You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
7214 lines
236 KiB
7214 lines
236 KiB
/*
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3, or (at your option)
|
|
* any later version.
|
|
*
|
|
* The software is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU Radio; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
//#ifdef __SI4432__
|
|
#include "si4432.h" // comment out for simulation
|
|
//#endif
|
|
#include "stdlib.h"
|
|
|
|
#pragma GCC push_options
|
|
#ifdef TINYSA4
|
|
#pragma GCC optimize ("Og")
|
|
#else
|
|
#pragma GCC optimize ("Os")
|
|
#endif
|
|
|
|
#ifdef __FFT_DECONV__
|
|
void FFT(float *real, float *imag, int length, bool inverse);
|
|
float *real = (float *) &spi_buffer[0];
|
|
float *imag = (float *) &spi_buffer[512];
|
|
float *real2 = (float *) &spi_buffer[1024];
|
|
float *imag2 = (float *) &spi_buffer[1536];
|
|
#endif
|
|
|
|
#ifdef __FFT_VBW__
|
|
void FFT(float *real, float *imag, int length, bool inverse);
|
|
float *real = (float *) &spi_buffer[0];
|
|
float *imag = (float *) &spi_buffer[512];
|
|
#endif
|
|
|
|
//#define __DEBUG_AGC__ If set the AGC value will be shown in the stored trace and FAST_SWEEP rmmode will be disabled
|
|
#ifdef __DEBUG_AGC__
|
|
#ifdef __FAST_SWEEP__
|
|
#undef __FAST_SWEEP__
|
|
#endif
|
|
#endif
|
|
// uint8_t dirty = true;
|
|
uint8_t scandirty = true;
|
|
bool debug_avoid = false;
|
|
bool debug_avoid_second = false;
|
|
#ifdef __ULTRA__
|
|
bool debug_spur = false;
|
|
#endif
|
|
int current_index = -1;
|
|
|
|
setting_t setting;
|
|
|
|
uint16_t actual_rbw_x10 = 0;
|
|
freq_t frequency_step_x10 = 0;
|
|
uint16_t vbwSteps = 1;
|
|
freq_t minFreq = 0;
|
|
freq_t maxFreq = 520000000;
|
|
static float old_a = -150; // cached value to reduce writes to level registers
|
|
int spur_gate = 100;
|
|
|
|
#ifdef __ULTRA__
|
|
#define DEFAULT_ULTRA_THRESHOLD 800000000ULL
|
|
freq_t ultra_threshold;
|
|
bool ultra;
|
|
#endif
|
|
#ifdef TINYSA4
|
|
int noise_level;
|
|
float log_averaging_correction;
|
|
//uint32_t old_CFGR; // Not used??
|
|
//uint32_t orig_CFGR; // Not used??
|
|
|
|
int debug_frequencies = false;
|
|
int linear_averaging = true;
|
|
|
|
static freq_t old_freq[5] = { 0, 0, 0, 0,0};
|
|
static freq_t real_old_freq[5] = { 0, 0, 0, 0,0};
|
|
static long real_offset = 0;
|
|
|
|
void clear_frequency_cache(void)
|
|
{
|
|
for (unsigned int i = 0; i < sizeof(old_freq)/sizeof(freq_t) ; i++) {
|
|
old_freq[i] = 0;
|
|
real_old_freq[i] = 0;
|
|
}
|
|
ADF4351_force_refresh();
|
|
}
|
|
#else
|
|
static freq_t old_freq[4] = { 0, 0, 0, 0};
|
|
static freq_t real_old_freq[4] = { 0, 0, 0, 0};
|
|
#endif
|
|
|
|
#ifdef TINYSA4
|
|
const float si_drive_dBm [] = {-43.8, -30.0, -21.8, -17.2, -14.2, -11.9, -10.1, -8.6, -7.3, -6.2, -5.2, -4.3, -3.5, -2.8 , -2.2, -1.5, -1, -0.5, 0};
|
|
const float adf_drive_dBm[] = {-15,-12,-9,-6};
|
|
const uint8_t drive_register[] = {0, 1, 2, 3, 4, 5, 6, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18};
|
|
float *drive_dBm = (float *) adf_drive_dBm;
|
|
#else
|
|
const int8_t drive_dBm [16] = {-38, -32, -30, -27, -24, -19, -15, -12, -5, -2, 0, 3, 6, 9, 12, 16};
|
|
#endif
|
|
|
|
#ifdef TINYSA4
|
|
#define SWITCH_ATTENUATION ((setting.mode == M_GENHIGH && config.high_out_adf4350) ? 40 : 23 - config.switch_offset)
|
|
#define RECEIVE_SWITCH_ATTENUATION (29 - config.receive_switch_offset)
|
|
//#define POWER_OFFSET -18 // Max level with all enabled
|
|
//#define POWER_RANGE 70
|
|
#define MAX_DRIVE ((setting.mode == M_GENHIGH && config.high_out_adf4350 ) ? 3 : 18)
|
|
#define MIN_DRIVE ((setting.mode == M_GENHIGH && config.high_out_adf4350 ) ? 0: 1)
|
|
//#define SL_GENHIGH_LEVEL_MIN -15
|
|
//#define SL_GENHIGH_LEVEL_RANGE 9
|
|
|
|
#define SL_GENHIGH_LEVEL_MIN (drive_dBm[MIN_DRIVE] - (config.high_out_adf4350 ? 0: 37 - config.switch_offset))
|
|
#define SL_GENHIGH_LEVEL_MAX drive_dBm[MAX_DRIVE]
|
|
|
|
#define SL_GENLOW_LEVEL_MIN -124
|
|
#define SL_GENLOW_LEVEL_MAX -16
|
|
#ifdef TINYSA4_4
|
|
#define MAX_ATTENUATE (setting.extra_lna ? 0 : 31.5)
|
|
#else
|
|
#define MAX_ATTENUATE 31.5
|
|
#endif
|
|
#else
|
|
#define SWITCH_ATTENUATION (29 - config.switch_offset)
|
|
#define RECEIVE_SWITCH_ATTENUATION (24 - config.receive_switch_offset)
|
|
#define POWER_OFFSET 15
|
|
#define MAX_DRIVE (setting.mode == M_GENHIGH ? 13 : 11) // The value of 13 is linked to the SL_GENHIGH_LEVEL_MAX of 9
|
|
#define MIN_DRIVE 8
|
|
#define SL_GENHIGH_LEVEL_MIN -38
|
|
#define SL_GENHIGH_LEVEL_MAX 9
|
|
#define SL_GENLOW_LEVEL_MIN -76
|
|
#define SL_GENLOW_LEVEL_MAX -7
|
|
#define MAX_ATTENUATE 31.5
|
|
#endif
|
|
|
|
#define BELOW_MAX_DRIVE(X) (drive_dBm[X] - drive_dBm[MAX_DRIVE])
|
|
|
|
|
|
//float level_min;
|
|
//float level_max;
|
|
//float level_range;
|
|
|
|
float channel_power[3];
|
|
float channel_power_watt[3];
|
|
volatile float flatness;
|
|
|
|
//int setting.refer = -1; // Off by default
|
|
const uint32_t reffer_freq[] = {30000000, 15000000, 10000000, 4000000, 3000000, 2000000, 1000000};
|
|
|
|
#ifdef TINYSA3
|
|
const freq_t fh_low[] = { 240000000, 480000000, 720000000, 960000000, 1200000000 };
|
|
const freq_t fh_high[] = { 480000000, 960000000, 1920000000, 2880000000, 3840000000 };
|
|
#endif
|
|
|
|
uint8_t in_selftest = false;
|
|
uint8_t in_step_test = false;
|
|
|
|
void update_min_max_freq(void)
|
|
{
|
|
switch(setting.mode) {
|
|
case M_LOW:
|
|
minFreq = 0;
|
|
#ifdef __ULTRA__
|
|
if (ultra)
|
|
#ifdef TINYSA4
|
|
maxFreq = 12000000000; // ULTRA_MAX_FREQ; // make use of harmonic mode above ULTRA_MAX_FREQ
|
|
#else
|
|
maxFreq = 3000000000; // ULTRA_MAX_FREQ; // make use of harmonic mode above ULTRA_MAX_FREQ
|
|
#endif
|
|
else
|
|
#endif
|
|
maxFreq = DEFAULT_MAX_FREQ;
|
|
#ifdef TINYSA4
|
|
plot_printf(range_text, sizeof range_text, "%QHz to %QHz", minFreq, maxFreq);
|
|
#endif
|
|
break;
|
|
case M_GENLOW:
|
|
minFreq = 0;
|
|
#ifdef TINYSA4
|
|
maxFreq = MAX_LOW_OUTPUT_FREQ;
|
|
#else
|
|
maxFreq = DEFAULT_MAX_FREQ;
|
|
#endif
|
|
break;
|
|
case M_HIGH:
|
|
minFreq = HIGH_MIN_FREQ_MHZ * 1000000;
|
|
maxFreq = HIGH_MAX_FREQ_MHZ * 1000000;
|
|
#ifdef __HARMONIC__
|
|
#ifdef TINYSA3 // different haemonics processing
|
|
if (setting.harmonic) {
|
|
minFreq = setting.harmonic * HIGH_MIN_FREQ_MHZ * 1000000;
|
|
if (setting.harmonic < 4)
|
|
maxFreq = setting.harmonic * HIGH_MAX_FREQ_MHZ * 1000000;
|
|
else
|
|
maxFreq = 2880000000;
|
|
}
|
|
if (get_sweep_frequency(ST_START) < minFreq)
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
if (get_sweep_frequency(ST_STOP) > maxFreq)
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
#endif
|
|
#endif
|
|
break;
|
|
case M_GENHIGH:
|
|
#ifdef TINYSA4
|
|
if (config.high_out_adf4350) {
|
|
minFreq = 136000000;
|
|
maxFreq = MAX_LO_FREQ;
|
|
} else {
|
|
minFreq = 136000000;
|
|
maxFreq = 1150000000U;
|
|
}
|
|
#else
|
|
minFreq = 240000000;
|
|
maxFreq = 960000000;
|
|
#endif
|
|
break;
|
|
}
|
|
#ifdef TINYSA4
|
|
plot_printf(range_text, sizeof range_text, "%.3QHz to %.3QHz", minFreq, maxFreq);
|
|
#endif
|
|
}
|
|
|
|
void reset_settings(int m)
|
|
{
|
|
// strcpy((char *)spi_buffer, dummy);
|
|
setting.mode = m;
|
|
setting.sweep = false;
|
|
#ifdef __ULTRA__
|
|
ultra_threshold = (config.ultra_threshold == 0 ? DEFAULT_ULTRA_THRESHOLD : config.ultra_threshold);
|
|
ultra = config.ultra;
|
|
#endif
|
|
#ifdef TINYSA4
|
|
drive_dBm = (float *) (setting.mode == M_GENHIGH && config.high_out_adf4350 ? adf_drive_dBm : si_drive_dBm);
|
|
setting.exp_aver = 1;
|
|
setting.increased_R = false;
|
|
#endif
|
|
update_min_max_freq();
|
|
setting.frequency_var = 0;
|
|
sweep_mode |= SWEEP_ENABLE;
|
|
setting.unit_scale_index = 0;
|
|
setting.unit_scale = 1;
|
|
setting.unit = U_DBM;
|
|
set_scale(10);
|
|
set_reflevel(-10);
|
|
setting.level_sweep = 0.0;
|
|
setting.attenuate_x2 = 0; // These should be initialized consistently
|
|
setting.rx_drive=MAX_DRIVE; // And this
|
|
setting.atten_step = 0; // And this, only used in low output mode
|
|
setting.rbw_x10 = 0;
|
|
for (int t=0;t<TRACES_MAX;t++) {
|
|
setting.average[t] = 0;
|
|
setting.stored[t] = false;
|
|
setting.subtract[t] = 0; // Disabled
|
|
setting.normalized[t] = false; // Disabled
|
|
}
|
|
for (int r=0;r<REFERENCE_MAX;r++)
|
|
for (int l=0;l<LIMITS_MAX;l++)
|
|
setting.limits[r][l].enabled = false;
|
|
if (in_selftest) {
|
|
setting.stored[TRACE_STORED] = true;
|
|
TRACE_ENABLE(TRACE_STORED_FLAG);
|
|
} else
|
|
#ifdef TINYSA4
|
|
TRACE_DISABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG|TRACE_STORED2);
|
|
#else
|
|
TRACE_DISABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
setting.harmonic = 3; // Automatically used when above ULTRA_MAX_FREQ
|
|
#else
|
|
#ifdef __ULTRA__
|
|
setting.harmonic = 3;
|
|
#else
|
|
setting.harmonic = 0;
|
|
#endif
|
|
#endif
|
|
setting.show_stored = 0;
|
|
setting.auto_attenuation = false;
|
|
setting.normalize_level = 0.0;
|
|
setting.normalized_trace = -1;
|
|
|
|
#ifdef TINYSA4
|
|
setting.lo_drive=5;
|
|
#else
|
|
setting.lo_drive=13;
|
|
// setting.rx_drive=8; moved to top
|
|
// setting.atten_step = 0; moved to top
|
|
#endif
|
|
setting.agc = S_AUTO_ON;
|
|
setting.lna = S_AUTO_OFF;
|
|
setting.tracking = false;
|
|
setting.modulation = MO_NONE;
|
|
setting.modulation_frequency = 1000;
|
|
setting.step_delay = 0;
|
|
setting.offset_delay = 0;
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.vbw_x100 = 0; // Auto mode
|
|
setting.repeat = 1;
|
|
setting.auto_reflevel = true; // Must be after SetReflevel
|
|
setting.decay=20;
|
|
setting.attack=1;
|
|
setting.noise=5;
|
|
setting.below_IF = S_AUTO_OFF;
|
|
setting.tracking_output = false;
|
|
setting.measurement = M_OFF;
|
|
#ifdef __ULTRA__
|
|
setting.ultra = S_AUTO_OFF;
|
|
#endif
|
|
#ifdef TINYSA4
|
|
setting.frequency_IF = config.frequency_IF1; ;
|
|
#else
|
|
setting.frequency_IF = DEFAULT_IF;
|
|
#endif
|
|
setting.frequency_offset = FREQUENCY_SHIFT;
|
|
setting.auto_IF = true;
|
|
set_external_gain(0.0); // This also updates the help text!!!!!
|
|
//setting.external_gain = 0.0;
|
|
setting.trigger = T_AUTO;
|
|
setting.trigger_direction = T_UP;
|
|
setting.trigger_mode = T_MID;
|
|
setting.fast_speedup = 0;
|
|
setting.trigger_level = -150.0;
|
|
setting.linearity_step = 0;
|
|
// setting.refer = -1; // do not reset reffer when switching modes
|
|
setting.mute = true;
|
|
#ifdef __SPUR__
|
|
#ifdef __ULTRA__
|
|
if (m == M_LOW)
|
|
setting.spur_removal = S_AUTO_OFF;
|
|
else
|
|
setting.spur_removal = S_OFF;
|
|
#else
|
|
setting.spur_removal = S_OFF;
|
|
#endif
|
|
setting.mirror_masking = false;
|
|
setting.slider_position = 0;
|
|
setting.slider_span = 100000;
|
|
#endif // __SPUR__
|
|
switch(m) {
|
|
case M_LOW:
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
#ifdef TINYSA4
|
|
set_sweep_frequency(ST_STOP, DEFAULT_MAX_FREQ); // TODO <----------------- temp ----------------------
|
|
setting.attenuate_x2 = 10;
|
|
#else
|
|
setting.attenuate_x2 = 60;
|
|
#endif
|
|
setting.auto_attenuation = true;
|
|
setting.sweep_time_us = 0;
|
|
#ifdef TINYSA4
|
|
setting.lo_drive=5;
|
|
setting.extra_lna = false;
|
|
#endif
|
|
// setting.correction_frequency = config.correction_frequency[CORRECTION_LOW];
|
|
// setting.correction_value = config.correction_value[CORRECTION_LOW];
|
|
break;
|
|
case M_GENLOW:
|
|
#ifdef TINYSA4
|
|
setting.rx_drive= MAX_DRIVE;
|
|
setting.lo_drive=1;
|
|
#else
|
|
// setting.rx_drive=8;
|
|
setting.lo_drive=13;
|
|
#endif
|
|
set_sweep_frequency(ST_CENTER, 10000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.sweep_time_us = 2*ONE_SECOND_TIME;
|
|
setting.step_delay_mode = SD_FAST;
|
|
#ifdef TINYSA4
|
|
setting.extra_lna = false;
|
|
// setting.correction_frequency = config.correction_frequency[CORRECTION_LOW_OUT];
|
|
// setting.correction_value = config.correction_value[CORRECTION_LOW_OUT];
|
|
#else
|
|
// setting.correction_frequency = config.correction_frequency[CORRECTION_LOW];
|
|
// setting.correction_value = config.correction_value[CORRECTION_LOW];
|
|
#endif
|
|
// level_min = SL_GENLOW_LEVEL_MIN + LOW_OUT_OFFSET;
|
|
// level_max = SL_GENLOW_LEVEL_MAX + LOW_OUT_OFFSET;
|
|
// level_range = level_max - level_min;
|
|
break;
|
|
case M_HIGH:
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
setting.sweep_time_us = 0;
|
|
#ifdef TINYSA4
|
|
setting.extra_lna = false;
|
|
#endif
|
|
// setting.correction_frequency = config.correction_frequency[CORRECTION_HIGH];
|
|
// setting.correction_value = config.correction_value[CORRECTION_HIGH];
|
|
break;
|
|
case M_GENHIGH:
|
|
#ifdef TINYSA4
|
|
setting.lo_drive = MIN_DRIVE;
|
|
setting.level = drive_dBm[setting.lo_drive]+ config.high_level_output_offset;
|
|
set_sweep_frequency(ST_CENTER, (minFreq + maxFreq)/2 );
|
|
setting.extra_lna = false;
|
|
#else
|
|
setting.lo_drive=8;
|
|
set_sweep_frequency(ST_CENTER, 300000000);
|
|
#endif
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.sweep_time_us = 2*ONE_SECOND_TIME;
|
|
setting.step_delay_mode = SD_FAST;
|
|
// setting.correction_frequency = config.correction_frequency[CORRECTION_HIGH];
|
|
// setting.correction_value = config.correction_value[CORRECTION_HIGH];
|
|
// level_min = SL_GENHIGH_LEVEL_MIN + config.high_level_output_offset;
|
|
// level_max = SL_GENHIGH_LEVEL_MAX + config.high_level_output_offset;
|
|
// level_range = level_max - level_min;
|
|
break;
|
|
}
|
|
setting.level = level_max(); // This is the level with above settings.
