else
usage_printf("rbw 2..600|auto\r\n%.1FHz\r\n", actual_rbw_x10*100.0);
#endif
return;
}
if (get_str_index(argv[0], "auto|0")>=0) {
if (setting.rbw_x10 != 0)
set_RBW(0);
} else {
float a = my_atof(argv[0]);
if (a < 0.2 ||
#ifdef TINYSA4
a>850
#else
a>600
#endif
)
goto usage;
if (setting.rbw_x10 != a*10)
set_RBW((int) ( a*10));
}
}
VNA_SHELL_FUNCTION(cmd_if)
{
char *t = "975M..979M";
if (argc != 1 || argv[0][0] == '?') {
usage:
#ifdef TINYSA4
if (hw_if)
t = "1067M..1073M";
usage_printf("usage: if {%s}\r\n%QHz\r\n", t, setting.frequency_IF);
#else
usage_printf("usage: if {433M..435M}\r\n%QHz\r\n", setting.frequency_IF);
#endif
return;
}
freq_t a = (freq_t)my_atoi(argv[0]);
freq_t f = DEFAULT_IF;
if (hw_if)
f = DEFAULT_IF_PLUS;
if (a!= 0 &&( a < (f - (freq_t)5000000) || a>(f + (freq_t)5000000)))
goto usage;
setting.auto_IF = false;
set_IF(a);
}
VNA_SHELL_FUNCTION(cmd_zero)
{
if (argc != 1 || argv[0][0] == '?') {
usage_printf("zero {level}\r\n%ddBm\r\n", config.ext_zero_level);
return;
}
config.ext_zero_level = my_atoi(argv[0]);
}
#ifdef TINYSA4
VNA_SHELL_FUNCTION(cmd_direct)
{
if (argc<1 || argc>2)
goto usage;
if (argv[0][0] == '?')
goto usage;
freq_t value = 0;
if (argc == 2) value = my_atoui(argv[1]);
// Parse direct {start|stop} {freq(Hz)}
static const char direct_cmd[] = "start|stop|on|off";
int type = get_str_index(argv[0], direct_cmd);
switch(type) {
case 0:
config.direct_start = value;
return;
case 1:
config.direct_stop = value;
return;
case 2:
config.direct = true;
return;
case 3:
config.direct = false;
return;
}
usage:
usage_printf("direct {%s} {freq(Hz)}\r\n", direct_cmd);
}
VNA_SHELL_FUNCTION(cmd_if1)
{
if (argc != 1 || argv[0][0] == '?') {
usage:
usage_printf("if1 {975M..979M}\r\n%QHz\r\n", config.frequency_IF1);
return;
} else {
freq_t a = (freq_t)my_atoui(argv[0]);
if (a!= 0 &&( a < (DEFAULT_IF - (freq_t)80000000) || a>(DEFAULT_IF + (freq_t)80000000)))
goto usage;
config.frequency_IF1 = a;
config_save();
}
}
VNA_SHELL_FUNCTION(cmd_actual_freq)
{
if (argc != 1 || argv[0][0] == '?') {
shell_printf("%D\r\n", config.setting_frequency_30mhz);
return;
} else {
set_actual_freq(my_atoui(argv[0]));
}
}
VNA_SHELL_FUNCTION(cmd_freq_correction)
{
if (argc != 1 || argv[0][0] == '?') {
shell_printf("%d ppb\r\n", (int)(((int64_t)config.setting_frequency_30mhz - (int64_t)3000000000ULL)/3));
return;
} else {
set_freq_corr(my_atoi(argv[0]));
}
}
#endif
#ifdef __DRAW_LINE__
VNA_SHELL_FUNCTION(cmd_line)
{
if (argc != 1 || argv[0][0] == '?')
goto usage;
int type = get_str_index(argv[0], "off");
switch(type) {
case -1: {
float l = my_atof(argv[0]);
setting.draw_line = true;
set_trigger_level(to_dBm(l));
set_trigger(T_AUTO);
redraw_request |= REDRAW_AREA;
}
return;
case 0:
setting.draw_line = false;
redraw_request |= REDRAW_AREA;
return;
}
usage:
usage_printf("line off|{level}\r\n");
}
#endif
#ifdef TINYSA3
VNA_SHELL_FUNCTION(cmd_actual_freq)
{
if (argc != 1 || argv[0][0] == '?') {
shell_printf("%DHz\r\n", config.setting_frequency_10mhz);
return;
} else {
set_10mhz(my_atoui(argv[0]));
}
}
#endif
VNA_SHELL_FUNCTION(cmd_trigger)
{
if (argc == 0)
goto usage;
if(argv[0][0] == '?')