|
|
markers_reset();
|
|
setting._active_marker = 0;
|
|
set_external_gain(0.0); // This also updates the help text!!!!! Must be below level_min and level_max being set
|
|
set_sweep_points(POINTS_COUNT);
|
|
dirty = true;
|
|
}
|
|
|
|
uint32_t calc_min_sweep_time_us(void) // Estimate minimum sweep time in uS, needed to calculate the initial delays for the RSSI before first sweep
|
|
{
|
|
uint32_t t;
|
|
if (MODE_OUTPUT(setting.mode))
|
|
t = 200*sweep_points; // 200 microseconds is the delay set in perform when sweeping in output mode
|
|
else {
|
|
uint32_t bare_sweep_time=0;
|
|
bare_sweep_time = (SI4432_step_delay + MEASURE_TIME) * (sweep_points); // Single RSSI delay and measurement time in uS while scanning
|
|
if (FREQ_IS_CW()) {
|
|
bare_sweep_time = MINIMUM_SWEEP_TIME; // minimum sweep time in fast CW mode
|
|
if (setting.repeat != 1 || setting.sweep_time_us >= 100*ONE_MS_TIME || S_STATE(setting.spur_removal)) // if no fast CW sweep possible
|
|
bare_sweep_time = 15000; // minimum CW sweep time when not in fast CW mode
|
|
}
|
|
t = vbwSteps * (S_STATE(setting.spur_removal) ? 2 : 1) * bare_sweep_time ; // factor in vbwSteps and spur impact
|
|
t += (setting.repeat - 1)* REPEAT_TIME * (sweep_points); // Add time required for repeats
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
void set_refer_output(int v)
|
|
{
|
|
setting.refer = v;
|
|
set_calibration_freq(setting.refer);
|
|
// dirty = true;
|
|
}
|
|
|
|
void set_decay(int d)
|
|
{
|
|
if (d < 0 || d > 1000000)
|
|
return;
|
|
if (setting.frequency_step == 0) { // decay in ms
|
|
d = (float)d * 500.0 * (float)sweep_points / (float)setting.actual_sweep_time_us;
|
|
}
|
|
setting.decay = d;
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef __QUASI_PEAK__
|
|
void set_attack(int d)
|
|
{
|
|
if (d < 0 || d > 20000)
|
|
return;
|
|
if (setting.frequency_step == 0 && d>0) { // decay in ms
|
|
d = (float)d * 500.0 * (float)sweep_points / (float)setting.actual_sweep_time_us;
|
|
}
|
|
setting.attack = d;
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
void set_noise(int d)
|
|
{
|
|
if (d < 2 || d > 50)
|
|
return;
|
|
setting.noise = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_gridlines(int d)
|
|
{
|
|
if (d < 3 || d > 20)
|
|
return;
|
|
config.gridlines = d;
|
|
config_save();
|
|
dirty = true;
|
|
update_grid();
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
void set_30mhz(freq_t f)
|
|
{
|
|
// if (f < 29000000 || f > 31000000)
|
|
// return;
|
|
config.setting_frequency_30mhz = f;
|
|
ADF4351_recalculate_PFDRFout();
|
|
config_save();
|
|
dirty = true;
|
|
update_grid();
|
|
}
|
|
#else
|
|
void set_10mhz(freq_t f)
|
|
{
|
|
if (f < 9000000 || f > 11000000)
|
|
return;
|
|
config.setting_frequency_10mhz = f;
|
|
config_save();
|
|
dirty = true;
|
|
update_grid();
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static setting_t saved_setting;
|
|
#endif
|
|
|
|
void set_measurement(int m)
|
|
{
|
|
#ifdef __LINEARITY__
|
|
setting.stored[TRACE_STORED] = true;
|
|
if (m == M_LINEARITY) {
|
|
for (int j = 0; j < setting._sweep_points; j++)
|
|
stored_t[j] = -150;
|
|
setting.linearity_step = 0;
|
|
setting.attenuate_x2 = 29*2;
|
|
setting.auto_attenuation = false;
|
|
}
|
|
#endif
|
|
#ifdef __FFT_DECONV__
|
|
if (m == M_DECONV && sweep_points == 256) {
|
|
set_storage();
|
|
set_reflevel(-20);
|
|
} else
|
|
return;
|
|
#endif
|
|
setting.measurement = m;
|
|
dirty = true;
|
|
}
|
|
void set_lo_drive(int d)
|
|
{
|
|
setting.lo_drive = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_rx_drive(int d)
|
|
{
|
|
setting.rx_drive = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_level_sweep(float l)
|
|
{
|
|
setting.level_sweep = l;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_sweep_time_us(uint32_t t) // Set the sweep time as the user wants it to be.
|
|
{
|
|
// if (t < MINIMUM_SWEEP_TIME) // Sweep time of zero means sweep as fast as possible
|
|
// t = MINIMUM_SWEEP_TIME;
|
|
if (t > MAXIMUM_SWEEP_TIME)
|
|
t = MAXIMUM_SWEEP_TIME;
|
|
setting.sweep_time_us = t;
|
|
// if (MODE_OUTPUT(setting.mode))
|
|
// setting.actual_sweep_time_us = t; // To ensure time displayed is correct before first sweep is completed
|
|
#if 0
|
|
uint32_t ta = calc_min_sweep_time_us(); // Can not be faster than minimum sweep time
|
|
if (ta < t)
|
|
ta = t;
|
|
setting.actual_sweep_time_us = ta;
|
|
if (FREQ_IS_CW())
|
|
update_grid(); // Really only needed in zero span mode
|
|
redraw_request |= REDRAW_FREQUENCY;
|
|
#endif
|
|
dirty = true;
|
|
}
|
|
|
|
void set_tracking_output(int t)
|
|
{
|
|
setting.tracking_output = t;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_tracking_output(void)
|
|
{
|
|
setting.tracking_output = !setting.tracking_output;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_pulse(void)
|
|
{
|
|
setting.pulse = !setting.pulse;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_debug_avoid(void)
|
|
{
|
|
debug_avoid = !debug_avoid;
|
|
if (debug_avoid) {
|
|
TRACE_ENABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG);
|
|
setting.stored[TRACE_STORED] = true;
|
|
setting.stored[TRACE_TEMP] = true;
|
|
} else {
|
|
TRACE_DISABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG);
|
|
setting.stored[TRACE_STORED] = false;
|
|
setting.stored[TRACE_TEMP] = false;
|
|
}
|
|
dirty = true;
|
|
}
|
|
#ifdef __ULTRA__
|
|
void toggle_debug_spur(void)
|
|
{
|
|
debug_spur = !debug_spur;
|
|
if (debug_spur) {
|
|
TRACE_ENABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG);
|
|
setting.stored[TRACE_STORED] = true;
|
|
setting.stored[TRACE_TEMP] = true;
|
|
} else {
|
|
TRACE_DISABLE(TRACE_STORED_FLAG|TRACE_TEMP_FLAG);
|
|
setting.stored[TRACE_STORED] = false;
|
|
setting.stored[TRACE_TEMP] = false;
|
|
}
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TINYSA4
|
|
void toggle_high_out_adf4350(void)
|
|
{
|
|
config.high_out_adf4350 = !config.high_out_adf4350;
|
|
drive_dBm = (float *) (config.high_out_adf4350 ? adf_drive_dBm : si_drive_dBm);
|
|
config_save();
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_extra_lna(void)
|
|
{
|
|
setting.extra_lna = !setting.extra_lna;
|
|
#ifdef TINYSA4_4
|
|
if (setting.extra_lna)
|
|
setting.attenuate_x2 = 0;
|
|
#endif
|
|
set_extra_lna(setting.extra_lna);
|
|
}
|
|
|
|
void set_extra_lna(int t)
|
|
{
|
|
setting.extra_lna = t;
|
|
#if 0
|
|
if (setting.extra_lna) {
|
|
setting.correction_frequency = config.correction_frequency[CORRECTION_LNA];
|
|
setting.correction_value = config.correction_value[CORRECTION_LNA];
|
|
} else {
|
|
setting.correction_frequency = config.correction_frequency[CORRECTION_LOW];
|
|
setting.correction_value = config.correction_value[CORRECTION_LOW];
|
|
}
|
|
#endif
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
void toggle_mirror_masking(void)
|
|
{
|
|
setting.mirror_masking = !setting.mirror_masking;
|
|
#ifdef __HARMONIC__
|
|
#ifdef TINYSA3
|
|
#ifndef __ULTRA
|
|
if (setting.harmonic) {
|
|
setting.spur_removal = setting.mirror_masking;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_mute(void)
|
|
{
|
|
setting.mute = !setting.mute;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_hambands(void)
|
|
{
|
|
config.hambands = !config.hambands;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_below_IF(void)
|
|
{
|
|
if (S_IS_AUTO(setting.below_IF ))
|
|
setting.below_IF = false;
|
|
else if (setting.below_IF)
|
|
setting.below_IF = S_AUTO_OFF;
|
|
else
|
|
setting.below_IF = true;
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef __ULTRA__
|
|
void toggle_ultra(void)
|
|
{
|
|
if (S_IS_AUTO(setting.ultra ))
|
|
setting.ultra = false;
|
|
else if (setting.ultra)
|
|
setting.ultra = S_AUTO_OFF;
|
|
else
|
|
setting.ultra = true;
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
void set_modulation(int m)
|
|
{
|
|
setting.modulation = m;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_modulation_frequency(int f)
|
|
{
|
|
if (50 <= f && f <= 7000) {
|
|
setting.modulation_frequency = f;
|
|
dirty = true;
|
|
}
|
|
}
|
|
|
|
void set_repeat(int r)
|
|
{
|
|
if (r > 0 && r <= 500) {
|
|
setting.repeat = r;
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
}
|
|
|
|
void set_IF(int f)
|
|
{
|
|
if (f == 0) {
|
|
setting.auto_IF = true;
|
|
#ifdef TINYSA4
|
|
setting.frequency_IF = config.frequency_IF1;
|
|
#endif
|
|
} else {
|
|
setting.auto_IF = false;
|
|
setting.frequency_IF = f;
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
void set_IF2(int f)
|
|
{
|
|
|
|
config.frequency_IF2 = f;
|
|
dirty = true;
|
|
config_save();
|
|
}
|
|
|
|
void set_R(int f)
|
|
{
|
|
setting.R = f;
|
|
if (f<0) {
|
|
f = -f;
|
|
ADF4351_R_counter(-(f % 1000));
|
|
} else
|
|
ADF4351_R_counter(f % 1000);
|
|
ADF4351_spur_mode(f/1000);
|
|
dirty = true;
|
|
}
|
|
|
|
uint32_t local_modulo = 0;
|
|
|
|
void set_modulo(uint32_t f)
|
|
{
|
|
local_modulo = f;
|
|
ADF4351_modulo(f);
|
|
clear_frequency_cache();
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
void set_auto_attenuation(void)
|
|
{
|
|
setting.auto_attenuation = true;
|
|
if (setting.mode == M_LOW) {
|
|
#ifdef TINYSA4_4
|
|
if (setting.extra_lna)
|
|
setting.attenuate_x2 = 0;
|
|
else
|
|
#endif
|
|
setting.attenuate_x2 = 60;
|
|
} else {
|
|
setting.attenuate_x2 = 0;
|
|
}
|
|
setting.atten_step = false;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_auto_reflevel(bool v)
|
|
{
|
|
setting.auto_reflevel = v;
|
|
}
|
|
|
|
#if 1
|
|
float level_min(void)
|
|
{
|
|
int l;
|
|
if (setting.mode == M_GENLOW)
|
|
l = SL_GENLOW_LEVEL_MIN + LOW_OUT_OFFSET;
|
|
else
|
|
l = SL_GENHIGH_LEVEL_MIN + config.high_level_output_offset;
|
|
return l;
|
|
}
|
|
|
|
float level_max(void)
|
|
{
|
|
if (setting.mode == M_GENLOW)
|
|
return SL_GENLOW_LEVEL_MAX + LOW_OUT_OFFSET;
|
|
else
|
|
return SL_GENHIGH_LEVEL_MAX + config.high_level_output_offset;
|
|
}
|
|
|
|
float level_range(void)
|
|
{
|
|
int r;
|
|
r = level_max() - level_min();
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef TINYSA4
|
|
float low_out_offset()
|
|
{
|
|
if (config.low_level_output_offset == 100)
|
|
{
|
|
if (config.low_level_offset == 100)
|
|
return 0;
|
|
else
|
|
return config.low_level_offset;
|
|
} else
|
|
return config.low_level_output_offset;
|
|
}
|
|
|
|
float high_out_offset()
|
|
{
|
|
if (config.high_level_output_offset == 100)
|
|
{
|
|
if (config.high_level_offset == 100)
|
|
return 0;
|
|
else
|
|
return config.high_level_offset;
|
|
} else
|
|
return config.high_level_output_offset;
|
|
}
|
|
#endif
|
|
|
|
static pureRSSI_t get_signal_path_loss(void){ // loss as positive number
|
|
#ifdef TINYSA4
|
|
if (setting.mode == M_LOW)
|
|
return float_TO_PURE_RSSI(+9.3); // Loss in dB, -9.5 for v0.1, -12.5 for v0.2
|
|
return float_TO_PURE_RSSI(+29); // Loss in dB (+ is gain)
|
|
#else
|
|
if (setting.mode == M_LOW)
|
|
return float_TO_PURE_RSSI(-5.5); // Loss in dB, -9.5 for v0.1, -12.5 for v0.2
|
|
return float_TO_PURE_RSSI(+7); // Loss in dB (+ is gain)
|
|
#endif
|
|
}
|
|
|
|
void set_level(float v) // Set the output level in dB in high/low output
|
|
{
|
|
if (setting.mode == M_GENHIGH) {
|
|
v -= config.high_level_output_offset;
|
|
if (v < SL_GENHIGH_LEVEL_MIN)
|
|
v = SL_GENHIGH_LEVEL_MIN;
|
|
if (v > SL_GENHIGH_LEVEL_MAX)
|
|
v = SL_GENHIGH_LEVEL_MAX;
|
|
v += config.high_level_output_offset;
|
|
#if 0
|
|
unsigned int d = MIN_DRIVE;
|
|
v = v - config.high_level_output_offset;
|
|
while (drive_dBm[d] < v && d < MAX_DRIVE) // Find level equal or above requested level
|
|
d++;
|
|
// if (d == 8 && v < -12) // Round towards closest level
|
|
// d = 7;
|
|
v = drive_dBm[d] + config.high_level_output_offset;
|
|
set_lo_drive(d);
|
|
#endif
|
|
} else { // This MUST be low output level
|
|
v -= LOW_OUT_OFFSET;
|
|
if (v < SL_GENLOW_LEVEL_MIN)
|
|
v = SL_GENLOW_LEVEL_MIN;
|
|
if (v > SL_GENLOW_LEVEL_MAX)
|
|
v = SL_GENLOW_LEVEL_MAX;
|
|
v += LOW_OUT_OFFSET;
|
|
// set_attenuation(setting.level - LOW_OUT_OFFSET);
|
|
}
|
|
setting.level = v;
|
|
dirty = true;
|
|
}
|
|
|
|
float get_level(void)
|
|
{
|
|
#if 0
|
|
if (setting.mode == M_GENHIGH) {
|
|
return v; // drive_dBm[setting.lo_drive] + config.high_level_output_offset;
|
|
} else {
|
|
// setting.level = get_attenuation() + LOW_OUT_OFFSET;
|
|
return setting.level;
|
|
}
|
|
#endif
|
|
return setting.level;
|
|
}
|
|
|
|
|
|
float get_attenuation(void)
|
|
{
|
|
float actual_attenuation = setting.attenuate_x2 / 2.0;
|
|
if (setting.mode == M_GENLOW) {
|
|
return (float)( level_max() - actual_attenuation + BELOW_MAX_DRIVE(setting.rx_drive) - ( setting.atten_step ? SWITCH_ATTENUATION : 0) );
|
|
} else if (setting.atten_step) {
|
|
if (setting.mode == M_LOW)
|
|
return actual_attenuation + RECEIVE_SWITCH_ATTENUATION;
|
|
else
|
|
return actual_attenuation + SWITCH_ATTENUATION;
|
|
}
|
|
return(actual_attenuation);
|
|
}
|
|
|
|
void set_attenuation(float a) // Is used both only in high/low input mode
|
|
{
|
|
#if 0
|
|
if (setting.mode == M_GENLOW) {
|
|
a = a - level_max(); // Move to zero for max power
|
|
if (a > 0)
|
|
a = 0;
|
|
if( a < - SWITCH_ATTENUATION) {
|
|
a = a + SWITCH_ATTENUATION;
|
|
setting.atten_step = 1;
|
|
} else {
|
|
setting.atten_step = 0;
|
|
}
|
|
setting.rx_drive = MAX_DRIVE; // Reduce level till it fits in attenuator range
|
|
while (a - BELOW_MAX_DRIVE(setting.rx_drive) < - 31 && setting.rx_drive > MIN_DRIVE) {
|
|
setting.rx_drive--;
|
|
}
|
|
a -= BELOW_MAX_DRIVE(setting.rx_drive);
|
|
a = -a;
|
|
} else
|
|
#endif
|
|
{
|
|
if (setting.mode == M_LOW && a > MAX_ATTENUATE) {
|
|
setting.atten_step = 1;
|
|
a = a - RECEIVE_SWITCH_ATTENUATION;
|
|
} else if (setting.mode == M_HIGH && a > 0) {
|
|
setting.atten_step = 1;
|
|
a = a - SWITCH_ATTENUATION;
|
|
} else
|
|
setting.atten_step = 0;
|
|
setting.auto_attenuation = false;
|
|
dirty = true;
|
|
}
|
|
if (a<0.0)
|
|
a = 0;
|
|
if (a> MAX_ATTENUATE)
|
|
a = MAX_ATTENUATE;
|
|
if (setting.mode == M_HIGH) // No attenuator in high mode
|
|
a = 0;
|
|
if (setting.attenuate_x2 == a*2)
|
|
return;
|
|
setting.attenuate_x2 = a*2;
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef __LIMITS__
|
|
void limits_update(void)
|
|
{
|
|
for (int t=0;t<TRACES_MAX;t++) {
|
|
int j =0;
|
|
int prev = -1;
|
|
if (setting.average[t] != AV_TABLE)
|
|
continue;
|
|
for (int i = 0; i<LIMITS_MAX; i++)
|
|
{
|
|
if (setting.limits[t][i].enabled) {
|
|
while (j < sweep_points && (getFrequency(j) < setting.limits[t][i].frequency /* || setting.limits[t][i].frequency == 0 */)) {
|
|
if (prev < 0)
|
|
measured[t][j] = setting.limits[t][i].level;
|
|
else
|
|
measured[t][j] = setting.limits[t][prev].level +
|
|
(getFrequency(j) - setting.limits[t][prev].frequency) * (setting.limits[t][i].level - setting.limits[t][prev].level) /
|
|
(setting.limits[t][i].frequency-setting.limits[t][prev].frequency);
|
|
j++;
|
|
}
|
|
prev = i;
|
|
}
|
|
}
|
|
if (prev>=0)
|
|
{
|
|
while (j < sweep_points)
|
|
measured[t][j++] = setting.limits[t][prev].level;
|
|
setting.stored[t] = true;
|
|
TRACE_ENABLE(1<<t);
|
|
} else {
|
|
setting.stored[t] = false;
|
|
TRACE_DISABLE(1<<t);
|
|
}
|
|
redraw_request|= REDRAW_AREA;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void copy_trace(int f, int t)
|
|
{
|
|
if (f == t)
|
|
return;
|
|
for (int i=0; i<POINTS_COUNT;i++)
|
|
measured[t][i] = measured[f][i];
|
|
setting.stored[t] = true;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void store_trace(int f, int t)
|
|
{
|
|
copy_trace(f,t);
|
|
enableTracesAtComplete(1<<t);
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_clear_storage(void)
|
|
{
|
|
setting.show_stored = false;
|
|
// setting.subtract = false;
|
|
TRACE_DISABLE(TRACE_STORED_FLAG);
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_subtract_storage(void)
|
|
{
|
|
/*
|
|
if (!setting.subtract_stored) {
|
|
if (!setting.show_stored)
|
|
store_trace(0,2);
|
|
setting.subtract_stored = true;
|
|
setting.normalize_level = 0.0;
|
|
// setting.auto_attenuation = false;
|
|
} else {
|
|
setting.subtract_stored = false;
|
|
}
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
*/
|
|
}
|
|
|
|
void subtract_trace(int t, int f)
|
|
{
|
|
if (t == f)
|
|
return;
|
|
if (!setting.subtract[t]) {
|
|
setting.subtract[t] = f+1;
|
|
setting.normalize_level = 0.0;
|
|
setting.auto_attenuation = false; // Otherwise noise level may move leading to strange measurements
|
|
for (int i=0;i<POINTS_COUNT;i++)
|
|
measured[t][i] -= measured[f][i]; // pre-load AVER
|
|
|
|
} else {
|
|
for (int i=0;i<POINTS_COUNT;i++)
|
|
measured[t][i] += measured[f][i]; // pre-load AVER
|
|
setting.subtract[t] = 0;
|
|
}
|
|
}
|
|
|
|
void toggle_normalize(int t)
|
|
{
|
|
if (!setting.normalized[t]) {
|
|
if (setting.normalized_trace == -1) {
|
|
copy_trace(t,TRACE_TEMP);
|
|
setting.normalized_trace = t;
|
|
TRACE_DISABLE(1<<TRACE_TEMP);
|
|
}
|
|
setting.normalized[t] = true;
|
|
for (int i=0;i<POINTS_COUNT;i++)
|
|
measured[t][i] -= measured[TRACE_TEMP][i]; // pre-load AVER
|
|
setting.auto_attenuation = false; // Otherwise noise level may move leading to strange measurements
|
|
setting.normalize_level = 0.0;
|
|
} else {
|
|
for (int f=0; f<TRACES_MAX-1;f++) {
|
|
if (setting.normalized[f] && (setting.normalized_trace == t || f == t)) {
|
|
for (int i=0;i<POINTS_COUNT;i++)
|
|
measured[f][i] += measured[TRACE_TEMP][i]; // pre-load AVER
|
|
setting.normalized[f] = false;
|
|
}
|
|
}
|
|
if (setting.normalized_trace == t) {
|
|
setting.normalized_trace = -1;
|
|
setting.stored[TRACE_TEMP] = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern float peakLevel;
|
|
void set_actual_power(float o) // Set peak level to known value
|
|
{
|
|
if (!markers[0].index)
|
|
return;
|
|
float new_offset = o - measured[markers[0].trace][markers[0].index] + get_level_offset(); // offset based on difference between measured peak level and known peak level
|
|
if (o == 100) new_offset = 0;
|
|
if (setting.mode == M_HIGH) {
|
|
config.high_level_offset = new_offset;
|
|
} else if (setting.mode == M_LOW) {
|
|
#ifdef TINYSA4
|
|
if (setting.extra_lna)
|
|
config.lna_level_offset = new_offset;
|
|
else
|
|
#endif
|
|
{
|
|
if (setting.atten_step)
|
|
config.receive_switch_offset -= new_offset;
|
|
else
|
|
config.low_level_offset = new_offset;
|
|
}
|
|
}
|
|
dirty = true;
|
|
config_save();
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
float get_level_offset(void)
|
|
{
|
|
if (setting.mode == M_HIGH) {
|
|
if (config.high_level_offset == 100) // Offset of 100 means not calibrated
|
|
return 0;
|
|
return(config.high_level_offset);
|
|
}
|
|
if (setting.mode == M_LOW) {
|
|
#ifdef TINYSA4
|
|
if (setting.extra_lna) {
|
|
if (config.lna_level_offset == 100)
|
|
return 0;
|
|
return(config.lna_level_offset);
|
|
} else
|
|
#endif
|
|
{
|
|
if (config.low_level_offset == 100)
|
|
return 0;
|
|
return(config.low_level_offset);
|
|
}
|
|
}
|
|
if (setting.mode == M_GENLOW) {
|
|
return(LOW_OUT_OFFSET);
|
|
}
|
|
if (setting.mode == M_GENHIGH) {
|
|
return(config.high_level_output_offset);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
int level_is_calibrated(void)
|
|
{
|
|
if (setting.mode == M_HIGH && config.high_level_offset != 100)
|
|
return 1;
|
|
if (setting.mode == M_LOW) {
|
|
#ifdef TINYSA4
|
|
if (setting.extra_lna) {
|
|
if (config.lna_level_offset != 100)
|
|
return 1;
|
|
} else
|
|
#endif
|
|
if (config.low_level_offset != 100)
|
|
return 1;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
void set_RBW(uint32_t rbw_x10)
|
|
{
|
|
setting.rbw_x10 = rbw_x10;
|
|
update_rbw();
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef __VBW__
|
|
void set_VBW(uint32_t vbw_x100)
|
|
{
|
|
setting.vbw_x100 = vbw_x100;
|
|
if (vbw_x100 == 0)
|
|
setting.repeat = 1;
|
|
else
|
|
setting.repeat = vbw_x100;
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SPUR__
|
|
void set_spur(int v)
|
|
{
|
|
if (setting.mode!=M_LOW)
|
|
return;
|
|
setting.spur_removal = v;
|
|
// if (setting.spur_removal && actual_rbw > 360) // moved to update_rbw
|
|
// set_RBW(300);
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_spur(void)
|
|
{
|
|
if (setting.mode!=M_LOW)
|
|
return;
|
|
#ifdef TINYSA4
|
|
if (S_IS_AUTO(setting.spur_removal ))
|
|
setting.spur_removal = false;
|
|
else if (setting.spur_removal)
|
|
setting.spur_removal = S_AUTO_OFF;
|
|
else
|
|
setting.spur_removal = true;
|
|
#else
|
|
if (S_STATE(setting.spur_removal ))
|
|
setting.spur_removal = S_OFF;
|
|
else
|
|
setting.spur_removal = S_ON;
|
|
#endif
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __HARMONIC__
|
|
void set_harmonic(int h)
|
|
{
|
|
setting.harmonic = h;
|
|
#if 0
|
|
minFreq = 684000000.0;
|
|
if ((freq_t)(setting.harmonic * 135000000)+config.frequency_IF1 > minFreq)
|
|
minFreq = setting.harmonic * 135000000 + config.frequency_IF1;
|
|
#endif
|
|
#if 0
|
|
maxFreq = 9900000000.0;
|
|
if (setting.harmonic != 0 && (MAX_LO_FREQ * setting.harmonic + config.frequency_IF1 )< 9900000000.0)
|
|
maxFreq = (MAX_LO_FREQ * setting.harmonic + config.frequency_IF1 );
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
#endif
|
|
update_min_max_freq();
|
|
}
|
|
#endif
|
|
|
|
void set_step_delay(int d) // override RSSI measurement delay or set to one of three auto modes
|
|
{
|
|
|
|
if ((SD_MANUAL <= d && d < 10) || d > 30000) // values 0 (normal scan), 1 (precise scan) and 2(fast scan) have special meaning and are auto calculated
|
|
return;
|
|
if (d <SD_MANUAL) {
|
|
setting.step_delay_mode = d;
|
|
setting.step_delay = 0;
|
|
setting.offset_delay = 0;
|
|
} else {
|
|
setting.step_delay_mode = SD_MANUAL;
|
|
setting.step_delay = d;
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
void set_offset_delay(int d) // override RSSI measurement delay or set to one of three auto modes
|
|
{
|
|
setting.offset_delay = d;
|
|
dirty = true;
|
|
}
|
|
|
|
|
|
void set_average(int t, int v)
|
|
{
|
|
if (setting.average[t] == v) // Clear calc on second click
|
|
dirty = true;
|
|
if (setting.average[t] == AV_TABLE && v != AV_TABLE)
|
|
setting.stored[t] = false;
|
|
setting.average[t] = v;
|
|
bool enable = ((v != 0)
|
|
#ifdef __QUASI_PEAK__
|
|
&& (v != AV_QUASI)
|
|
#endif
|
|
);
|
|
if (enable) {
|
|
setting.scan_after_dirty[t] = 0;
|
|
}
|
|
// else
|
|
// TRACE_DISABLE(TRACE_TEMP_FLAG);
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void toggle_LNA(void)
|
|
{
|
|
if (S_IS_AUTO(setting.lna ))
|
|
setting.lna = false;
|
|
else if (setting.lna)
|
|
setting.lna = S_AUTO_OFF;
|
|
else
|
|
setting.lna = true;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_tracking(void)
|
|
{
|
|
setting.tracking = !setting.tracking;
|
|
if (setting.tracking) {
|
|
#ifdef TINYSA4
|
|
set_refer_output(0);
|
|
set_sweep_frequency(ST_CENTER, 30000000);
|
|
#else
|
|
set_refer_output(2);
|
|
set_sweep_frequency(ST_CENTER, 10000000);
|
|
#endif
|
|
set_sweep_frequency(ST_SPAN, 5000000);
|
|
} else {
|
|
set_refer_output(-1);
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_AGC(void)
|
|
{
|
|
if (S_IS_AUTO(setting.agc ))
|
|
setting.agc = false;
|
|
else if (setting.agc)
|
|
setting.agc = S_AUTO_ON;
|
|
else
|
|
setting.agc = true;
|
|
dirty = true;
|
|
}
|
|
|
|
static unsigned char SI4432_old_v[2];
|
|
|
|
#ifdef __SI4432__
|
|
void auto_set_AGC_LNA(int auto_set, int agc) // Adapt the AGC setting if needed
|
|
{
|
|
unsigned char v;
|
|
if (auto_set)
|
|
v = 0x60; // Enable AGC and disable LNA
|
|
else
|
|
v = 0x40+agc; // Disable AGC and enable LNA
|
|
int idx = MODE_SELECT(setting.mode) == SI4432_RX ? 0 : 1;
|
|
if (SI4432_old_v[idx] != v) {
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
SI4432_Write_Byte(SI4432_AGC_OVERRIDE, v);
|
|
SI4432_old_v[idx] = v;
|
|
}
|
|
#ifdef __SI4463__
|
|
unsigned char v;
|
|
if (auto_set) {
|
|
v = 0x00; // Enable AGC and disable LNA
|
|
} else {
|
|
v = 0xa8+agc; // Disable AGC and enable LNA
|
|
}
|
|
if (SI4432_old_v[0] != v) {
|
|
SI446x_set_AGC_LNA(v);
|
|
SI4432_old_v[0] = v;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SI4432__
|
|
void set_AGC_LNA(void) {
|
|
unsigned char v = 0x40;
|
|
if (S_STATE(setting.agc)) v |= 0x20;
|
|
if (S_STATE(setting.lna)) v |= 0x10;
|
|
SI4432_Write_Byte(SI4432_AGC_OVERRIDE, v);
|
|
int idx = MODE_SELECT(setting.mode) == SI4432_RX ? 0 : 1;
|
|
SI4432_old_v[idx] = v;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SI4463__
|
|
void set_AGC_LNA(void) {
|
|
uint8_t v = 0;
|
|
if (!S_STATE(setting.agc))
|
|
v |= 0x80 + 0x20; // Inverse!!!!
|
|
if (S_STATE(setting.lna))
|
|
v |= 0x0F; // Inverse!!!!
|
|
SI446x_set_AGC_LNA(v);
|
|
SI4432_old_v[0] = v;
|
|
}
|
|
#endif
|
|
|
|
void set_unit(int u)
|
|
{
|
|
if (setting.unit == u)
|
|
return;
|
|
float r = to_dBm(setting.reflevel); // Get neutral unit
|
|
float s = to_dBm(setting.scale);
|
|
// float t = setting.trigger; // Is always in dBm
|
|
// float m = r - NGRIDSY*s;
|
|
|
|
setting.unit = u; // Switch unit
|
|
|
|
r = value(r); // Convert to target unit
|
|
s = value(s);
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (r < REFLEVEL_MIN)
|
|
r = REFLEVEL_MIN; // Minimum value to ensure display
|
|
if (r >REFLEVEL_MAX)
|
|
r = REFLEVEL_MAX; // Maximum value
|
|
set_scale(r/NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
#ifdef __SI4432__
|
|
if (S_IS_AUTO(setting.agc))
|
|
setting.agc = S_AUTO_ON;
|
|
if (S_IS_AUTO(setting.lna))
|
|
setting.lna = S_AUTO_OFF;
|
|
#endif
|
|
} else {
|
|
r = 10 * roundf((r*1.2)/10.0);
|
|
set_reflevel(r);
|
|
set_scale(10);
|
|
#ifdef __SI4432__
|
|
if (S_IS_AUTO(setting.agc))
|
|
setting.agc = S_AUTO_ON;
|
|
if (S_IS_AUTO(setting.lna))
|
|
setting.lna = S_AUTO_OFF;
|
|
#endif
|
|
}
|
|
plot_into_index(measured);
|
|
redraw_request|=REDRAW_AREA;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
const float unit_scale_value[]={ 1, 0.001, 0.000001, 0.000000001, 0.000000000001};
|
|
const char unit_scale_text[]= {' ', 'm', '\035', 'n', 'p'};
|
|
|
|
void user_set_reflevel(float level)
|
|
{
|
|
set_auto_reflevel(false);
|
|
if (UNIT_IS_LINEAR(setting.unit) && level < setting.scale*NGRIDY) { // Avoid below zero level
|
|
set_scale(level/NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
} else
|
|
set_reflevel(level);
|
|
redraw_request|=REDRAW_AREA;
|
|
}
|
|
|
|
void set_reflevel(float level)
|
|
{
|
|
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (level < REFLEVEL_MIN)
|
|
level = REFLEVEL_MIN;
|
|
if (level > REFLEVEL_MAX)
|
|
level = REFLEVEL_MAX;
|
|
}
|
|
|
|
setting.unit_scale_index = 0;
|
|
setting.unit_scale = 1.0;
|
|
while (UNIT_IS_LINEAR(setting.unit) && setting.unit_scale_index < ARRAY_COUNT(unit_scale_value) - 1) {
|
|
if (level > unit_scale_value[setting.unit_scale_index])
|
|
break;
|
|
setting.unit_scale_index++;
|
|
}
|
|
setting.unit_scale = unit_scale_value[setting.unit_scale_index];
|
|
setting.reflevel = level;
|
|
set_trace_refpos(level);
|
|
// dirty = true;
|
|
}
|
|
|
|
void round_reflevel_to_scale(void) {
|
|
int multi = floorf((setting.reflevel + setting.scale/2)/setting.scale);
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (multi < NGRIDY) {
|
|
setting.reflevel = setting.scale*10; // Never negative bottom
|
|
}
|
|
} else {
|
|
|
|
}
|
|
setting.reflevel = multi*setting.scale;
|
|
set_trace_refpos(setting.reflevel);
|
|
}
|
|
|
|
void user_set_scale(float s)
|
|
{
|
|
if (UNIT_IS_LINEAR(setting.unit))
|
|
set_auto_reflevel(false);
|
|
set_scale(s);
|
|
if (UNIT_IS_LINEAR(setting.unit) && setting.reflevel < setting.scale*NGRIDY)
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
redraw_request|=REDRAW_AREA;
|
|
}
|
|
|
|
void set_scale(float t) {
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (t < REFLEVEL_MIN/10.0)
|
|
t = REFLEVEL_MIN/10.0;
|
|
if (t > REFLEVEL_MAX/10.0)
|
|
t = REFLEVEL_MAX/10.0;
|
|
} else {
|
|
if (t > 20.0)
|
|
t = 20.0;
|
|
else if (t < 1)
|
|
t = 1.0;
|
|
}
|
|
|
|
float m = 1;
|
|
// t = t * 1.2;
|
|
while (t > 10) { m *= 10; t/=10; }
|
|
while (t < 1.0) { m /= 10; t*=10; }
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
t = ((int)(10*t+0.4999))/10.0;
|
|
} else {
|
|
if (t>5.0001)
|
|
t = 10.0;
|
|
else if (t>2.0001)
|
|
t = 5.0;
|
|
else if (t > 1.0001)
|
|
t = 2.0;
|
|
else
|
|
t = 1.0;
|
|
}
|
|
t = t*m;
|
|
setting.scale = t;
|
|
set_trace_scale(t);
|
|
round_reflevel_to_scale();
|
|
}
|
|
|
|
extern char low_level_help_text[12];
|
|
|
|
void set_external_gain(float external_gain)
|
|
{
|
|
setting.external_gain = external_gain;
|
|
int min,max;
|
|
min = level_min();
|
|
max = min + level_range();
|
|
plot_printf(low_level_help_text, sizeof low_level_help_text, "%+d..%+d", min - (int)external_gain, max - (int)external_gain);
|
|
redraw_request|=REDRAW_AREA;
|
|
dirty = true; // No HW update required, only status panel refresh but need to ensure the cached value is updated in the calculation of the RSSI
|
|
}
|
|
|
|
void set_trigger_level(float trigger_level)
|
|
{
|
|
setting.trigger_level = trigger_level;
|
|
redraw_request |= REDRAW_TRIGGER | REDRAW_CAL_STATUS | REDRAW_AREA;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_trigger(int trigger)
|
|
{
|
|
if (trigger == T_PRE || trigger == T_POST || trigger == T_MID) {
|
|
setting.trigger_mode = trigger;
|
|
} else if (trigger == T_UP || trigger == T_DOWN){
|
|
setting.trigger_direction = trigger;
|
|
} else if (trigger == T_DONE) {
|
|
pause_sweep(); // Trigger once so pause after this sweep has completed!!!!!!!