goto usage;
if (( '0' <= argv[0][0] && argv[0][0] <= '9') || argv[0][0] == '-') {
float t = my_atof(argv[0]);
if (setting.trigger == T_AUTO )
set_trigger(T_NORMAL);
set_trigger_level(to_dBm(t));
goto update;
}
static const char cmd_trigger_list[] = "auto|normal|single";
if (argc == 1) {
int type = get_str_index(argv[0], cmd_trigger_list);
if (type >= 0) {
set_trigger(type);
goto update;
}
goto usage;
}
update:
redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA;
completed = true;
return;
usage:
shell_printf("trigger {value}\r\n"\
"trigger {%s}\r\n" , cmd_trigger_list);
}
VNA_SHELL_FUNCTION(cmd_selftest)
{
if (argc < 1 || argc > 2 || argv[0][0] == '?') {
usage_printf("selftest (1-3) [arg]\r\n");
return;
}
setting.test = my_atoi(argv[0]);
if (argc == 1)
setting.test_argument = 0;
else
setting.test_argument = my_atoui(argv[1]);
sweep_mode = SWEEP_SELFTEST;
}
#ifdef __SINGLE_LETTER__
static int VFO = 0;
uint32_t xtoi(char *t)
{
uint32_t v=0;
while (*t) {
if ('0' <= *t && *t <= '9')
v = v*16 + *t - '0';
else if ('a' <= *t && *t <= 'f')
v = v*16 + *t - 'a' + 10;
else if ('A' <= *t && *t <= 'F')
v = v*16 + *t - 'A' + 10;
else
return v;
t++;
}
return v;
}
#ifdef __ADF4351__
VNA_SHELL_FUNCTION(cmd_x)
{
uint32_t reg;
if (argc != 1) {
usage_printf("x value(0-FFFFFFFF)\r\n");
return;
}
reg = xtoi(argv[0]);
if ((reg & 7) == 5) {
if (reg & (1<<22))
VFO = 1;
else
VFO = 0;
// reg &= ~0xc00000; // Force led to show lock
// reg |= 0x400000;
}
ADF4351_WriteRegister32(VFO, reg);
ADF4351_Latch();
shell_printf("x=%x\r\n", reg);
}
#endif
VNA_SHELL_FUNCTION(cmd_i)
{
(void)argc;
(void)argv;
return; // Don't use!!!!
#ifdef __SI4432__
int rvalue;
SI4432_Init();
shell_printf("SI4432 init done\r\n");
if (argc == 1) {
rvalue = my_atoui(argv[0]);
set_switches(rvalue);
set_mode(rvalue);
shell_printf("SI4432 mode %d set\r\n", rvalue);
}
#endif
}
VNA_SHELL_FUNCTION(cmd_o)
{
(void) argc;
freq_t value = my_atoi(argv[0]);
if (VFO == 0)
setting.frequency_IF = value;
set_freq(VFO, value);
}
VNA_SHELL_FUNCTION(cmd_d)
{
(void) argc;
(void) argv;
int32_t a = my_atoi(argv[0]);
#if false
int32_t d;
if (argc == 2)
d = my_atoi(argv[1]);
else {
d = a;
a = 2;
}
switch (a) {
case 1:
SI4463_set_output_level(d);
break;
case 2:
ADF4351_drive (d);
break;
case 3:
ADF4351_aux_drive(d);
break;
}
// setting.lo_drive=a;
// dirty = true;
#else
setting.lo_drive=a;
dirty = true;
#endif
}
#if 0
extern int16_t adc_buf_read(uint16_t *result, uint32_t count);
VNA_SHELL_FUNCTION(cmd_g)
{
(void) argc;
(void) argv;
int32_t a = my_atoi(argv[0]);
systime_t start_of_read = chVTGetSystemTimeX();
adc_buf_read(spi_buffer, 256);
systime_t time_of_read = chVTGetSystemTimeX() - start_of_read;
shell_printf("Time: %d\r\n", time_of_read);
for (int i=0;i<20;i++)
shell_printf("[%d] = %d\r\n", (int)i, (int)(spi_buffer[i]));
}
#endif
VNA_SHELL_FUNCTION(cmd_a)
{
(void)argc;
if (argc != 1) {
shell_printf("a=%U\r\n", frequencyStart);
return;
}
freq_t value = my_atoui(argv[0]);
frequencyStart = value;
}
VNA_SHELL_FUNCTION(cmd_b)
{
(void)argc;
if (argc != 1) {
shell_printf("b=%U\r\n", frequencyStop);
return;
}
freq_t value = my_atoui(argv[0]);
frequencyStop = value;
}
VNA_SHELL_FUNCTION(cmd_t)
{
(void)argc;