|
|
redraw_request |= REDRAW_CAL_STATUS; // Show status change setting.trigger = trigger;
|
|
setting.trigger = trigger;
|
|
} else {
|
|
sweep_mode = SWEEP_ENABLE;
|
|
setting.trigger = trigger;
|
|
}
|
|
redraw_request|=REDRAW_TRIGGER | REDRAW_CAL_STATUS;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
|
|
//int GetRefpos(void) {
|
|
// return (NGRIDY - get_trace_refpos(2)) * get_trace_scale(2);
|
|
//}
|
|
|
|
//int GetScale(void) {
|
|
// return get_trace_refpos(2);
|
|
//}
|
|
void set_mode(int m)
|
|
{
|
|
dirty = true;
|
|
if (setting.mode == m)
|
|
return;
|
|
reset_settings(m);
|
|
// dirty = true;
|
|
}
|
|
|
|
void set_fast_speedup(int s)
|
|
{
|
|
setting.fast_speedup = s;
|
|
dirty = true;
|
|
}
|
|
|
|
//
|
|
// Table for auto set sweep step/offset delays from RBW
|
|
//
|
|
#ifdef __SI4432__
|
|
static const struct {
|
|
uint16_t rbw_x10;
|
|
uint16_t step_delay;
|
|
uint32_t offset_delay;
|
|
} step_delay_table[]={
|
|
#if 1
|
|
// RBWx10 step_delay offset_delay
|
|
{ 1910, 300, 100},
|
|
{ 1420, 350, 100},
|
|
{ 750, 450, 100},
|
|
{ 560, 650, 100},
|
|
{ 370, 700, 200},
|
|
{ 180, 1100, 300},
|
|
{ 90, 1700, 400},
|
|
{ 50, 3300, 800},
|
|
{ 0, 6400, 1600},
|
|
#else
|
|
{ 1910, 280, 100},
|
|
{ 1420, 350, 100},
|
|
{ 750, 450, 100},
|
|
{ 560, 650, 100},
|
|
{ 370, 700, 100},
|
|
{ 180, 1100, 200},
|
|
{ 90, 1700, 400},
|
|
{ 50, 3300, 400},
|
|
{ 0, 6400, 1600},
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
#ifdef __SI4463__
|
|
static const struct {
|
|
uint16_t rbw_x10;
|
|
uint16_t step_delay;
|
|
uint16_t offset_delay;
|
|
uint16_t spur_div_1000;
|
|
int16_t noise_level;
|
|
float log_aver_correction;
|
|
} step_delay_table[]={
|
|
// RBWx10 step_delay offset_delay spur_gate (value divided by 1000)
|
|
{ 8500, 150, 50, 400, -90, 0.7},
|
|
{ 6000, 150, 50, 300, -95, 0.8},
|
|
{ 3000, 150, 50, 200, -95, 1.3},
|
|
{ 1000, 300, 100, 100, -105, 0.3},
|
|
{ 300, 400, 120, 100, -110, 0.7},
|
|
{ 100, 700, 120, 100, -115, 0.5},
|
|
{ 30, 1600, 300, 100, -120, 0.7},
|
|
{ 10, 4000, 600, 100, -122, 1.1},
|
|
{ 3, 18700, 12000, 100, -125, 1.0}
|
|
};
|
|
#endif
|
|
|
|
void calculate_step_delay(void)
|
|
{
|
|
if (setting.step_delay_mode == SD_MANUAL || setting.step_delay != 0) { // The latter part required for selftest 3
|
|
SI4432_step_delay = setting.step_delay;
|
|
if (setting.offset_delay != 0) // Override if set
|
|
SI4432_offset_delay = setting.offset_delay;
|
|
} else {
|
|
SI4432_offset_delay = 0;
|
|
if (setting.frequency_step == 0) { // zero span mode, not dependent on selected RBW
|
|
SI4432_step_delay = 0;
|
|
} else {
|
|
// Search index in table depend from RBW
|
|
uint16_t i=0;
|
|
|
|
|
|
for (i=0;i<ARRAY_COUNT(step_delay_table)-1;i++)
|
|
if (actual_rbw_x10 >= step_delay_table[i].rbw_x10)
|
|
break;
|
|
#ifdef __SI4432__
|
|
SI4432_step_delay = step_delay_table[i].step_delay;
|
|
SI4432_offset_delay = step_delay_table[i].offset_delay;
|
|
spur_gate = actual_rbw_x10 * (100 / 2);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4432_step_delay = step_delay_table[i].step_delay;
|
|
SI4432_offset_delay = step_delay_table[i].offset_delay;
|
|
spur_gate = actual_rbw_x10 * (actual_rbw_x10 > 5000 ? (100/2) : 100);
|
|
// spur_gate = step_delay_table[i].spur_div_1000 * 1000;
|
|
noise_level = step_delay_table[i].noise_level - PURE_TO_float(get_signal_path_loss());
|
|
log_averaging_correction = step_delay_table[i].log_aver_correction;
|
|
#endif
|
|
if (setting.step_delay_mode == SD_PRECISE) // In precise mode wait twice as long for RSSI to stabilize
|
|
SI4432_step_delay += (SI4432_step_delay>>2) ;
|
|
if (setting.fast_speedup >0)
|
|
SI4432_offset_delay = SI4432_step_delay / setting.fast_speedup;
|
|
}
|
|
if (setting.offset_delay != 0) // Override if set
|
|
SI4432_offset_delay = setting.offset_delay;
|
|
}
|
|
}
|
|
|
|
static void apply_settings(void) // Ensure all settings in the setting structure are translated to the right HW setup
|
|
{
|
|
set_switches(setting.mode);
|
|
#ifdef __PE4302__
|
|
if (setting.mode == M_HIGH)
|
|
PE4302_Write_Byte(40); // Ensure defined input impedance of low port when using high input mode (power calibration)
|
|
else
|
|
PE4302_Write_Byte((int)(setting.attenuate_x2));
|
|
#endif
|
|
if (setting.mode == M_LOW) {
|
|
|
|
}
|
|
set_calibration_freq(setting.refer);
|
|
update_rbw();
|
|
calculate_step_delay();
|
|
}
|
|
|
|
//------------------------------------------
|
|
#if 0
|
|
#define CORRECTION_POINTS 10
|
|
|
|
static const freq_t correction_frequency[CORRECTION_POINTS] =
|
|
{ 100000, 200000, 400000, 1000000, 2000000, 50000000, 100000000, 200000000, 300000000, 350000000 };
|
|
|
|
static const float correction_value[CORRECTION_POINTS] =
|
|
{ +4.0, +2.0, +1.5, +0.5, 0.0, 0.0, +1.0, +1.0, +2.5, +5.0 };
|
|
#endif
|
|
|
|
/*
|
|
* To avoid float calculations the correction values are maximum +/-16 and accuracy of 0.5 so they fit easily in 8 bits
|
|
* The frequency steps between correction factors is assumed to be maximum 500MHz or 0x2000000 and minimum 100kHz or > 0x10000
|
|
* The divider 1/m is pre-calculated into delta_div as 2^scale_factor * correction_step/frequency_step
|
|
*/
|
|
#define FREQ_SCALE_FACTOR 10
|
|
#define SCALE_FACTOR 5 // min scaled correction = 2^15, max scaled correction = 256 * 2^15
|
|
// min scaled f = 6, max scaled f = 1024
|
|
|
|
static int32_t scaled_correction_multi[CORRECTION_SIZE][CORRECTION_POINTS];
|
|
static int32_t scaled_correction_value[CORRECTION_SIZE][CORRECTION_POINTS];
|
|
|
|
#if 0 // Not implemented
|
|
static const int8_t scaled_atten_correction[16][16] =
|
|
{
|
|
{0, -1, -2, -2, -3, -4, -3, -1, 0, 3, 7, 14, 21, 30, 42, 54 }, // 2.6G dB*8, 16 levels
|
|
{0, -2, -4, -6, -7, -9, -8, -8, -11, -9, -9, -8, -7, -4, 2, 8 }, // 3.2G
|
|
{0, 0, 0, -1, -8, -10, -10, -12, -22, -24, -28, -30, -37, -34, -24, -13, }, // 3.8G
|
|
{0, 0, 0, -1, -8, -10, -10, -12, -22, -24, -28, -30, -37, -34, -24, -13, }, // 4.3G
|
|
{0, 0, 0, 1, -4, -2, 0, 0, -3, 0, 1, 6, 5, 10, 16, 22, }, // 4.8G
|
|
{0, 0, 1, 2, -9, -7, -6, -5, -18, -18, -17, -17, -23, -24, -25, -27, }, // 5.4G
|
|
{0, -1, -3, -3, -21, -20, -20, -20, -31, -29, -24, -18, -4, 4, 19, 30, }, // 5.9G
|
|
};
|
|
#endif
|
|
|
|
static void calculate_correction(void)
|
|
{
|
|
for (int c = 0; c < CORRECTION_SIZE; c++) {
|
|
scaled_correction_value[c][0] = config.correction_value[c][0] * (1 << (SCALE_FACTOR));
|
|
for (int i = 1; i < CORRECTION_POINTS; i++) {
|
|
scaled_correction_value[c][i] = config.correction_value[c][i] * (1 << (SCALE_FACTOR));
|
|
int32_t m = scaled_correction_value[c][i] - scaled_correction_value[c][i-1];
|
|
// int32_t d = (setting.correction_frequency[i] - setting.correction_frequency[i-1]) >> SCALE_FACTOR;
|
|
scaled_correction_multi[c][i] = m; // (int32_t) ( m / d );
|
|
}
|
|
}
|
|
}
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("Og") // "Os" causes problem
|
|
|
|
pureRSSI_t get_frequency_correction(freq_t f) // Frequency dependent RSSI correction to compensate for imperfect LPF
|
|
{
|
|
pureRSSI_t cv = 0;
|
|
int c=CORRECTION_LOW;
|
|
if (setting.mode == M_GENHIGH) {
|
|
c = CORRECTION_HIGH;
|
|
return(0.0);
|
|
}
|
|
#ifdef TINYSA4
|
|
if (setting.mode == M_LOW && ultra && f > ultra_threshold) {
|
|
c = CORRECTION_LOW_ULTRA;
|
|
if ( f > ULTRA_MAX_FREQ) {
|
|
cv += float_TO_PURE_RSSI(8.5); // +9dB correction.
|
|
}
|
|
if (setting.extra_lna)
|
|
c += 1;
|
|
} else if (setting.mode == M_GENLOW){
|
|
c = CORRECTION_LOW_OUT;
|
|
}
|
|
#else
|
|
if (MODE_HIGH(setting.mode))
|
|
c = CORRECTION_HIGH;
|
|
#endif
|
|
|
|
|
|
#ifdef TINYSA4
|
|
#if 0 // Not implemented
|
|
int cf = (((f >> 28)+1)>>1) - 5; // Correction starts at 2,684,354,560Hz round to closest correction frequency
|
|
int ca = setting.attenuate_x2 >> 2; // One data point per 2dB step
|
|
if (cf >= 0 && cf < 16)
|
|
cv -= scaled_atten_correction[cf][ca]<<2; // Shift is +5(pure RSSI) - 3 (scaled correction) = 2
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#if 0
|
|
if (setting.extra_lna) {
|
|
if (f > 2100000000U) {
|
|
cv += float_TO_PURE_RSSI(+13);
|
|
} else {
|
|
cv += float_TO_PURE_RSSI( (float)f * 6.0 / 1000000000); // +6dBm at 1GHz
|
|
}
|
|
}
|
|
|
|
if (f > ULTRA_MAX_FREQ) {
|
|
cv += float_TO_PURE_RSSI(+4); // 4dB loss in harmonic mode
|
|
}
|
|
#endif
|
|
int i = 0;
|
|
while (f > config.correction_frequency[c][i] && i < CORRECTION_POINTS)
|
|
i++;
|
|
if (i >= CORRECTION_POINTS) {
|
|
cv += scaled_correction_value[c][CORRECTION_POINTS-1] >> (SCALE_FACTOR - 5);
|
|
goto done;
|
|
}
|
|
if (i == 0) {
|
|
cv += scaled_correction_value[c][0] >> (SCALE_FACTOR - 5);
|
|
goto done;
|
|
}
|
|
f = f - config.correction_frequency[c][i-1];
|
|
#if 0
|
|
freq_t m = (setting.correction_frequency[i] - setting.correction_frequency[i-1]) >> SCALE_FACTOR ;
|
|
float multi = (setting.correction_value[i] - setting.correction_value[i-1]) * (1 << (SCALE_FACTOR -1)) / (float)m;
|
|
float cv = setting.correction_value[i-1] + ((f >> SCALE_FACTOR) * multi) / (float)(1 << (SCALE_FACTOR -1)) ;
|
|
#else
|
|
int32_t scaled_f = f >> FREQ_SCALE_FACTOR;
|
|
int32_t scaled_f_divider = (config.correction_frequency[c][i] - config.correction_frequency[c][i-1]) >> FREQ_SCALE_FACTOR;
|
|
if (scaled_f_divider!=0)
|
|
cv += (scaled_correction_value[c][i-1] + ((scaled_f * scaled_correction_multi[c][i])/scaled_f_divider)) >> (SCALE_FACTOR - 5) ;
|
|
else
|
|
cv += scaled_correction_value[c][i-1] >> (SCALE_FACTOR - 5) ;
|
|
#endif
|
|
done:
|
|
return(cv);
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
|
|
|
|
float peakLevel;
|
|
float min_level;
|
|
freq_t peakFreq;
|
|
int peakIndex = 0;
|
|
float temppeakLevel;
|
|
uint16_t temppeakIndex;
|
|
// volatile int t;
|
|
|
|
void setup_sa(void)
|
|
{
|
|
#ifdef __SI4432__
|
|
SI4432_Init();
|
|
#endif
|
|
#ifdef TINYSA3
|
|
for (unsigned int i = 0; i < sizeof(old_freq)/sizeof(unsigned long) ; i++) {
|
|
old_freq[i] = 0;
|
|
real_old_freq[i] = 0;
|
|
}
|
|
#endif
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Transmit(0);
|
|
#endif
|
|
#ifdef __PE4302__
|
|
PE4302_init();
|
|
PE4302_Write_Byte(0);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx(); // Must be before ADF4351_setup!!!!
|
|
#endif
|
|
#ifdef TINYSA4
|
|
ADF4351_Setup();
|
|
enable_extra_lna(false);
|
|
#ifdef __ULTRA__
|
|
enable_ultra(false);
|
|
#endif
|
|
enable_rx_output(false);
|
|
enable_high(false);
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_direct(false);
|
|
#endif
|
|
fill_spur_table();
|
|
#endif
|
|
#if 0 // Measure fast scan time
|
|
setting.sweep_time_us = 0;
|
|
setting.additional_step_delay_us = 0;
|
|
START_PROFILE // measure 90 points to get overhead
|
|
SI4432_Fill(0,200);
|
|
int t1 = DELTA_TIME;
|
|
RESTART_PROFILE // measure 290 points to get real added time for 200 points
|
|
SI4432_Fill(0,0);
|
|
int t2 = DELTA_TIME;
|
|
int t = (t2 - t1) * 100 * (sweep_points) / 200; // And calculate real time excluding overhead for all points
|
|
#endif
|
|
}
|
|
|
|
#define __WIDE_OFFSET__
|
|
#ifdef __WIDE_OFFSET__
|
|
#define OFFSET_LOWER_BOUND -80000
|
|
#else
|
|
#define OFFSET_LOWER_BOUND 0
|
|
#endif
|
|
|
|
#ifdef TINYSA4
|
|
static int fast_counter = 0;
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
int old_drive = -1;
|
|
#endif
|
|
|
|
void set_freq(int V, freq_t freq) // translate the requested frequency into a setting of the SI4432
|
|
{
|
|
if (old_freq[V] == freq) // Do not change HW if not needed
|
|
return;
|
|
#ifdef __SI4432__
|
|
if (V <= 1) {
|
|
SI4432_Sel = V;
|
|
if (freq < 240000000 || freq > 960000000) { // Impossible frequency, simply ignore, should never happen.
|
|
real_old_freq[V] = freq + 1; // No idea why this is done........
|
|
return;
|
|
}
|
|
#if 1
|
|
if (V == 1 && setting.step_delay_mode == SD_FAST) { // If in extra fast scanning mode and NOT SI4432_RX !!!!!!
|
|
int delta = freq - real_old_freq[V];
|
|
|
|
if (real_old_freq[V] >= 480000000) // 480MHz, high band
|
|
delta = delta >> 1;
|
|
if (delta > OFFSET_LOWER_BOUND && delta < 79999) { // and requested frequency can be reached by using the offset registers
|
|
#if 0
|
|
if (real_old_freq[V] >= 480000000)
|
|
shell_printf("%d: Offs %q HW %d\r\n", SI4432_Sel, (freq_t)(real_old_freq[V]+delta*2), real_old_freq[V]);
|
|
else
|
|
shell_printf("%d: Offs %q HW %d\r\n", SI4432_Sel, (freq_t)(real_old_freq[V]+delta*1), real_old_freq[V]);
|
|
#endif
|
|
delta = delta * 4 / 625; // = 156.25; // Calculate and set the offset register i.s.o programming a new frequency
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, (uint8_t)(delta & 0xff), (uint8_t)((delta >> 8) & 0x03));
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, (uint8_t)((delta >> 8) & 0x03));
|
|
SI4432_offset_changed = true; // Signal offset changed so RSSI retrieval is delayed for frequency settling
|
|
old_freq[V] = freq;
|
|
} else {
|
|
#ifdef __WIDE_OFFSET__
|
|
freq_t target_f; // Impossible to use offset so set SI4432 to new frequency
|
|
if (freq < real_old_freq[V]) { // sweeping down
|
|
if (freq - 80000 >= 480000000) {
|
|
target_f = freq - 160000;
|
|
} else {
|
|
target_f = freq - 80000;
|
|
}
|
|
SI4432_Set_Frequency(target_f);
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0xff, 0x01); // set offset to most positive
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0x01);
|
|
real_old_freq[V] = target_f;
|
|
} else { // sweeping up
|
|
if (freq + 80000 >= 480000000) {
|
|
target_f = freq + 160000;
|
|
} else {
|
|
target_f = freq + 80000;
|
|
}
|
|
if (target_f > 960000000)
|
|
target_f = 960000000;
|
|
SI4432_Set_Frequency(target_f);
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0, 0x02); // set offset to most negative
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0x02);
|
|
real_old_freq[V] = target_f;
|
|
}
|
|
#else
|
|
SI4432_Set_Frequency(freq); // Impossible to use offset so set SI4432 to new frequency
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0, 0); // set offset to zero
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0);
|
|
real_old_freq[V] = freq;
|
|
#endif
|
|
}
|
|
} else {
|
|
#endif
|
|
SI4432_Set_Frequency(freq); // Not in fast mode
|
|
real_old_freq[V] = freq;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef TINYSA4
|
|
if (V==ADF4351_LO){
|
|
#if 0
|
|
if (setting.step_delay_mode == SD_FAST) { // If in fast scanning mode and NOT SI4432_RX !!!!!!
|
|
int delta = - (freq - real_old_freq[V]); // delta grows with increasing freq
|
|
if (setting.frequency_step < 100000 && 0 < delta && delta < 100000) {
|
|
SI4463_start_rx(delta / setting.frequency_step); // with increasing delta, set smaller offset
|
|
freq = 0;
|
|
} else {
|
|
SI4463_start_rx(0 / setting.frequency_step); // Start at maximum positive offset
|
|
}
|
|
}
|
|
#endif
|
|
if (freq) {
|
|
// ----------------------------- set mixer drive --------------------------------------------
|
|
int target_drive = setting.lo_drive;
|
|
if (target_drive & 0x04){ // Automatic mixer drive
|
|
if (freq-970000000 < 600000000ULL) // below 100MHz
|
|
target_drive = 0;
|
|
else if (freq-970000000 < 1200000000ULL) // below 1.2GHz
|
|
target_drive = 1;
|
|
else if (freq-970000000 < 2000000000ULL) // below 3GHz
|
|
target_drive = 2;
|
|
else
|
|
target_drive = 3;
|
|
}
|
|
if (old_drive != target_drive) {
|
|
ADF4351_drive(target_drive); // Max drive
|
|
old_drive = target_drive;
|
|
}
|
|
|
|
real_old_freq[V] = ADF4351_set_frequency(V-ADF4351_LO,freq);
|
|
}
|
|
} else if (V==ADF4351_LO2) {
|
|
real_old_freq[V] = ADF4351_set_frequency(V-ADF4351_LO, freq);
|
|
} else if (V==SI4463_RX) {
|
|
if (setting.step_delay_mode == SD_FAST && fast_counter++ < 100 && real_old_freq[V] != 0) { // If in extra fast scanning mode and NOT SI4432_RX !!!!!!
|
|
long delta = (long)freq - (long)real_old_freq[V];
|
|
#define OFFSET_STEP 14.30555 // 30MHz
|
|
//#define OFFSET_STEP 12.3981
|
|
#define OFFSET_RANGE 937500 // Hz
|
|
real_offset = delta;
|
|
if (real_old_freq[V] >= 480000000) // 480MHz, high band
|
|
delta = delta >> 1;
|
|
delta = ((float)delta) / OFFSET_STEP; // Calculate and set the offset register i.s.o programming a new frequency
|
|
if (delta > - 0x7fff && delta < 0x7fff) { // and requested frequency can be reached by using the offset registers
|
|
static int old_delta = 0x20000;
|
|
if (old_delta != delta) {
|
|
si_set_offset(delta); // Signal offset changed so RSSI retrieval is delayed for frequency settling
|
|
old_delta = delta;
|
|
}
|
|
goto done;
|
|
}
|
|
}
|
|
fast_counter = 0; // Offset tuning not possible
|
|
real_offset = 0;
|
|
real_old_freq[V] = SI4463_set_freq(freq); // Not in fast mode
|
|
}
|
|
done:
|
|
#endif
|
|
old_freq[V] = freq;
|
|
}
|
|
|
|
#ifdef __SI4432__
|
|
void set_switch_transmit(void) {
|
|
SI4432_Write_2_Byte(SI4432_GPIO0_CONF, 0x1f, 0x1d);// Set switch to transmit
|
|
// SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1d);
|
|
}
|
|
|
|
void set_switch_receive(void) {
|
|
SI4432_Write_2_Byte(SI4432_GPIO0_CONF, 0x1d, 0x1f);// Set switch to receive
|
|
// SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1f);
|
|
}
|
|
|
|
void set_switch_off(void) {
|
|
SI4432_Write_2_Byte(SI4432_GPIO0_CONF, 0x1d, 0x1f);// Set both switch off
|
|
// SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1f);
|
|
}
|
|
|
|
#endif
|
|
|
|
void set_switches(int m)
|
|
{
|
|
#ifdef __SI4432__
|
|
SI4432_Init();
|
|
old_freq[0] = 0;
|
|
old_freq[1] = 0;
|
|
real_old_freq[0] = 0;
|
|
real_old_freq[1] = 0;
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0, 0); // Back to nominal offset
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0);
|
|
#endif
|
|
switch(m) {
|
|
case M_LOW: // Mixed into 0
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
if (setting.atten_step) { // use switch as attenuator
|
|
set_switch_transmit();
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx(); // Must be before ADF4351_setup!!!!
|
|
if (setting.atten_step) {// use switch as attenuator
|
|
enable_rx_output(true);
|
|
} else {
|
|
enable_rx_output(false);
|
|
}
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_direct(false);
|
|
#endif
|
|
#endif
|
|
set_AGC_LNA();
|
|
#ifdef TINYSA4
|
|
ADF4351_enable(true);
|
|
ADF4351_enable_aux_out(setting.tracking_output);
|
|
ADF4351_enable_out(true);
|
|
#endif
|
|
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.tracking_output)
|
|
set_switch_transmit();
|
|
else
|
|
set_switch_off();
|
|
// SI4432_Receive(); For noise testing only
|
|
SI4432_Transmit(setting.lo_drive);
|
|
// set_calibration_freq(setting.refer);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
enable_high(false);
|
|
enable_extra_lna(setting.extra_lna);
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
enable_ultra(false);
|
|
#endif
|
|
break;
|
|
case M_HIGH: // Direct into 1
|
|
mute:
|
|
#ifdef __SI4432__
|
|
// set_calibration_freq(-1); // Stop reference output
|
|
SI4432_Sel = SI4432_RX ; // both as receiver to avoid spurs
|
|
set_switch_receive();
|
|
SI4432_Receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Receive();
|
|
if (setting.atten_step) {// use switch as attenuator
|
|
set_switch_transmit();
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx();
|
|
#endif
|
|
set_AGC_LNA();
|
|
#ifdef TINYSA4
|
|
ADF4351_enable_aux_out(false);
|
|
ADF4351_enable_out(false);
|
|
ADF4351_enable(false);
|
|
if (setting.atten_step) {// use switch as attenuator
|
|
enable_rx_output(true);
|
|
} else {
|
|
enable_rx_output(false);
|
|
}
|
|
enable_high(true);
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_direct(false);
|
|
#endif
|
|
enable_extra_lna(false);
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
enable_ultra(false);
|
|
#endif
|
|
break;
|
|
case M_GENLOW: // Mixed output from 0
|
|
if (setting.mute)
|
|
goto mute;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
if (setting.atten_step) { // use switch as attenuator
|
|
set_switch_off();
|
|
} else {
|
|
set_switch_transmit();
|
|
}
|
|
SI4432_Transmit(setting.rx_drive);
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.modulation == MO_EXTERNAL) {
|
|
set_switch_transmit(); // High input for external LO scuh as tracking output of other tinySA
|
|
SI4432_Receive();
|
|
} else {
|
|
set_switch_off();
|
|
SI4432_Transmit(12); // Fix LO drive a 10dBm
|
|
}
|
|
#endif
|
|
#ifdef __SI4468__
|
|
SI4463_init_tx();
|
|
#endif
|
|
#ifdef TINYSA4
|
|
ADF4351_enable_out(true);
|
|
ADF4351_enable(true);
|
|
ADF4351_enable_aux_out(setting.tracking_output);
|
|
|
|
if (setting.atten_step) { // use switch as attenuator
|
|
enable_rx_output(false);
|
|
} else {
|
|
enable_rx_output(true);
|
|
}
|
|
SI4463_set_output_level(setting.rx_drive);
|
|
enable_high(false);
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_direct(false);
|
|
#endif
|
|
enable_extra_lna(false);
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
enable_ultra(false);
|
|
#endif
|
|
break;
|
|
case M_GENHIGH: // Direct output from 1
|
|
if (setting.mute)
|
|
goto mute;
|
|
#ifdef TINYSA4
|
|
enable_high(true); // Must be first to protect SAW filters
|
|
enable_extra_lna(false);
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
enable_ultra(false);
|
|
#endif
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
set_switch_receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.lo_drive < 8) {
|
|
set_switch_off(); // use switch as attenuator
|
|
} else {
|
|
set_switch_transmit();
|
|
}
|
|
SI4432_Transmit(setting.lo_drive);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
if (config.high_out_adf4350) {
|
|
#ifdef __SI4468__
|
|
SI4463_init_rx();
|
|
enable_rx_output(true); // to protect the SI
|
|
#endif
|
|
ADF4351_enable(true);
|
|
#ifndef TINYSA4_PROTO
|
|
ADF4351_enable_aux_out(false);
|
|
ADF4351_enable_out(true);
|
|
#else
|
|
ADF4351_enable_aux_out(true);
|
|
ADF4351_enable_out(true); // Must be enabled to have aux output
|
|
#endif
|
|
ADF4351_aux_drive(setting.lo_drive);
|
|
enable_extra_lna(false);
|
|
enable_ultra(true); // Open low output
|
|
} else {
|
|
ADF4351_enable_aux_out(false);
|
|
ADF4351_enable_out(false);
|
|
#ifdef __SI4468__
|
|
SI4463_set_output_level(setting.lo_drive); // Must be before init_tx
|
|
SI4463_init_tx();
|
|
// if (setting.lo_drive < 32) {
|
|
// enable_rx_output(false); // use switch as attenuator
|
|
// } else {
|
|
enable_rx_output(true);
|
|
// }
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void update_rbw(void) // calculate the actual_rbw and the vbwSteps (# steps in between needed if frequency step is largen than maximum rbw)
|
|
{
|
|
vbwSteps = 1; // starting number for all modes
|
|
if (!MODE_INPUT(setting.mode)) {
|
|
actual_rbw_x10 = 1; // To force substepping of the SI4463
|
|
#ifdef TINYSA4
|
|
goto done;
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
frequency_step_x10 = 3000; // default value for zero span
|
|
if (setting.frequency_step > 0) {
|
|
frequency_step_x10 = (setting.frequency_step)/100;
|
|
}
|
|
|
|
freq_t temp_actual_rbw_x10 = setting.rbw_x10;
|
|
if (temp_actual_rbw_x10 == 0) { // if auto rbw
|
|
|
|
if (setting.step_delay_mode==SD_FAST) { // if in fast scanning
|
|
temp_actual_rbw_x10 = frequency_step_x10;
|
|
} else if (setting.step_delay_mode==SD_PRECISE) {
|
|
temp_actual_rbw_x10 = 4*frequency_step_x10;
|
|
} else {
|
|
temp_actual_rbw_x10 = 2*frequency_step_x10;
|
|
}
|
|
}
|
|
#ifdef __SI4432__
|
|
if (temp_actual_rbw_x10 < 26)
|
|
temp_actual_rbw_x10 = 26;
|
|
if (temp_actual_rbw_x10 > 6000)
|
|
temp_actual_rbw_x10 = 6000;
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (temp_actual_rbw_x10 < 1)
|
|
temp_actual_rbw_x10 = 1;
|
|
if (temp_actual_rbw_x10 > 8500)
|
|
temp_actual_rbw_x10 = 8500;
|
|
#endif
|
|
actual_rbw_x10 = temp_actual_rbw_x10; // Now it fits in 16 bit
|
|
|
|
#ifdef __SI4432__
|
|
if (S_STATE(setting.spur_removal) && actual_rbw_x10 > 3000)
|
|
actual_rbw_x10 = 2500; // if spur suppression reduce max rbw to fit within BPF
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
// Not needed
|
|
#endif
|
|
|
|
actual_rbw_x10 = set_rbw(actual_rbw_x10); // see what rbw the be can realized
|
|
|
|
|
|
if (setting.frequency_step > 0) {
|
|
freq_t target_frequency_step_x10;
|
|
|
|
if (setting.step_delay_mode==SD_FAST || setting.step_delay_mode==SD_NOISE_SOURCE) {
|
|
target_frequency_step_x10 = frequency_step_x10;
|
|
} else if (setting.step_delay_mode==SD_PRECISE) {
|
|
target_frequency_step_x10 = 4*frequency_step_x10;
|
|
} else {
|
|
target_frequency_step_x10 = 2*frequency_step_x10;
|
|
}
|
|
|
|
if (target_frequency_step_x10 > actual_rbw_x10 && !(setting.step_delay_mode==SD_NOISE_SOURCE)) { // RBW too small
|
|
vbwSteps = (target_frequency_step_x10 + actual_rbw_x10 - 1) / actual_rbw_x10; //((int)(2 * (frequency_step_x10 + (actual_rbw_x10/8)) / actual_rbw_x10)); // calculate # steps in between each frequency step due to rbw being less than frequency step
|
|
if (vbwSteps<1)
|
|
vbwSteps = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
done:
|
|
fill_spur_table(); // IF frequency depends on selected RBW
|
|
#endif
|
|
}
|
|
|
|
//#ifdef TINYSA4
|
|
//#define frequency_seatch_gate 60 // 120% of the RBW
|
|
//#else
|
|
//#define frequency_seatch_gate 100 // 200% of the RBW
|
|
//#endif
|
|
|
|
int binary_search_frequency(freq_t f) // Search which index in the frequency tabled matches with frequency f using actual_rbw
|
|
{
|
|
int L = 0;
|
|
int frequency_seatch_gate = (getFrequency(1) - getFrequency(0)) >> 1;
|
|
if (f < getFrequency(0))
|
|
return -1;
|
|
if (f > getFrequency(sweep_points-1))
|
|
return -1;
|
|
// int R = (sizeof frequencies)/sizeof(int) - 1;
|
|
int R = sweep_points - 1;
|
|
freq_t fmin = f - frequency_seatch_gate; // actual_rbw_x10 * frequency_seatch_gate;
|
|
freq_t fplus = f + frequency_seatch_gate; // actual_rbw_x10 * frequency_seatch_gate;
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
freq_t f = getFrequency(m);
|
|
if (f < fmin)
|
|
L = m + 1;
|
|
else if (f > fplus)
|
|
R = m - 1;
|
|
else
|
|
return m; // index is m
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int index_of_frequency(freq_t f) // Search which index in the frequency tabled matches with frequency f using actual_rbw
|
|
{
|
|
freq_t f_step = getFrequency(1) - getFrequency(0);
|
|
if (f_step == 0)
|
|
return 0;
|
|
if (f < getFrequency(0))
|
|
return -1;
|
|
if (f > getFrequency(sweep_points-1))
|
|
return -1;
|
|
int i = ((f - getFrequency(0) ) + (f_step >> 1)) / f_step;
|
|
return i;
|
|
#if 0
|
|
// int R = (sizeof frequencies)/sizeof(int) - 1;
|
|
int L = 0;
|
|
int R = sweep_points - 1;
|
|
freq_t fmin = f - frequency_seatch_gate; // actual_rbw_x10 * frequency_seatch_gate;
|
|
freq_t fplus = f + frequency_seatch_gate; // actual_rbw_x10 * frequency_seatch_gate;
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
freq_t f = getFrequency(m);
|
|
if (f < fmin)
|
|
L = m + 1;
|
|
else if (f > fplus)
|
|
R = m - 1;
|
|
else
|
|
return m; // index is m
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
void interpolate_maximum(int m)
|
|
{
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
const int idx = markers[m].index;
|
|
markers[m].frequency = getFrequency(idx);
|
|
if (idx > 0 && idx < sweep_points-1)
|
|
{
|
|
const int32_t delta_Hz = (int64_t)getFrequency(idx + 0) - getFrequency(idx + 1);
|
|
#ifdef TINYSA4
|
|
#define INTER_TYPE double
|
|
#else
|
|
#define INTER_TYPE float
|
|
#endif
|
|
const INTER_TYPE y1 = ref_marker_levels[idx - 1];
|
|
const INTER_TYPE y2 = ref_marker_levels[idx + 0];
|
|
const INTER_TYPE y3 = ref_marker_levels[idx + 1];
|
|
const INTER_TYPE d = abs(delta_Hz) * 0.5 * (y1 - y3) / ((y1 - (2 * y2) + y3) + 1e-12);
|
|
//const float bin = (float)idx + d;
|
|
markers[m].frequency += d;
|
|
}
|
|
}
|
|
|
|
#define MAX_MAX MARKER_COUNT
|
|
int
|
|
search_maximum(int m, freq_t center, int span)
|
|
{
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
#ifdef TINYSA4
|
|
int center_index = index_of_frequency(center);
|
|
#else
|
|
int center_index = binary_search_frequency(center);
|
|
#endif
|
|
if (center_index < 0)
|
|
return false;
|
|
int from = center_index - span/2;
|
|
int found = false;
|
|
int to = center_index + span/2;
|
|
int cur_max = 0; // Always at least one maximum
|
|
int max_index[MAX_MAX];
|
|
if (from<0)
|
|
from = 0;
|
|
if (to > setting._sweep_points-1)
|
|
to = setting._sweep_points-1;
|
|
temppeakIndex = 0;
|
|
temppeakLevel = ref_marker_levels[from];
|
|
max_index[cur_max] = from;
|
|
int downslope = true;
|
|
|
|
for (int i = from; i <= to; i++) {
|
|
if (downslope) {
|
|
if (temppeakLevel > ref_marker_levels[i]) { // Follow down
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = ref_marker_levels[i];
|
|
} else if (temppeakLevel + setting.noise < ref_marker_levels[i]) { // Local minimum found
|
|
temppeakIndex = i; // This is now the latest maximum
|
|
temppeakLevel = ref_marker_levels[i];
|
|
downslope = false;
|
|
}
|
|
} else {
|
|
if (temppeakLevel < ref_marker_levels[i]) { // Follow up
|
|
temppeakIndex = i;
|
|
temppeakLevel = ref_marker_levels[i];
|
|
} else if (temppeakLevel - setting.noise > ref_marker_levels[i]) { // Local max found
|
|
|
|
found = true;
|
|
int j = 0; // Insertion index
|
|
while (j<cur_max && ref_marker_levels[max_index[j]] >= temppeakLevel) // Find where to insert
|
|
j++;
|
|
if (j < MAX_MAX) { // Larger then one of the previous found
|
|
int k = MAX_MAX-1;
|
|
while (k > j) { // Shift to make room for max
|
|
max_index[k] = max_index[k-1];
|
|
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
|
|
k--;
|
|
}
|
|
max_index[j] = temppeakIndex;
|
|
// maxlevel_index[j] = ref_marker_levels[temppeakIndex]; // Only for debugging
|
|
if (cur_max < MAX_MAX) {
|
|
cur_max++;
|
|
}
|
|
//STOP_PROFILE
|
|
}
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = ref_marker_levels[i];
|
|
|
|
downslope = true;
|
|
}
|
|
}
|
|
}
|
|
if (false && !found) {
|
|
temppeakIndex = from;
|
|
temppeakLevel = ref_marker_levels[from];
|
|
for (int i = from+1; i <= to; i++) {
|
|
if (temppeakLevel<ref_marker_levels[i])
|
|
temppeakIndex = i;
|
|
}
|
|
found = true;
|
|
}
|
|
markers[m].index = max_index[0];
|
|
interpolate_maximum(m);
|
|
// markers[m].frequency = frequencies[markers[m].index];
|
|
return found;
|
|
}
|
|
|
|
//static int spur_old_stepdelay = 0;
|
|
#ifdef TINYSA3
|
|
static const unsigned int spur_IF = DEFAULT_IF; // The IF frequency for which the spur table is value
|
|
static const unsigned int spur_alternate_IF = DEFAULT_SPUR_IF; // if the frequency is found in the spur table use this IF frequency
|
|
static const freq_t spur_table[] = // Frequencies to avoid
|
|
{
|
|
// 580000, // 433.8 MHz table
|
|
// 880000, //?
|
|
960000,
|
|
// 1487000, //?
|
|
1600000,
|
|
// 1837000, // Real signal
|
|
// 2755000, // Real signal
|
|
// 2760000,
|
|
2960000,
|
|
4933000,
|
|
4960000,
|
|
6960000,
|
|
// 6980000,
|
|
8267000,
|
|
8960000,
|
|
// 10000000,
|
|
10960000,
|
|
11600000,
|
|
12960000,
|
|
14933000,
|
|
14960000,
|
|
16960000,
|
|
18960000,
|
|
21600000,
|
|
|
|
// 22960000,
|
|
24960000,
|
|
28960000,
|
|
// 29800000,
|
|
31600000,
|
|
34960000,
|
|
33930000,
|
|
// 38105000,
|
|
40960000,
|
|
41600000,
|
|
49650000,
|
|
272400000,
|
|
287950000,
|
|
// 288029520,
|
|
332494215,
|
|
};
|
|
const int spur_table_size = (sizeof spur_table)/sizeof(freq_t);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
#define STATIC_SPUR_TABLE_SIZE 55
|
|
static const freq_t static_spur_table[STATIC_SPUR_TABLE_SIZE] = // Valid for IF=977.4MHz
|
|
{
|
|
5233000,
|
|
6300000,
|
|
16483000,
|
|
16783000,
|
|
21300000,
|
|
26134000,
|
|
36300000,
|
|
41134000,
|
|
51300000,
|
|
66000000,
|
|
66300000,
|
|
70800000,
|
|
72000000,
|
|
78000000,
|
|
85200000,
|
|
101134000,
|
|
113134000,
|
|
114000000,
|
|
115200000,
|
|
243881127,
|
|
471300000,
|
|
487762254,
|
|
501300000,
|
|
508800000,
|
|
650974672,
|
|
688800000,
|
|
699667000,
|
|
702865000,
|
|
703094000,
|
|
703465000,
|
|
706616000,
|
|
707216000,
|
|
708667000,
|
|
710366000,
|
|
710966000,
|
|
711667000,
|
|
711667000,
|
|
714115000,
|
|
714668000,
|
|
718465000,
|
|
718800000,
|
|
721616000,
|
|
722216000,
|
|
726300000,
|
|
729715000,
|
|
732865000,
|
|
738667000,
|
|
740366000,
|
|
740966000,
|
|
741667000,
|
|
747865000,
|
|
756667000,
|
|
759116000,
|
|
793465000,
|
|
797216000,
|
|
};
|
|
|
|
#define MAX_DYNAMIC_SPUR_TABLE_SIZE 100
|
|
static freq_t dynamic_spur_table[MAX_DYNAMIC_SPUR_TABLE_SIZE]; // Frequencies to be calculated
|
|
static int dynamic_spur_table_size = 0;
|
|
static int always_use_dynamic_table = false;
|
|
|
|
static freq_t *spur_table = (freq_t *)static_spur_table;
|
|
int spur_table_size = STATIC_SPUR_TABLE_SIZE;
|
|
|
|
#endif
|
|
|
|
int binary_search(freq_t f)
|
|
{
|
|
int L = 0;
|
|
int R = spur_table_size - 1;
|
|
freq_t fmin = f - spur_gate;
|
|
freq_t fplus = f + spur_gate;
|
|
#if 0
|
|
freq_t fmin = f - actual_rbw_x10 * (100 / 2);
|
|
freq_t fplus = f + actual_rbw_x10 * (100 / 2);
|
|
#endif
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
if (spur_table[m] < fmin)
|
|
L = m + 1;
|
|
else if (spur_table[m] > fplus)
|
|
R = m - 1;
|
|
else
|
|
return true; // index is m
|
|
}
|
|
#ifdef TINYSA4
|
|
#if 0
|
|
if (!setting.auto_IF && setting.frequency_IF-2000000 < f && f < setting.frequency_IF -200000)
|
|
return true;
|
|
if(config.frequency_IF1+200000 > f && config.frequency_IF1 < f+200000)
|
|
return true;
|
|
if(4*config.frequency_IF1 > fmin && 4*config.frequency_IF1 < fplus)
|
|
return true;
|
|
#endif
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
//static const uint8_t spur_div[] = {3, 3, 5, 2, 3, 4}; // 4/1 removed
|
|
//static const uint8_t spur_mul[] = {1, 1, 2, 1, 2, 3};
|
|
//#define IF_OFFSET 468750*4 //
|
|
|
|
#define RBW_FOR_STATIC_TABLE 1100
|
|
|
|
#define SPUR_FACTOR 937746
|
|
void fill_spur_table(void)
|
|
{
|
|
freq_t corr_IF;
|
|
|
|
if (always_use_dynamic_table) {
|
|
spur_table = dynamic_spur_table;
|
|
spur_table_size = dynamic_spur_table_size;
|
|
return;
|
|
}
|
|
if (actual_rbw_x10 < RBW_FOR_STATIC_TABLE) { // if less then 1100kHz use static table
|
|
spur_table = (freq_t *)static_spur_table;
|
|
spur_table_size = STATIC_SPUR_TABLE_SIZE;
|
|
return;
|
|
}
|
|
if (!setting.auto_IF)
|
|
corr_IF = setting.frequency_IF;
|
|
else {
|
|
corr_IF = config.frequency_IF1;
|
|
}
|
|
dynamic_spur_table_size = 0;
|
|
dynamic_spur_table[dynamic_spur_table_size++] = corr_IF/4 -SPUR_FACTOR/2;
|
|
dynamic_spur_table[dynamic_spur_table_size++] = corr_IF/2 -SPUR_FACTOR;
|
|
dynamic_spur_table[dynamic_spur_table_size++] = corr_IF*2/3 -SPUR_FACTOR*2/3;
|
|
spur_table = dynamic_spur_table;
|
|
spur_table_size = dynamic_spur_table_size;
|
|
#if 0
|
|
return; // TODO remove spur table updating.