(void)argv;
}
VNA_SHELL_FUNCTION(cmd_e)
{
(void)argc;
if (argc != 1) {
shell_printf("e=%d\r\n", setting.tracking);
return;
}
setting.tracking = my_atoi(argv[0]);
if (setting.tracking == -1)
setting.tracking = false;
else
setting.tracking = true;
if (argc >1)
frequencyExtra = my_atoi(argv[1]);
}
VNA_SHELL_FUNCTION(cmd_s)
{
(void)argc;
if (argc != 1) {
shell_printf("s=%d\r\n", points);
return;
}
points = my_atoi(argv[0]);
}
VNA_SHELL_FUNCTION(cmd_v)
{
if (argc != 1) {
shell_printf("%d\r\n", VFO);
return;
}
VFO = my_atoi(argv[0]) > 0 ? 1 : 0;
shell_printf("VFO %d\r\n", VFO);
}
VNA_SHELL_FUNCTION(cmd_y)
{
if (argc < 1) {
usage_printf("y {addr(0-95)} [value(0-0xFF)]\r\n");
return;
}
#ifdef __SI4432__
int lvalue = 0;
int rvalue;
rvalue = xtoi(argv[0]);
SI4432_Sel = VFO;
if (argc == 2){
lvalue = my_atoui(argv[1]);
SI4432_Write_Byte(rvalue, lvalue);
} else {
lvalue = SI4432_Read_Byte(rvalue);
shell_printf("%x\r\n", lvalue);
}
#endif
#ifdef __SI4463__
uint8_t data[16];
data[0] = xtoi(argv[0]);
for (int i=1; i < argc; i++) {
data[i] = xtoi(argv[i]);
}
SI4463_do_api(data, argc, data, 16);
for (int i=0; i<16; i++)
shell_printf("%02x ", data[i]);
shell_printf("\r\n");
#endif
}
#ifdef TINYSA4
VNA_SHELL_FUNCTION(cmd_z)
{
if (argc != 1) {
usage_printf("z 0..30000\r\n%d\r\n", SI4432_step_delay);
return;
}
if (argc == 1) {
setting.step_delay = my_atoi(argv[0]);
dirty = true;
}
}
VNA_SHELL_FUNCTION(cmd_n)
{
if (argc != 1) {
usage_printf("z 0..30000\r\n%d\r\n", SI4432_offset_delay);
return;
}
if (argc == 1) {
setting.offset_delay = my_atoi(argv[0]);
dirty = true;
}
}
#endif
#if 0 // not used
VNA_SHELL_FUNCTION(cmd_z)
{
static const char cmd_z_list[] = "t|r|i";
if (argc != 1) {
usage_printf("z %s\r\n", cmd_z_list);
return;
}
if (argc == 1) {
#ifdef __SI4432__
SI4432_Sel = VFO;
int type = get_str_index(argv[0], cmd_z_list);
switch(type) {
case 0:
SI4432_Transmit(3);
break;
case 1:
SI4432_Receive();
break;
case 2:
SI4432_Reset();
break;
}
#endif
}
}
#endif
#endif
#ifdef __SINGLE_LETTER__
void sweep_remote(void)
{
uint32_t i;
uint32_t step = (points - 1);
freq_t span = frequencyStop - frequencyStart;
freq_t delta = span / step;
freq_t error = span % step;
freq_t f = frequencyStart - setting.frequency_IF, df = step>>1;
freq_t old_step = setting.frequency_step;
setting.frequency_step = delta;
streamPut(shell_stream, '{');
dirty = true;
for (i = 0; i <= step; i++, f+=delta) {
if (operation_requested)
break;
int val = perform(false, i, f, false) + float_TO_PURE_RSSI(config.ext_zero_level);
streamPut(shell_stream, 'x');
streamPut(shell_stream, (uint8_t)(val & 0xFF));
streamPut(shell_stream, (uint8_t)((val>>8) & 0xFF));
df+=error;if (df >=step) {f++;df -= step;}
}
streamPut(shell_stream, '}');
setting.frequency_step = old_step;
sweep_mode = 0;
}
VNA_SHELL_FUNCTION(cmd_m)
{
(void)argc;
(void)argv;
// set_mode(0);
// setting.tracking = false; //Default test setup
// setting.step_atten = false;
// set_attenuation(0);
// set_reflevel(-10);
// set_sweep_frequency(ST_START,frequencyStart - setting.frequency_IF );
// set_sweep_frequency(ST_STOP, frequencyStop - setting.frequency_IF);
// draw_cal_status();
pause_sweep();
// update_rbw();
chThdSleepMilliseconds(10);