|
|
for (i=0; i < sizeof(spur_div)/sizeof(uint8_t); i++)
|
|
{
|
|
|
|
if (!setting.auto_IF)
|
|
corr_IF = setting.frequency_IF;
|
|
else {
|
|
corr_IF = config.frequency_IF1 - DEFAULT_SPUR_OFFSET/2;
|
|
setting.frequency_IF = corr_IF;
|
|
}
|
|
if (i != 5) // <------------------- Index of the 3/2 entry in the spur tables
|
|
corr_IF -= IF_OFFSET;
|
|
else
|
|
corr_IF -= IF_OFFSET/2;
|
|
|
|
freq_t target = (corr_IF * (uint64_t)spur_mul[i] ) / (uint64_t) spur_div[i];
|
|
// volatile uint64_t actual_freq = ADF4351_set_frequency(0, target + config.frequency_IF1);
|
|
// volatile uint64_t delta = target + (uint64_t) config.frequency_IF1 - actual_freq ;
|
|
// volatile uint64_t spur = target - delta;
|
|
// spur_table[i] = spur;
|
|
if (i==1) // <---------------------------------index of a 3/1 entry
|
|
spur_table[i] = target - IF_OFFSET / 12;
|
|
else if (i == 2) // <---------------------------------index of a 3/1 entry
|
|
spur_table[i] = target + IF_OFFSET / 12;
|
|
else
|
|
spur_table[i] = target;
|
|
}
|
|
if (!setting.auto_IF)
|
|
corr_IF = setting.frequency_IF;
|
|
else {
|
|
corr_IF = config.frequency_IF1 - DEFAULT_SPUR_OFFSET/2;
|
|
}
|
|
spur_table[i++] = corr_IF - IF_OFFSET*3/2;
|
|
spur_table[i++] = corr_IF*2 - IF_OFFSET;
|
|
spur_table_size = i;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
enum {F_NOSPUR = 0, F_NEAR_SPUR = 1, F_AT_SPUR = 2};
|
|
|
|
int avoid_spur(freq_t f) // find if this frequency should be avoided
|
|
{
|
|
if (in_selftest)
|
|
return F_NOSPUR;
|
|
// int window = ((int)actual_rbw ) * 1000*2;
|
|
// if (window < 50000)
|
|
// window = 50000;
|
|
#ifdef TINYSA4
|
|
if (setting.mode != M_LOW /* || !setting.auto_IF */)
|
|
return(F_NOSPUR);
|
|
#else
|
|
if (setting.mode != M_LOW || !setting.auto_IF || actual_rbw_x10 > 3000)
|
|
return(F_NOSPUR);
|
|
#endif
|
|
int L = 0;
|
|
int R = spur_table_size - 1;
|
|
#ifdef TINYSA4
|
|
freq_t fmin = f - spur_gate; //*8;
|
|
freq_t fplus = f + spur_gate; //*8;
|
|
#else
|
|
freq_t fmin = f - spur_gate;
|
|
freq_t fplus = f + spur_gate;
|
|
#endif
|
|
#if 0
|
|
freq_t fmin = f - actual_rbw_x10 * (100 / 2);
|
|
freq_t fplus = f + actual_rbw_x10 * (100 / 2);
|
|
#endif
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
if (spur_table[m] < fmin)
|
|
L = m + 1;
|
|
else if (spur_table[m] > fplus)
|
|
R = m - 1;
|
|
else
|
|
{
|
|
#if 0
|
|
#ifdef TINYSA4
|
|
int w = ((unsigned int)m >= sizeof(spur_div)/sizeof(uint8_t) ? 3 : 1);
|
|
fmin = f - spur_gate*w;
|
|
fplus = f + spur_gate*w;
|
|
if (spur_table[m] < fmin || spur_table[m] > fplus)
|
|
return F_NEAR_SPUR; // index is m
|
|
else
|
|
#endif
|
|
#endif
|
|
return F_AT_SPUR;
|
|
}
|
|
}
|
|
#ifdef TINYSA4
|
|
#if 1
|
|
if (!setting.auto_IF && setting.frequency_IF-2000000 < f && f < setting.frequency_IF -200000)
|
|
return true;
|
|
if(config.frequency_IF1+200000 > f && config.frequency_IF1 < f+200000)
|
|
return F_AT_SPUR;
|
|
#endif
|
|
if(4*config.frequency_IF1 > fmin && 4*config.frequency_IF1 < fplus)
|
|
return F_AT_SPUR;
|
|
#endif
|
|
return F_NOSPUR;
|
|
}
|
|
|
|
static int modulation_counter = 0;
|
|
|
|
#define MODULATION_STEPS 8
|
|
static const int am_modulation[MODULATION_STEPS] = { 5, 1, 0, 1, 5, 9, 11, 9 }; // AM modulation
|
|
|
|
#ifdef TINYSA3
|
|
//
|
|
// Offset is 156.25Hz when below 600MHz and 312.5 when above.
|
|
//
|
|
#define LND 16 // Total NFM deviation is LND * 4 * 156.25 = 5kHz when below 600MHz or 600MHz - 434MHz
|
|
#define HND 8
|
|
#define LWD 96 // Total WFM deviation is LWD * 4 * 156.25 = 30kHz when below 600MHz
|
|
#define HWD 48
|
|
#endif
|
|
#ifdef TINYSA4
|
|
//
|
|
// Offset is 14.4Hz when below 600MHz and 28.8 when above.
|
|
//
|
|
#define LND 96
|
|
#define HND 48
|
|
#define LWD 512
|
|
#define HWD 256
|
|
#endif
|
|
|
|
#define S1 1.5
|
|
static const int fm_modulation[4][MODULATION_STEPS] = // Avoid sign changes in NFM
|
|
{
|
|
{ 2*LND,(int)( (2+S1)*LND ), 4*LND, (int)((2+S1)*LND), 2*LND, (int)((2-S1)*LND), 0, (int)((2-S1)*LND)}, // Low range, NFM
|
|
{ 0*LWD,(int)( S1*LWD ), 2*LWD, (int)(S1*LWD), 0*LWD, (int)(-S1*LWD), (int)-2*LWD, (int)(-S1*LWD)}, // Low range, WFM
|
|
{ 2*HND,(int)( 3.5*HND ), 4*HND, (int)(3.5*HND), 2*HND, (int)(0.5*HND), 0, (int)(0.5*HND)}, // High range, NFM
|
|
{ 0*HWD,(int)( 1.5*HWD ), 2*HWD, (int)(1.5*HWD), 0*HWD, (int)(-1.5*HWD), (int)-2*HWD, (int)(-1.5*HWD)}, // HIgh range, WFM
|
|
}; // narrow FM modulation avoid sign changes
|
|
|
|
#undef S1
|
|
static const int fm_modulation_offset[4] =
|
|
{
|
|
#ifdef TINYSA4
|
|
5000, //85000,
|
|
0, //80000,
|
|
-2700, //165000,
|
|
0, //160000
|
|
#else
|
|
85000,
|
|
80000,
|
|
165000,
|
|
160000
|
|
#endif
|
|
};
|
|
|
|
|
|
deviceRSSI_t age[POINTS_COUNT]; // Array used for 1: calculating the age of any max and 2: buffer for fast sweep RSSI values;
|
|
|
|
static pureRSSI_t correct_RSSI;
|
|
static pureRSSI_t correct_RSSI_freq;
|
|
systime_t start_of_sweep_timestamp;
|
|
static systime_t sweep_elapsed = 0; // Time since first start of sweeping, used only for auto attenuate
|
|
uint8_t signal_is_AM = false;
|
|
static uint8_t check_for_AM = false;
|
|
static int is_below = false;
|
|
#ifdef TINYSA4
|
|
static int LO_shifted;
|
|
static int LO_mirrored;
|
|
static int LO_shifting;
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
static int LO_harmonic;
|
|
#endif
|
|
|
|
static void calculate_static_correction(void) // Calculate the static part of the RSSI correction
|
|
{
|
|
correct_RSSI =
|
|
#ifdef __SI4432__
|
|
getSI4432_RSSI_correction()
|
|
#endif
|
|
#ifdef __SI4463__
|
|
getSI4463_RSSI_correction()
|
|
#endif
|
|
- get_signal_path_loss()
|
|
+ float_TO_PURE_RSSI(
|
|
+ get_level_offset()
|
|
+ get_attenuation()
|
|
#ifdef TINYSA4
|
|
- (S_STATE(setting.agc)? 0 : 33)
|
|
- (S_STATE(setting.lna)? 12 : 0)
|
|
+ (setting.extra_lna ? -26.5 : 0) // checked
|
|
+ (setting.mode == M_GENLOW ? (Si446x_get_temp() - 35.0) / 13.0 : 0) // About 7.7dB per 10 degrees C
|
|
#endif
|
|
- setting.external_gain);
|
|
}
|
|
|
|
int hsical = -1;
|
|
void clock_above_48MHz(void)
|
|
{
|
|
if (hsical == -1)
|
|
hsical = (RCC->CR & 0xff00) >> 8;
|
|
if (hsical != -1) {
|
|
RCC->CR &= RCC_CR_HSICAL;
|
|
RCC->CR |= ( (hsical) << 8 );
|
|
RCC->CR &= RCC_CR_HSITRIM | RCC_CR_HSION; /* CR Reset value. */
|
|
RCC->CR |= RCC_CR_HSITRIM_4 | RCC_CR_HSITRIM_0 | RCC_CR_HSITRIM_1;
|
|
}
|
|
}
|
|
|
|
void clock_below_48MHz(void)
|
|
{
|
|
if (hsical == -1)
|
|
hsical = ( (RCC->CR & 0xff00) >> 8 );
|
|
if (hsical != -1) {
|
|
RCC->CR &= RCC_CR_HSICAL;
|
|
RCC->CR |= ( (hsical) << 8 );
|
|
RCC->CR &= RCC_CR_HSITRIM | RCC_CR_HSION; /* CR Reset value. */
|
|
RCC->CR |= RCC_CR_HSITRIM_2 | RCC_CR_HSITRIM_3;
|
|
}
|
|
}
|
|
|
|
void clock_at_48MHz(void)
|
|
{
|
|
if (hsical == -1)
|
|
hsical = ( (RCC->CR & 0xff00) >> 8 );
|
|
if (hsical != -1) {
|
|
RCC->CR &= RCC_CR_HSICAL;
|
|
RCC->CR |= ( (hsical) << 8 );
|
|
RCC->CR &= RCC_CR_HSITRIM | RCC_CR_HSION; /* CR Reset value. */
|
|
RCC->CR |= RCC_CR_HSITRIM_4;
|
|
}
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
int test_output = false;
|
|
int test_output_switch = false;
|
|
int test_output_drive = 0;
|
|
int test_output_attenuate = 0;
|
|
bool level_error = false;
|
|
static float old_temp = 0.0;
|
|
#endif
|
|
|
|
|
|
pureRSSI_t perform(bool break_on_operation, int i, freq_t f, int tracking) // Measure the RSSI for one frequency, used from sweep and other measurement routines. Must do all HW setup
|
|
{
|
|
int modulation_delay = 0;
|
|
int modulation_index = 0;
|
|
int modulation_count_iter = 0;
|
|
int spur_second_pass = false;
|
|
#ifdef __NEW_SWITCHES__
|
|
int direct = ((setting.mode == M_LOW && config.direct && f > DIRECT_START && f<DIRECT_STOP) || (setting.mode == M_GENLOW && f > config.ultra_threshold) );
|
|
#else
|
|
const int direct = false;
|
|
#endif
|
|
#ifdef TINYSA4
|
|
if (i == 0 && old_temp != Si446x_get_temp()) {
|
|
old_temp = Si446x_get_temp();
|
|
calculate_static_correction(); // In case temperature changed.
|
|
}
|
|
#endif
|
|
if (i == 0 && dirty ) { // if first point in scan and dirty
|
|
#ifdef __ADF4351__
|
|
clear_frequency_cache();
|
|
#endif
|
|
calculate_correction(); // pre-calculate correction factor dividers to avoid float division
|
|
limits_update();
|
|
apply_settings();
|
|
old_a = -150; // clear cached level setting
|
|
// Initialize HW
|
|
scandirty = true; // This is the first pass with new settings
|
|
for (int t=0;t<TRACES_MAX;t++)
|
|
setting.scan_after_dirty[t] = 0;
|
|
dirty = false;
|
|
sweep_elapsed = chVTGetSystemTimeX(); // for measuring accumulated time
|
|
// Set for actual time pre calculated value (update after sweep)
|
|
setting.actual_sweep_time_us = calc_min_sweep_time_us();
|
|
// Change actual sweep time as user input if it greater minimum
|
|
// And set start delays for 1 run
|
|
// manually set delay, for better sync
|
|
if (setting.sweep_time_us < 2.5 * ONE_MS_TIME){
|
|
setting.additional_step_delay_us = 0;
|
|
setting.sweep_time_us = 0; // set minimum
|
|
}
|
|
else if (setting.sweep_time_us <= 3 * ONE_MS_TIME){
|
|
setting.additional_step_delay_us = 1;
|
|
setting.sweep_time_us = 3000;
|
|
}
|
|
else if (setting.sweep_time_us > setting.actual_sweep_time_us){
|
|
setting.additional_step_delay_us = (setting.sweep_time_us - setting.actual_sweep_time_us)/(sweep_points);
|
|
setting.actual_sweep_time_us = setting.sweep_time_us;
|
|
}
|
|
else{ // not add additional correction, apply recommend time
|
|
setting.additional_step_delay_us = 0;
|
|
// setting.sweep_time_us = setting.actual_sweep_time_us;
|
|
}
|
|
if (MODE_INPUT(setting.mode)) {
|
|
calculate_static_correction();
|
|
#ifdef __MCU_CLOCK_SHIFT__
|
|
if (!in_selftest) clock_above_48MHz();
|
|
is_below = false;
|
|
#endif
|
|
correct_RSSI_freq = get_frequency_correction(f); // for i == 0 and freq_step == 0;
|
|
#ifdef TINYSA4
|
|
// correct_RSSI_freq += float_TO_PURE_RSSI(direct ? +6.0 : 0); // TODO add impact of direct
|
|
#endif
|
|
|
|
} else {
|
|
#ifdef __MCU_CLOCK_SHIFT__
|
|
clock_at_48MHz();
|
|
#endif
|
|
}
|
|
// if (MODE_OUTPUT(setting.mode) && setting.additional_step_delay_us < 500) // Minimum wait time to prevent LO from lockup during output frequency sweep
|
|
// setting.additional_step_delay_us = 500;
|
|
// Update grid and status after
|
|
if (break_on_operation && MODE_INPUT(setting.mode)) { // during normal operation
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
if (FREQ_IS_CW()) { // if zero span mode
|
|
update_grid(); // and update grid and frequency
|
|
}
|
|
}
|
|
}
|
|
if (i == 0) {
|
|
for (int t=0;t<TRACES_MAX;t++)
|
|
setting.scan_after_dirty[t] += 1;
|
|
}
|
|
// --------------------------------- Pulse at start of low output sweep --------------------------
|
|
|
|
if ((setting.mode == M_GENLOW || (setting.pulse && setting.mode == M_LOW)) && ( setting.frequency_step != 0 || setting.level_sweep != 0.0)) {// pulse high out
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
#endif
|
|
if (i == 0) {
|
|
// set_switch_transmit();
|
|
#ifdef __SI4432__
|
|
SI4432_Write_Byte(SI4432_GPIO2_CONF, 0x1D) ; // Set GPIO2 output to high
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_set_gpio(0, SI446X_GPIO_MODE_DRIVE1);
|
|
#endif
|
|
} else if (i == 1) {
|
|
// set_switch_off();
|
|
#ifdef __SI4432__
|
|
SI4432_Write_Byte(SI4432_GPIO2_CONF, 0x1F) ; // Set GPIO2 output to ground
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_set_gpio(0, SI446X_GPIO_MODE_DRIVE0);
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef TINYSA4
|
|
#if 0 // moved to set_freq
|
|
// ----------------------------- set mixer drive --------------------------------------------
|
|
int target_drive = setting.lo_drive;
|
|
if (target_drive & 0x04){ // Automatic mixer drive
|
|
if (f < 100000000ULL) // below 100MHz
|
|
target_drive = 0;
|
|
else if (f < 2400000000ULL) // below 2.4GHz
|
|
target_drive = 1;
|
|
else if (f < 3000000000ULL) // below 3GHz
|
|
target_drive = 2;
|
|
else
|
|
target_drive = 3;
|
|
}
|
|
if (old_drive != target_drive) {
|
|
ADF4351_drive(target_drive); // Max drive
|
|
old_drive = target_drive;
|
|
}
|
|
#endif
|
|
#endif
|
|
#ifdef TINYSA3
|
|
#ifdef __ULTRA__
|
|
int target_drive = setting.lo_drive;
|
|
if (f > ULTRA_MAX_FREQ)
|
|
target_drive += 1;
|
|
if (old_drive != target_drive) {
|
|
SI4432_Drive(target_drive);
|
|
old_drive = target_drive;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// ------------------------------------- START Set the output level ----------------------------------
|
|
|
|
if (( setting.frequency_step != 0 || setting.level_sweep != 0.0 || i == 0)) { // Initialize or adapt output levels
|
|
if (setting.mode == M_GENLOW) {// if in low output mode and level sweep or frequency weep is active or at start of sweep
|
|
#ifdef TINYSA4
|
|
if (test_output) {
|
|
enable_rx_output(!test_output_switch);
|
|
SI4463_set_output_level(test_output_drive);
|
|
PE4302_Write_Byte(test_output_attenuate);
|
|
} else
|
|
#endif
|
|
{
|
|
float ls=setting.level_sweep; // calculate and set the output level
|
|
if (ls > 0)
|
|
ls += 0.5;
|
|
else
|
|
ls -= 0.5;
|
|
float a = ((int)((setting.level + ((float)i / sweep_points) * ls)*2.0)) / 2.0 /* + get_level_offset() */ ;
|
|
correct_RSSI_freq = get_frequency_correction(f); // No direct in output
|
|
a += PURE_TO_float(correct_RSSI_freq);
|
|
#ifdef TINYSA4
|
|
{
|
|
float dt = Si446x_get_temp() - CENTER_TEMPERATURE;
|
|
if (dt > 0)
|
|
a += dt * DB_PER_DEGREE_ABOVE; // Temperature correction
|
|
else
|
|
a += dt * DB_PER_DEGREE_BELOW; // Temperature correction
|
|
}
|
|
a += 3.0; // Always 3dB in attenuator
|
|
#endif
|
|
if (a != old_a) {
|
|
#ifdef TINYSA4
|
|
int very_low_flag = false;
|
|
#endif
|
|
old_a = a;
|
|
a = a - level_max(); // convert to all settings maximum power output equals a = zero
|
|
if (a < -SWITCH_ATTENUATION) {
|
|
a = a + SWITCH_ATTENUATION;
|
|
#ifdef TINYSA3
|
|
SI4432_Sel = SI4432_RX ;
|
|
set_switch_receive();
|
|
#else
|
|
enable_rx_output(false);
|
|
very_low_flag = true;
|
|
#endif
|
|
} else {
|
|
#ifdef TINYSA3
|
|
SI4432_Sel = SI4432_RX ;
|
|
set_switch_transmit();
|
|
#else
|
|
enable_rx_output(true);
|
|
|
|
#endif
|
|
}
|
|
#ifdef TINYSA4
|
|
#define LOWEST_LEVEL (very_low_flag ? 0 : MIN_DRIVE)
|
|
#else
|
|
#define LOWEST_LEVEL MIN_DRIVE
|
|
#endif
|
|
int d;
|
|
#ifdef TINYSA4
|
|
d = MAX_DRIVE-8; // Start in the middle
|
|
#else
|
|
d = MAX_DRIVE-3; // Start in the middle
|
|
#endif
|
|
|
|
while (a - BELOW_MAX_DRIVE(d) > 0 && d < MAX_DRIVE) { // Increase if needed
|
|
d++;
|
|
}
|
|
while (a - BELOW_MAX_DRIVE(d) < - 28 && d > LOWEST_LEVEL) { // reduce till it fits attenuator (31 - 3)
|
|
d--;
|
|
}
|
|
a -= BELOW_MAX_DRIVE(d);
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Drive(d);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_set_output_level(d);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
a -= 3.0; // Always at least 3dB attenuation
|
|
#endif
|
|
if (a > 0) {
|
|
a = 0;
|
|
#ifdef TINYSA4
|
|
if (!level_error) redraw_request |= REDRAW_CAL_STATUS;
|
|
level_error = true;
|
|
#endif
|
|
} else {
|
|
#ifdef TINYSA4
|
|
if (level_error) redraw_request |= REDRAW_CAL_STATUS;
|
|
level_error = false;
|
|
#endif
|
|
}
|
|
if (a < -31.5)
|
|
a = -31.5;
|
|
a = -a - 0.25; // Rounding
|
|
#ifdef __PE4302__
|
|
setting.attenuate_x2 = (int)(a * 2);
|
|
PE4302_Write_Byte(setting.attenuate_x2);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
else if (setting.mode == M_GENHIGH) {
|
|
#ifdef TINYSA4
|
|
if (test_output) {
|
|
enable_rx_output(!test_output_switch);
|
|
SI4463_set_output_level(test_output_drive);
|
|
} else
|
|
#endif
|
|
{
|
|
float a = setting.level - level_max();
|
|
#ifdef TINYSA4
|
|
if (!config.high_out_adf4350) {
|
|
float dt = Si446x_get_temp() - CENTER_TEMPERATURE;
|
|
if (dt > 0)
|
|
a += dt * DB_PER_DEGREE_ABOVE; // Temperature correction
|
|
else
|
|
a += dt * DB_PER_DEGREE_BELOW; // Temperature correction
|
|
}
|
|
#endif
|
|
if (a <= -SWITCH_ATTENUATION) {
|
|
setting.atten_step = true;
|
|
a = a + SWITCH_ATTENUATION;
|
|
#ifdef TINYSA3
|
|
SI4432_Sel = SI4432_LO ;
|
|
set_switch_receive();
|
|
#else
|
|
if (config.high_out_adf4350)
|
|
ADF4351_enable_aux_out(false);
|
|
else
|
|
enable_rx_output(false);
|
|
#endif
|
|
} else {
|
|
setting.atten_step = false;
|
|
#ifdef TINYSA3
|
|
SI4432_Sel = SI4432_LO ;
|
|
set_switch_transmit();
|
|
#else
|
|
if (config.high_out_adf4350)
|
|
ADF4351_enable_aux_out(true);
|
|
else
|
|
enable_rx_output(true);
|
|
#endif
|
|
}
|
|
|
|
unsigned int d = MIN_DRIVE;
|
|
while (drive_dBm[d] - level_max() < a && d < MAX_DRIVE) // Find level equal or above requested level
|
|
d++;
|
|
// if (d == 8 && v < -12) // Round towards closest level
|
|
// d = 7;
|
|
setting.level = drive_dBm[d] + config.high_level_output_offset - (setting.atten_step ? SWITCH_ATTENUATION : 0);
|
|
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Drive(d);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
if (config.high_out_adf4350)
|
|
ADF4351_aux_drive(d);
|
|
else
|
|
SI4463_set_output_level(d);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------- END Set the output level ----------------------------------
|
|
|
|
#ifdef __SI4432__
|
|
if (setting.mode == M_LOW && S_IS_AUTO(setting.agc) && !check_for_AM && UNIT_IS_LOG(setting.unit)) { // If in low input mode with auto AGC and log unit
|
|
if (f < 1500000)
|
|
auto_set_AGC_LNA(false, f*9/1500000);
|
|
else
|
|
auto_set_AGC_LNA(true, 0);
|
|
}
|
|
#endif
|
|
// Calculate the RSSI correction for later use
|
|
if (MODE_INPUT(setting.mode)){ // only cases where the value can change on 0 point of sweep
|
|
if (setting.frequency_step != 0) {
|
|
correct_RSSI_freq = get_frequency_correction(f);
|
|
#ifdef TINYSA4
|
|
// correct_RSSI_freq += float_TO_PURE_RSSI(direct ? -6.0 : 0); // TODO add impact of direct
|
|
#endif
|
|
}
|
|
}
|
|
// #define DEBUG_CORRECTION
|
|
#ifdef DEBUG_CORRECTION
|
|
if (SDU1.config->usbp->state == USB_ACTIVE) {
|
|
shell_printf ("%d:%Q %f\r\n", i, f, PURE_TO_float(correct_RSSI_freq));
|
|
osalThreadSleepMilliseconds(2);
|
|
}
|
|
#endif
|
|
|
|
|
|
// ----------------------------- Initiate modulation ---------------------------
|
|
|
|
int *current_fm_modulation = 0;
|
|
if (MODE_OUTPUT(setting.mode)) {
|
|
if (setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL && setting.modulation_frequency != 0) {
|
|
#ifdef TINYSA3
|
|
#define MO_FREQ_COR 65000
|
|
#else
|
|
#define MO_FREQ_COR 0
|
|
#endif
|
|
modulation_delay = ((1000000-MO_FREQ_COR)/ MODULATION_STEPS ) / setting.modulation_frequency; // 5 steps so 1MHz/5
|
|
modulation_counter = 0;
|
|
if (setting.modulation == MO_AM) // -14 default
|
|
modulation_delay += config.cor_am;
|
|
else { // must be FM
|
|
if (setting.modulation == MO_WFM) { // -17 default
|
|
modulation_delay += config.cor_wfm;
|
|
modulation_index = 1;
|
|
} else { // must be NFM
|
|
modulation_delay += config.cor_nfm; // -17 default
|
|
// modulation_index = 0; // default value
|
|
}
|
|
#ifdef TINYSA4
|
|
if ((setting.mode == M_GENLOW) ||
|
|
(setting.mode == M_GENHIGH && f > ((freq_t)480000000) ) )
|
|
#else
|
|
if ((setting.mode == M_GENLOW && f > ((freq_t)480000000) - DEFAULT_IF) ||
|
|
(setting.mode == M_GENHIGH && f > ((freq_t)480000000) ) )
|
|
#endif
|
|
modulation_index += 2;
|
|
current_fm_modulation = (int *)fm_modulation[modulation_index];
|
|
f -= fm_modulation_offset[modulation_index]; // Shift output frequency
|
|
}
|
|
}
|
|
}
|
|
modulation_again:
|
|
// ----------------------------------------------------- apply modulation for output modes ---------------------------------------
|
|
if (MODE_OUTPUT(setting.mode)){
|
|
if (setting.modulation == MO_AM) { // AM modulation
|
|
int p = setting.attenuate_x2 + am_modulation[modulation_counter];
|
|
if (p>63) p = 63;
|
|
else if (p< 0) p = 0;
|
|
#ifdef __PE4302__
|
|
PE4302_Write_Byte(p);
|
|
#endif
|
|
}
|
|
else if (current_fm_modulation) { // setting.modulation == MO_NFM || setting.modulation == MO_WFM //FM modulation
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
int offset = current_fm_modulation[modulation_counter];
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, (offset & 0xff ), ((offset >> 8) & 0x03 )); // Use frequency hopping channel for FM modulation
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, ); // Use frequency hopping channel for FM modulation
|
|
#endif
|
|
#ifdef __SI4468__
|
|
si_fm_offset(current_fm_modulation[modulation_counter]);
|
|
#endif
|
|
}
|
|
modulation_counter++;
|
|
if (modulation_counter == MODULATION_STEPS)
|
|
modulation_counter = 0;
|
|
if (setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL) {
|
|
my_microsecond_delay(modulation_delay);
|
|
}
|
|
}
|
|
#ifdef __ULTRA__
|
|
// -------------- set ultra or direct ---------------------------------
|
|
if (setting.mode == M_LOW || setting.mode == M_GENLOW) {
|
|
#ifdef __NEW_SWITCHES__
|
|
if (direct) {
|
|
enable_ultra(true);
|
|
enable_direct(true);
|
|
enable_high(true);
|
|
enable_ADF_output(false);
|
|
} else
|
|
#endif
|
|
{
|
|
enable_ADF_output(true);
|
|
if (ultra && f > ultra_threshold) {
|
|
enable_ultra(true);
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_direct(false);
|
|
enable_high(false);
|
|
#endif
|
|
} else {
|
|
enable_ultra(false);
|
|
#ifdef __NEW_SWITCHES__
|
|
enable_high(false);
|
|
enable_direct(false);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
// -------------------------------- Acquisition loop for one requested frequency covering spur avoidance and vbwsteps ------------------------
|
|
pureRSSI_t RSSI = float_TO_PURE_RSSI(-150);
|
|
if (debug_avoid){ // For debugging the spur avoidance control
|
|
stored_t[i] = -90.0; // Display when to do spur shift in the stored trace
|
|
}
|
|
int local_vbw_steps = vbwSteps;
|
|
freq_t local_IF;
|
|
#ifdef TINYSA4
|
|
local_IF = config.frequency_IF1;
|
|
if (setting.mode == M_LOW && setting.frequency_step > 0 && ultra &&
|
|
((f < ULTRA_MAX_FREQ && f > MAX_LO_FREQ - local_IF) ||
|
|
( f > ultra_threshold && f < MIN_BELOW_LO + local_IF))
|
|
) {
|
|
local_vbw_steps *= 2;
|
|
}
|
|
#endif
|
|
|
|
// -----------------------------------START vbwsteps loop ------------------------------------
|
|
int t = 0;
|
|
do {
|
|
freq_t lf = f;
|
|
if (local_vbw_steps > 1) { // Calculate sub steps
|
|
#ifdef TINYSA4
|
|
int offs_div10 = (t - (local_vbw_steps >> 1)) * 100; // steps of x10 * settings.
|
|
if ((local_vbw_steps & 1) == 0) // Uneven steps, center
|
|
offs_div10+= 50; // Even, shift half step
|
|
int offs = (offs_div10 * (int32_t)frequency_step_x10 )/ local_vbw_steps;
|
|
// if (setting.step_delay_mode == SD_PRECISE)
|
|
// offs>>=1; // steps of a quarter rbw
|
|
// if (lf > -offs) // No negative frequencies
|
|
if (offs >= 0 || lf > (unsigned int)(-offs))
|
|
lf += offs;
|
|
// if (lf > MAX_LO_FREQ)
|
|
// lf = 0;
|
|
#else
|
|
int offs_div10 = (t - (local_vbw_steps >> 1)) * 500 / 10; // steps of half the rbw
|
|
if ((local_vbw_steps & 1) == 0) // Uneven steps, center
|
|
offs_div10+= 250 / 10; // Even, shift half step
|
|
int offs = offs_div10 * actual_rbw_x10;
|
|
if (setting.step_delay_mode == SD_PRECISE)
|
|
offs>>=1; // steps of a quarter rbw
|
|
if (offs < 0 && ((freq_t)-offs) > lf)
|
|
lf = 0;
|
|
else
|
|
lf += offs;
|
|
#endif
|
|
}
|
|
// -------------- START Calculate the IF -----------------------------
|
|
|
|
if (/* MODE_INPUT(setting.mode) && */ i > 0 && FREQ_IS_CW()) // In input mode in zero span mode after first setting of the LO's
|
|
goto skip_LO_setting; // No more LO changes required, save some time and jump over the code
|
|
|
|
#ifdef __SPUR__
|
|
spur_second_pass = false;
|
|
again: // Spur reduction jumps to here for second measurement
|
|
#endif
|
|
|
|
local_IF=0; // For all high modes
|
|
#ifdef TINYSA4
|
|
LO_shifted = false;
|
|
LO_mirrored = false;
|
|
LO_shifting = false;
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
LO_harmonic = false;
|
|
#endif
|
|
if (MODE_LOW(setting.mode)){ // All low mode
|
|
if (!setting.auto_IF)
|
|
local_IF = setting.frequency_IF;
|
|
else
|
|
{
|
|
#ifdef TINYSA4
|
|
if (actual_rbw_x10 < RBW_FOR_STATIC_TABLE )
|
|
local_IF = 977400000; // static spur table IF
|
|
else
|
|
local_IF = config.frequency_IF1;
|
|
#if 0
|
|
if ( S_IS_AUTO(setting.below_IF)) {
|
|
// if (f < 2000000 && S_IS_AUTO(setting.spur_removal))
|
|
// local_IF += DEFAULT_SPUR_OFFSET;
|
|
// else // if (lf > ULTRA_MAX_FREQ || lf < local_IF/2 || ( lf + (uint64_t)local_IF< MAX_LO_FREQ && lf > 136000000ULL + local_IF) )
|
|
local_IF += DEFAULT_SPUR_OFFSET/2;
|
|
}
|
|
#endif
|
|
#else
|
|
local_IF = DEFAULT_IF;
|
|
#endif
|
|
}
|
|
if (setting.mode == M_LOW && !direct) {
|
|
if (tracking) { // VERY SPECIAL CASE!!!!! Measure BPF
|
|
#if 0 // Isolation test
|
|
local_IF = lf;
|
|
lf = 0;
|
|
#else
|
|
local_IF += lf - (setting.refer == -1 ? 0 : reffer_freq[setting.refer]); // Offset so fundamental of reffer is visible
|
|
lf = (setting.refer == -1 ? 0 : reffer_freq[setting.refer]);
|
|
#endif
|
|
} else {
|
|
#ifdef __ULTRA__
|
|
if (S_IS_AUTO(setting.spur_removal)) {
|
|
if (ultra && lf >= ultra_threshold) {
|
|
setting.spur_removal= S_AUTO_ON;
|
|
} else {
|
|
setting.spur_removal= S_AUTO_OFF;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
if (S_IS_AUTO(setting.below_IF)) {
|
|
if ((freq_t)lf + (freq_t)local_IF> MAX_LO_FREQ && lf < ULTRA_MAX_FREQ)
|
|
setting.below_IF = S_AUTO_ON; // Only way to reach this range.
|
|
else
|
|
setting.below_IF = S_AUTO_OFF; // default is above IF
|
|
}
|
|
#endif
|
|
if (S_STATE(setting.spur_removal)){ // If in low input mode and spur reduction is on
|
|
if (setting.below_IF == S_AUTO_OFF && // Auto and not yet in below IF
|
|
#ifdef TINYSA4
|
|
( lf > ULTRA_MAX_FREQ || lf < local_IF/2 || ( lf + (uint64_t)local_IF< MAX_LO_FREQ && lf > MIN_BELOW_LO + local_IF) )
|
|
#else
|
|
#ifdef __ULTRA__
|
|
( (lf > ULTRA_MAX_FREQ && (lf + local_IF) / setting.harmonic < MAX_LO_FREQ) || lf < local_IF - MIN_LO_FREQ || ( lf + (uint32_t)local_IF< MAX_LO_FREQ && lf > MIN_BELOW_LO + local_IF) )
|
|
#else
|
|
(lf < local_IF / 2 || lf > local_IF)
|
|
#endif
|
|
#endif
|
|
)
|
|
{ // below/above IF
|
|
if ((debug_avoid && debug_avoid_second) || spur_second_pass) {
|
|
setting.below_IF = S_AUTO_ON;
|
|
} else {
|
|
setting.below_IF = S_AUTO_OFF; // use below IF in second pass
|
|
}
|
|
}
|
|
else // if (setting.auto_IF)
|
|
{
|
|
#ifdef TINYSA4
|
|
LO_shifting = true;
|
|
#endif
|
|
if ((debug_avoid && debug_avoid_second) || spur_second_pass) {
|
|
#ifdef TINYSA4
|
|
local_IF = local_IF + DEFAULT_SPUR_OFFSET-(actual_rbw_x10 > 1000 ? 200000 : 0); // apply IF spur shift
|
|
LO_shifted = true;
|
|
} else {
|
|
local_IF = local_IF; // - (actual_rbw_x10 > 5000 ? 200000 : 0);// - DEFAULT_SPUR_OFFSET/2; // apply IF spur shift
|
|
}
|
|
#else
|
|
local_IF = local_IF + 500000; // apply IF spur shift
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
int spur_flag = avoid_spur(lf);
|
|
#ifdef TINYSA4
|
|
#if 0
|
|
if (debug_avoid) {
|
|
if (spur_flag == F_NEAR_SPUR) {
|
|
stored_t[i] = -70.0; // Display when to do spur shift in the stored trace
|
|
// local_IF -= DEFAULT_SPUR_OFFSET/2;
|
|
} else if (spur_flag == F_AT_SPUR){
|
|
stored_t[i] = -60.0;
|
|
// Display when to do spur shift in the stored trace
|
|
if (debug_avoid_second) {
|
|
if (S_IS_AUTO(setting.below_IF) && lf < local_IF/2 - 2000000) {
|
|
setting.below_IF = S_AUTO_ON;
|
|
local_IF = local_IF; // No spur removal and no spur, center in IF
|
|
} else if (setting.auto_IF) {
|
|
local_IF = local_IF + DEFAULT_SPUR_OFFSET/2;
|
|
// if (actual_rbw_x10 == 6000 )
|
|
// local_IF = local_IF + 50000;
|
|
LO_shifted = true;
|
|
}
|
|
}
|
|
} else {
|
|
stored_t[i] = -90.0; // Display when to do spur shift in the stored trace
|
|
}
|
|
} else
|
|
#endif
|
|
if(spur_flag) { // check if alternate IF is needed to avoid spur.
|
|
if (spur_flag == F_NEAR_SPUR) {
|
|
if (debug_avoid) stored_t[i] = -70.0; // Display when to do spur shift in the stored trace
|
|
|
|
// local_IF -= DEFAULT_SPUR_OFFSET/2;
|
|
} else if (spur_flag == F_AT_SPUR && (!debug_avoid || debug_avoid_second)) {
|
|
if (debug_avoid) stored_t[i] = -60.0; // Display when to do spur shift in the stored trace
|
|
#ifndef TINYSA4
|
|
if (S_IS_AUTO(setting.below_IF) && lf < local_IF/2 - 2000000) {
|
|
setting.below_IF = S_AUTO_ON;
|
|
local_IF = local_IF; // No spur removal and no spur, center in IF
|
|
} else
|
|
#endif
|
|
if (setting.auto_IF) {
|
|
local_IF = local_IF + (actual_rbw_x10 > 2000 ? DEFAULT_SPUR_OFFSET : DEFAULT_SPUR_OFFSET/2); // TODO find better way to shift spur away at large RBW/2;
|
|
// if (actual_rbw_x10 == 6000 )
|
|
// local_IF = local_IF + 50000;
|
|
LO_shifted = true;
|
|
}
|
|
} else
|
|
{
|
|
if (debug_avoid) stored_t[i] = -90.0; // Display when to do spur shift in the stored trace
|
|
}
|
|
}
|
|
#else
|
|
if(spur_flag) { // check if alternate IF is needed to avoid spur.