sweep_mode = SWEEP_REMOTE;
while (sweep_mode != 0)
chThdSleepMilliseconds(10);
// update_rbw();
}
VNA_SHELL_FUNCTION(cmd_p)
{
(void)argc;
int p = my_atoi(argv[0]);
#ifdef TINYSA4
SI4463_set_output_level(p);
#endif
return;
int a = my_atoi(argv[1]);
if (p==5)
set_attenuation(-a);
if (p==6)
set_mode(a);
if (p==1)
if (get_refer_output() != a)
set_refer_output(a);
}
#ifdef TINYSA4
VNA_SHELL_FUNCTION(cmd_g)
{
(void)argc;
int p = my_atoi(argv[0]);
int a = my_atoi(argv[1]);
SI4463_set_gpio(p,a);
}
VNA_SHELL_FUNCTION(cmd_r)
{
(void)argc;
int r = my_atoi(argv[0]);
set_R(r);
}
VNA_SHELL_FUNCTION(cmd_c)
{
(void)argc;
int r = my_atoi(argv[0]);
ADF4351_CP(r);
}
VNA_SHELL_FUNCTION(cmd_h)
{
(void)argc;
int r = my_atoi(argv[0]);
set_modulo(r);
}
#endif
VNA_SHELL_FUNCTION(cmd_w)
{
(void)argc;
int p = my_atoi(argv[0]);
return;
set_RBW(p*10);
}
VNA_SHELL_FUNCTION(cmd_u)
{
(void)argc;
(void)argv;
// int p = my_atoi(argv[0]);
toggle_debug_avoid();
}
VNA_SHELL_FUNCTION(cmd_f)
{
(void)argc;
setting.test = 5;
setting.test_argument = my_atoi(argv[0]);;
sweep_mode = SWEEP_SELFTEST;
}
#endif
//#ifdef DIRECT_CORRECTION
// #define CORRECTION_DIRECT 4
// #define CORRECTION_LNA_DIRECT 5
//#endif
// #define CORRECTION_LOW_OUT 6
// #define CORRECTION_LOW_OUT_DIRECT 7
// #define CORRECTION_LOW_OUT_ADF 8
// #define CORRECTION_LOW_OUT_MIXER 9
// #define CORRECTION_HIGH 10
// #define CORRECTION_SIZE 11
VNA_SHELL_FUNCTION(cmd_correction)
{
(void)argc;
#ifdef TINYSA4
static const char cmd[] = "low|lna|ultra|ultra_lna|direct|direct_lna|harm|harm_lna|out|out_direct|out_adf|out_ultra|off|on";
static const char range[] = "0-19";
#else
static const char cmd[] = "low|high|out";
static const char range[] = "0-9";
#endif
int m = get_str_index(argv[0], cmd);
if (argc == 1 && m >=0) {
#ifdef TINYSA4
switch(m) {
case CORRECTION_SIZE: // Off
setting.disable_correction = true;
goto show;
case CORRECTION_SIZE+1: // on
setting.disable_correction = false;
show:
dirty = true; // recalculate intermediate table
shell_printf("correction %s\r\n", (setting.disable_correction ? "off":"on"));
return;
}
#endif
shell_printf("index frequency value\r\n");
for (int i=0; i<CORRECTION_POINTS; i++) {
shell_printf("correction %s %d %D %.1f\r\n", argv[0], i, config.correction_frequency[m][i], config.correction_value[m][i]);
}
return;
}
if (argc == 2 && (get_str_index(argv[1],"reset") == 0)) {
for (int i=0; i<CORRECTION_POINTS; i++) {
config.correction_value[m][i] = 0.0;
}
dirty = true; // recalculate intermediate table
shell_printf("correction table %s reset\r\n", argv[0]);
return;
}
if (argc != 4) {
usage_printf("correction %s %s frequency(Hz) value(dB)\r\n", cmd, range);
return;
}
int i = my_atoi(argv[1]);
freq_t f = my_atoui(argv[2]);
float v = my_atof(argv[3]);
config.correction_frequency[m][i] = f;
config.correction_value[m][i] = v;
dirty = true; // recalculate intermediate table
redraw_request|=REDRAW_AREA; // to ensure the change in level will be visible
shell_printf("updated %d to %D %.1f\r\n", i, config.correction_frequency[m][i], config.correction_value[m][i]);
}
VNA_SHELL_FUNCTION(cmd_abort)
{
static const char cmd_on_off[] = "off|on";
if (argc > 1) {
usage:
shell_printf("usage: abort [%s]\r\n", cmd_on_off);
return;
}
if (argc == 1) {
int i = get_str_index(argv[0], cmd_on_off);
if (i < 0)
goto usage;
abort_enabled = i;
} else
operation_requested = OP_CONSOLE;
}
VNA_SHELL_FUNCTION(cmd_scanraw)
{
freq_t start, stop;
uint32_t points = sweep_points;
uint8_t unbuffered = 0;
if (argc < 2 || argc > 4) {
usage_printf("scanraw {start(Hz)} {stop(Hz)} [points] [options]\r\n");
return;
}
start = my_atoui(argv[0]);
stop = my_atoui(argv[1]);
if (start > stop) {
shell_printf("frequency range is invalid\r\n");
return;
}
if (argc > 2) {
points = my_atoi(argv[2]);
}
if (argc > 3) {
unbuffered = my_atoi(argv[3]); // arg != 0 -> ubuffered
}
if (setting.waterfall)
disable_waterfall(); // display dma hangs when waterfall is enabled
freq_t old_step = setting.frequency_step;
float f_step = (stop-start)/ points;
setting.frequency_step = (freq_t)f_step;
again:
operation_requested = false;
dirty = true;
// adc_stop_analog_watchdog();
int oldpos = 0;
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1);
ili9341_set_background(LCD_SWEEP_LINE_COLOR);
#define BUFFER_SIZE 64
uint8_t buf[BUFFER_SIZE];
int idx = 0;
buf[idx++] = '{';
for (uint32_t i = 0; i < points; i++) {
int val = perform(false, i, start +(freq_t)(f_step * i), false) + float_TO_PURE_RSSI(config.ext_zero_level);
if (operation_requested || ((uint32_t)shell_stream == (uint32_t)&SDU1 && SDU1.config->usbp->state != USB_ACTIVE)) // break on operation in perform
break;
buf[idx++] = 'x';
buf[idx++] = (uint8_t)(val & 0xFF);
buf[idx++] = (uint8_t)((val>>8) & 0xFF);
if ((unbuffered & 1) || idx >= BUFFER_SIZE - 4) {
streamWrite(shell_stream, buf, idx);
idx = 0;
}
int pos = i * (WIDTH+1) / points;
if (pos - oldpos > 8) {
ili9341_fill(OFFSETX + oldpos, CHART_BOTTOM+1, pos - oldpos, 1); // update sweep progress bar
oldpos = pos;
}
}
buf[idx++] = '}';
streamWrite(shell_stream, buf, idx);
// adc_start_analog_watchdog();
if ((unbuffered & 2) && !operation_requested)
goto again;
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1);
setting.frequency_step = old_step;
dirty = true;
redraw_request = 0; // disable screen update in this mode
}
VNA_SHELL_FUNCTION(cmd_caloutput)
{
static const char cmd[] = "off|30|15|10|4|3|2|1";
if (argc != 1) {
usage_printf("caloutput %s\r\n", cmd);
return;
}
int m = get_str_index(argv[0], cmd);
if (m != -1)
set_refer_output(m - 1);
}
#ifdef TINYSA4
VNA_SHELL_FUNCTION(cmd_q)
{
if (argc < 1) {
usage:
usage_printf("q [s0..1|d-1,0..18|a0..63|p0..4]\r\n");
force_signal_path=false;
test_output_switch = false;
test_output_drive = 0;
test_output_attenuate = 0;
test_path = 0;
dirty = true;
return;
}
int i = 0;
force_signal_path=true;
dirty = true;
again:
if (argc == 0)
return;
char *a = argv[i++];
char m = *a++;
argc--;
switch (m) {
default: goto usage;
case 's': test_output_switch = *a - '0'; break;
case 'd': test_output_drive = my_atoi(a); break;
case 'a': test_output_attenuate = my_atoi(a); break;
#ifdef TINYSA4
case 'p': test_path = *a - '0'; break;
#endif
}
goto again;
}
#endif
#ifdef TINYSA4
extern float Si446x_get_temp(void);
VNA_SHELL_FUNCTION(cmd_k)
{
(void)argc;
(void)argv;
shell_printf("%.2f\r\n", Si446x_get_temp());
}
#endif
#pragma GCC pop_options

Powered by TurnKey Linux.