|
|
local_IF = spur_alternate_IF;
|
|
if (debug_avoid){ // For debugging the spur avoidance control
|
|
stored_t[i] = -60.0; // Display when to do spur shift in the stored trace
|
|
}
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
#ifdef TINYSA4
|
|
// local_IF = local_IF - 800000 + actual_rbw_x10*100; // No spure removal and no spur, center in IF but avoid mirror
|
|
#else
|
|
local_IF = local_IF; // + DEFAULT_SPUR_OFFSET/2; // No spure removal and no spur, center in IF
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
} else { // Output mode
|
|
if (setting.modulation == MO_EXTERNAL) // VERY SPECIAL CASE !!!!!! LO input via high port
|
|
local_IF += lf;
|
|
}
|
|
} // --------------- END IF calculation ------------------------
|
|
|
|
// ------------- Set LO ---------------------------
|
|
|
|
{ // Else set LO ('s)
|
|
freq_t target_f;
|
|
#ifdef TINYSA4
|
|
int inverted_f = false;
|
|
#endif
|
|
if (setting.mode == M_LOW && !direct && !setting.tracking && S_STATE(setting.below_IF)) { // if in low input mode and below IF
|
|
#ifdef __ULTRA__
|
|
if (lf < local_IF)
|
|
#endif
|
|
target_f = local_IF-lf; // set LO SI4432 to below IF frequency
|
|
#ifdef __ULTRA__
|
|
else {
|
|
target_f = lf - local_IF; // set LO SI4432 to below IF frequency
|
|
#ifdef TINYSA4
|
|
inverted_f = true;
|
|
LO_mirrored = true;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
target_f = local_IF+lf; // otherwise to above IF, local_IF == 0 in high mode
|
|
#ifdef __SI4432__
|
|
#ifdef __HARMONIC__
|
|
#ifdef TINYSA3
|
|
if (setting.harmonic) {
|
|
if (spur_second_pass) {
|
|
if (setting.harmonic == 2)
|
|
target_f /= setting.harmonic+1;
|
|
else
|
|
target_f /= setting.harmonic+2;
|
|
}
|
|
else
|
|
target_f /= setting.harmonic;
|
|
}
|
|
#endif
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
if (setting.harmonic && lf > ULTRA_MAX_FREQ) {
|
|
target_f /= setting.harmonic;
|
|
#ifdef TINYSA3
|
|
if (target_f > MAX_LO_FREQ) {
|
|
target_f = (lf - local_IF) / setting.harmonic;
|
|
}
|
|
#endif
|
|
LO_harmonic = true;
|
|
}
|
|
#endif
|
|
set_freq (SI4432_LO, target_f); // otherwise to above IF
|
|
#endif
|
|
|
|
// ----------------------------- START Calculate and set the AD4351 frequency and set the RX frequency --------------------------------
|
|
|
|
#ifdef __ADF4351__
|
|
// START_PROFILE;
|
|
if (MODE_LOW(setting.mode) &&!direct) {
|
|
if (config.frequency_IF2 != 0) {
|
|
set_freq (ADF4351_LO2, config.frequency_IF2 - local_IF); // Down from IF2 to fixed second IF in Ultra SA mode
|
|
local_IF = config.frequency_IF2;
|
|
}
|
|
|
|
#if 1
|
|
#define TCXO 30000000
|
|
#define TXCO_DIV3 10000000
|
|
|
|
#ifdef __SI5351__
|
|
if (si5351_available) {
|
|
if (setting.R == 0) {
|
|
setting.increased_R = false;
|
|
if (setting.mode == M_GENLOW) {
|
|
if (local_modulo == 0) ADF4351_modulo(1000);
|
|
ADF4350_shift_ref(false);
|
|
ADF4351_R_counter(3);
|
|
} else if (lf > 8000000 && MODE_INPUT(setting.mode)) {
|
|
if (local_modulo == 0) ADF4351_modulo(4000);
|
|
|
|
freq_t tf = ((lf + actual_rbw_x10*200) / TXCO_DIV3) * TXCO_DIV3;
|
|
if (tf + actual_rbw_x10*200 >= lf && tf < lf + actual_rbw_x10*200 && actual_rbw_x10 < 300) { // 10MHz
|
|
ADF4350_shift_ref(true);
|
|
} else {
|
|
ADF4350_shift_ref(false);
|
|
}
|
|
}
|
|
if (get_sweep_frequency(ST_SPAN)<5000000) { // When scanning less then 5MHz
|
|
if (actual_rbw_x10 <= 3000) {
|
|
setting.increased_R = true;
|
|
freq_t tf = ((lf + actual_rbw_x10*1000) / TXCO_DIV3) * TXCO_DIV3;
|
|
if (tf + actual_rbw_x10*100 >= lf && tf < lf + actual_rbw_x10*100) // 10MHz
|
|
ADF4351_R_counter(4); // To avoid PLL Loop shoulders at multiple of 10MHz
|
|
else
|
|
ADF4351_R_counter(3); // To avoid PLL Loop shoulders
|
|
} else
|
|
ADF4351_R_counter(1);
|
|
} else
|
|
ADF4351_R_counter(1);
|
|
|
|
} else {
|
|
freq_t tf = ((lf + actual_rbw_x10*200) / TXCO_DIV3) * TXCO_DIV3;
|
|
if (tf + actual_rbw_x10*200 >= lf && tf < lf + actual_rbw_x10*200 && actual_rbw_x10 < 300) { // 30MHz
|
|
ADF4350_shift_ref(true);
|
|
} else {
|
|
ADF4350_shift_ref(false);
|
|
}
|
|
ADF4351_R_counter(setting.R);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
if (setting.R == 0) {
|
|
setting.increased_R = false;
|
|
if (setting.mode == M_GENLOW) {
|
|
if (local_modulo == 0) ADF4351_modulo(1000);
|
|
ADF4351_R_counter(3);
|
|
} else if (lf > 8000000 && lf < 1000000000 && MODE_INPUT(setting.mode)) {
|
|
if (local_modulo == 0) ADF4351_modulo(4000);
|
|
|
|
freq_t tf = ((lf + actual_rbw_x10*200) / TCXO) * TCXO;
|
|
if (tf + actual_rbw_x10*200 >= lf && tf < lf + actual_rbw_x10*200 && tf != 180000000) { // 30MHz
|
|
if ( (tf / TCXO) & 1 ) { // Odd harmonic of 30MHz
|
|
ADF4351_R_counter(-3);
|
|
}
|
|
else
|
|
ADF4351_R_counter(4);
|
|
} else {
|
|
#if 0
|
|
if (actual_rbw_x10 < 1000) {
|
|
freq_t tf = ((lf + actual_rbw_x10*1000) / TXCO_DIV3) * TXCO_DIV3;
|
|
if (tf + actual_rbw_x10*100 >= lf && tf < lf + actual_rbw_x10*100) // 10MHz
|
|
setting.increased_R = true;
|
|
ADF4351_R_counter(4);
|
|
else
|
|
setting.increased_R = true;
|
|
ADF4351_R_counter(3);
|
|
} else
|
|
#endif
|
|
if (get_sweep_frequency(ST_SPAN)<5000000) { // When scanning less then 5MHz
|
|
if (actual_rbw_x10 <= 3000) {
|
|
setting.increased_R = true;
|
|
freq_t tf = ((lf + actual_rbw_x10*1000) / TXCO_DIV3) * TXCO_DIV3;
|
|
if (tf + actual_rbw_x10*100 >= lf && tf < lf + actual_rbw_x10*100) // 10MHz
|
|
ADF4351_R_counter(4); // To avoid PLL Loop shoulders at multiple of 10MHz
|
|
else
|
|
ADF4351_R_counter(3); // To avoid PLL Loop shoulders
|
|
} else
|
|
ADF4351_R_counter(1);
|
|
} else
|
|
ADF4351_R_counter(1);
|
|
}
|
|
} else { // Input above 800 MHz
|
|
if (local_modulo == 0) {
|
|
// if (actual_rbw_x10 >= 3000)
|
|
ADF4351_modulo(4000);
|
|
// else
|
|
// ADF4351_modulo(60);
|
|
}
|
|
#if 0
|
|
if (setting.frequency_step < 100000) {
|
|
setting.increased_R = true;
|
|
ADF4351_R_counter(3);
|
|
} else
|
|
#endif
|
|
ADF4351_R_counter(1); // Used to be 1
|
|
}
|
|
} else {
|
|
ADF4351_R_counter(setting.R);
|
|
}
|
|
}
|
|
#endif // __ADF4351__
|
|
#if 0
|
|
freq_t target_f;
|
|
if (!setting.tracking && S_STATE(setting.below_IF)) { // if in low input mode and below IF
|
|
if (lf > local_IF + 138000000)
|
|
target_f = lf - local_IF; // set LO SI4432 to below IF frequency
|
|
else
|
|
target_f = local_IF-lf; // set LO SI4432 to below IF frequency
|
|
} else
|
|
target_f = local_IF+lf; // otherwise to above IF
|
|
#endif
|
|
if (setting.harmonic && lf > ULTRA_MAX_FREQ) {
|
|
target_f /= setting.harmonic;
|
|
LO_harmonic = true;
|
|
}
|
|
set_freq(ADF4351_LO, target_f);
|
|
#if 1 // Compensate frequency ADF4350 error with SI4468
|
|
if (actual_rbw_x10 < 10000 || setting.frequency_step < 100000) { //TODO always compensate for the moment as this eliminates artifacts at larger RBW
|
|
int32_t error_f = 0;
|
|
if (real_old_freq[ADF4351_LO] > target_f) {
|
|
error_f = real_old_freq[ADF4351_LO] - target_f;
|
|
|
|
if (inverted_f) {
|
|
error_f = -error_f;
|
|
goto correct_min;
|
|
}
|
|
correct_plus:
|
|
if (setting.harmonic && lf > ULTRA_MAX_FREQ) {
|
|
error_f *= setting.harmonic;
|
|
}
|
|
if (error_f > actual_rbw_x10 * 5) //RBW / 4
|
|
local_IF += error_f;
|
|
} else if ( real_old_freq[ADF4351_LO] < target_f) {
|
|
error_f = real_old_freq[ADF4351_LO] - target_f;
|
|
if (inverted_f) {
|
|
error_f = -error_f;
|
|
goto correct_plus;
|
|
}
|
|
correct_min:
|
|
if (setting.harmonic && lf > ULTRA_MAX_FREQ) {
|
|
error_f *= setting.harmonic;
|
|
}
|
|
if ( error_f < - actual_rbw_x10 * 5) //RBW / 4
|
|
local_IF += error_f;
|
|
}
|
|
}
|
|
#endif
|
|
} else if (setting.mode == M_HIGH || direct) {
|
|
set_freq (SI4463_RX, lf); // sweep RX, local_IF = 0 in high mode
|
|
local_IF = 0;
|
|
} else if (setting.mode == M_GENHIGH) {
|
|
if (config.high_out_adf4350) {
|
|
set_freq (ADF4351_LO, lf); // sweep LO, local_IF = 0 in high mode
|
|
local_IF = 0;
|
|
} else {
|
|
set_freq (SI4463_RX, lf); // sweep RX, local_IF = 0 in high mode
|
|
local_IF = 0;
|
|
}
|
|
}
|
|
// ----------------------------- END Calculate and set the AD4351 frequency and set the RX frequency --------------------------------
|
|
|
|
// STOP_PROFILE;
|
|
#endif
|
|
} // ----------------- LO's set --------------------------
|
|
|
|
#ifdef __MCU_CLOCK_SHIFT__
|
|
if (setting.mode == M_LOW && !in_selftest) { // Avoid 48MHz spur
|
|
int set_below = false;
|
|
#ifdef TINYSA4
|
|
if (lf < 40000000) {
|
|
uint32_t tf = lf;
|
|
while (tf > 4000000) tf -= 4000000;
|
|
if (tf < 2000000 )
|
|
set_below = true;
|
|
} else
|
|
#endif
|
|
if (lf > 40000000){
|
|
uint32_t tf = lf;
|
|
while (tf > 240000000) tf -= 240000000; // Wrap between 0-48MHz
|
|
while (tf > 48000000) tf -= 48000000; // Wrap between 0-48MHz
|
|
if (tf < 20000000 )
|
|
set_below = true;
|
|
}
|
|
if (set_below) { // If below 48MHz
|
|
if (!is_below) {
|
|
clock_below_48MHz();
|
|
is_below = true;
|
|
}
|
|
} else {
|
|
if (is_below) {
|
|
clock_above_48MHz();
|
|
is_below = false;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// ----------- Set IF ------------------
|
|
|
|
if (local_IF != 0) // When not in one of the high modes and not in direct mode
|
|
{
|
|
#ifdef __SI4432__
|
|
set_freq (SI4432_RX , local_IF);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
set_freq (SI4463_RX, local_IF); // including compensating ADF error with SI446x when not in tracking mode
|
|
#endif
|
|
}
|
|
|
|
if (MODE_OUTPUT(setting.mode)) {
|
|
#ifdef __SI4432__
|
|
my_microsecond_delay(200); // To prevent lockup of SI4432
|
|
#endif
|
|
}
|
|
#ifdef TINYSA4
|
|
if (debug_frequencies ) {
|
|
|
|
freq_t mult = (LO_harmonic ? 3 : 1);
|
|
freq_t f_low, f_high;
|
|
if (setting.mode == M_LOW || setting.mode == M_GENLOW) {
|
|
if (real_old_freq[ADF4351_LO] > (real_old_freq[SI4463_RX] + real_offset))
|
|
f_low = (mult*real_old_freq[ADF4351_LO]) - (real_old_freq[SI4463_RX] + real_offset); // lf below LO
|
|
else
|
|
f_low = (real_old_freq[SI4463_RX] + real_offset) - (mult*real_old_freq[ADF4351_LO]);
|
|
f_high = (mult*real_old_freq[ADF4351_LO]) + (real_old_freq[SI4463_RX] + real_offset); // lf above LO
|
|
} else
|
|
f_low = f_high = real_old_freq[SI4463_RX] + real_offset;
|
|
float f_error_low, f_error_high;
|
|
float freq = getFrequency(i);
|
|
if (setting.frequency_step == 0) {
|
|
f_error_low = (freq - f_low);
|
|
f_error_high = (f_high - freq);
|
|
} else {
|
|
f_error_low = (f_low - freq)/setting.frequency_step;
|
|
f_error_high = (f_high- freq)/setting.frequency_step;
|
|
}
|
|
char spur = ' ';
|
|
int delta=0;
|
|
freq_t f = (LO_mirrored ? f_high : f_low);
|
|
if ( f * 4 < real_old_freq[SI4463_RX] + real_offset) {
|
|
delta = real_old_freq[SI4463_RX] + real_offset - 4*f;
|
|
if (delta < actual_rbw_x10*100)
|
|
spur = '!';
|
|
} else {
|
|
delta = 4*f - real_old_freq[SI4463_RX] + real_offset;
|
|
if (delta < actual_rbw_x10*100)
|
|
spur = '!';
|
|
}
|
|
char shifted = ( LO_shifted ? '>' : ' ');
|
|
if (SDU1.config->usbp->state == USB_ACTIVE)
|
|
shell_printf ("%d:%c%c%c%cLO=%11.6Lq:%11.6Lq\tIF=%11.6Lq:%11.6Lq\tOF=%11.6d\tF=%11.6Lq:%11.6Lq\tD=%.2f:%.2f %c%c%c\r\n",
|
|
i, spur, shifted,(LO_mirrored ? 'm' : ' '), (LO_harmonic ? 'h':' ' ),
|
|
old_freq[ADF4351_LO],real_old_freq[ADF4351_LO],
|
|
old_freq[SI4463_RX], real_old_freq[SI4463_RX], (int32_t)real_offset, f_low, f_high , f_error_low, f_error_high,
|
|
(ADF4351_frequency_changed? 'A' : ' '),
|
|
(SI4463_frequency_changed? 'S' : ' '),
|
|
(SI4463_offset_changed? 'O' : ' ')
|
|
);
|
|
osalThreadSleepMilliseconds(100);
|
|
}
|
|
#endif
|
|
// ------------------------- end of processing when in output mode ------------------------------------------------
|
|
|
|
skip_LO_setting:
|
|
if (i == 0 && t == 0) // if first point in scan (here is get 1 point data)
|
|
start_of_sweep_timestamp = chVTGetSystemTimeX(); // initialize start sweep time
|
|
|
|
if (MODE_OUTPUT(setting.mode)) { // No substepping and no RSSI in output mode
|
|
if (break_on_operation && operation_requested) // break subscanning if requested
|
|
return(0); // abort
|
|
if ( i==1 && MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL) { // if in output mode with modulation and LO setup done
|
|
// i = 1; // Everything set so skip LO setting
|
|
#define MODULATION_CYCLES_TEST 10000
|
|
if (in_selftest && modulation_count_iter++ >= 10000) {
|
|
start_of_sweep_timestamp = sa_ST2US(chVTGetSystemTimeX() - start_of_sweep_timestamp)*MODULATION_STEPS/MODULATION_CYCLES_TEST; // uS per cycle
|
|
return 0;
|
|
}
|
|
goto modulation_again; // Keep repeating sweep loop till user aborts by input
|
|
}
|
|
return(0);
|
|
}
|
|
// ---------------- Prepare RSSI ----------------------
|
|
|
|
// jump here if in zero span mode and all HW frequency setup is done.
|
|
|
|
#ifdef __FAST_SWEEP__
|
|
#ifdef __SI4432__
|
|
if (i == 0 && setting.frequency_step == 0 && setting.trigger == T_AUTO && S_STATE(setting.spur_removal) == 0 && SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME) {
|
|
// if ultra fast scanning is needed prefill the SI4432 RSSI read buffer
|
|
SI4432_Fill(MODE_SELECT(setting.mode), 0);
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (i == 0 && setting.frequency_step == 0 && setting.trigger == T_AUTO && S_STATE(setting.spur_removal) == 0 && SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME && setting.exp_aver == 1) {
|
|
SI446x_Fill(MODE_SELECT(setting.mode), -1); // First get_RSSI will fail
|
|
}
|
|
#endif
|
|
#endif
|
|
pureRSSI_t pureRSSI;
|
|
// if ( i < 3)
|
|
// shell_printf("%d %.3f %.3f %.1f\r\n", i, local_IF/1000000.0, lf/1000000.0, subRSSI);
|
|
|
|
// ************** trigger mode if need
|
|
#if 0
|
|
// trigger on measure 4 point
|
|
#define T_POINTS 4
|
|
#define T_LEVEL_UNDEF (1<<(16-T_POINTS)) // should drop after 4 shifts left
|
|
#define T_LEVEL_BELOW 1
|
|
#define T_LEVEL_ABOVE 0
|
|
// Trigger mask, should have width T_POINTS bit
|
|
#define T_DOWN_MASK (0b0011) // 2 from up 2 to bottom
|
|
#define T_UP_MASK (0b1100) // 2 from bottom 2 to up
|
|
#define T_LEVEL_CLEAN ~(1<<T_POINTS) // cleanup old trigger data
|
|
#else
|
|
// trigger on measure 2 point
|
|
#define T_POINTS 2
|
|
#define T_LEVEL_UNDEF (1<<(16-T_POINTS)) // should drop after 4 shifts left
|
|
#define T_LEVEL_BELOW 1
|
|
#define T_LEVEL_ABOVE 0
|
|
// Trigger mask, should have width T_POINTS bit
|
|
#define T_DOWN_MASK (0b0001) // 1 from up 1 to bottom
|
|
#define T_UP_MASK (0b0010) // 1 from bottom 1 to up
|
|
#define T_LEVEL_CLEAN ~(1<<T_POINTS) // cleanup old trigger data
|
|
#endif
|
|
|
|
if (i == 0 && setting.frequency_step == 0 && setting.trigger != T_AUTO) { // if in zero span mode and wait for trigger to happen and NOT in trigger mode
|
|
|
|
#ifdef TINYSA3
|
|
volatile uint8_t trigger_lvl = PURE_TO_DEVICE_RSSI((int16_t)((float_TO_PURE_RSSI(setting.trigger_level) - correct_RSSI - correct_RSSI_freq)));
|
|
SI4432_trigger_fill(MODE_SELECT(setting.mode), trigger_lvl, (setting.trigger_direction == T_UP), setting.trigger_mode);
|
|
#else
|
|
register uint16_t t_mode;
|
|
pureRSSI_t trigger_lvl;
|
|
uint16_t data_level = T_LEVEL_UNDEF;
|
|
// Calculate trigger level
|
|
trigger_lvl = float_TO_PURE_RSSI(setting.trigger_level) - correct_RSSI - correct_RSSI_freq;
|
|
|
|
if (setting.trigger_direction == T_UP)
|
|
t_mode = T_UP_MASK;
|
|
else
|
|
t_mode = T_DOWN_MASK;
|
|
uint32_t additional_delay = 0;// reduce noise
|
|
if (setting.sweep_time_us >= 100*ONE_MS_TIME) additional_delay = 20;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
#endif
|
|
do{ // wait for trigger to happen
|
|
#ifdef __SI4432__
|
|
pureRSSI = DEVICE_TO_PURE_RSSI((deviceRSSI_t)SI4432_Read_Byte(SI4432_REG_RSSI));
|
|
#endif
|
|
#ifdef __SI4463__
|
|
pureRSSI = Si446x_RSSI();
|
|
#endif
|
|
if (break_on_operation && operation_requested) // allow aborting a wait for trigger
|
|
goto abort; //return 0; // abort
|
|
// Store data level bitfield (remember only last 2 states)
|
|
// T_LEVEL_UNDEF mode bit drop after 2 shifts
|
|
data_level = ((data_level<<1) | (pureRSSI < trigger_lvl ? T_LEVEL_BELOW : T_LEVEL_ABOVE))&(T_LEVEL_CLEAN);
|
|
if (data_level == t_mode) // wait trigger
|
|
break;
|
|
if (additional_delay)
|
|
my_microsecond_delay(additional_delay);
|
|
}while(1);
|
|
#ifdef __FAST_SWEEP__
|
|
#ifdef __SI4432__
|
|
if (S_STATE(setting.spur_removal) == 0 && SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME) {
|
|
SI4432_Fill(MODE_SELECT(setting.mode), 1); // fast mode possible to pre-fill RSSI buffer
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (/* S_STATE(setting.spur_removal) == 0 && */ SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME) {
|
|
SI446x_Fill(MODE_SELECT(setting.mode), 1); // fast mode possible to pre-fill RSSI buffer
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|
|
if (setting.trigger == T_SINGLE) {
|
|
set_trigger(T_DONE);
|
|
}
|
|
start_of_sweep_timestamp = chVTGetSystemTimeX();
|
|
}
|
|
#ifdef TINYSA4
|
|
if (SI4432_step_delay && (ADF4351_frequency_changed || SI4463_frequency_changed)) {
|
|
int my_step_delay = SI4432_step_delay;
|
|
if (f < 2000000 && actual_rbw_x10 == 3 && !in_step_test)
|
|
my_step_delay = my_step_delay * 2;
|
|
// if (LO_shifted) // || SI4463_offset_changed)
|
|
// my_step_delay = my_step_delay * 2;
|
|
#if 0 // Always have some delay before measuring RSSI
|
|
if (old_R < 4 && actual_rbw_x10 >= 1000 && SI4463_frequency_changed && ADF4351_frequency_changed) {
|
|
my_step_delay -= 200; // compensate for additional delay of setting SI4463
|
|
if (my_step_delay < 0)
|
|
my_step_delay = 0;
|
|
}
|
|
#endif
|
|
if (!in_step_test) {
|
|
if (my_step_delay < 250) {
|
|
if ((134000000 < lf && lf <142000000) ||
|
|
(161400000 < lf && lf <163400000) ||
|
|
(182800000 < lf && lf <184800000) ||
|
|
(206000000 < lf && lf <207000000) )
|
|
my_step_delay = 300;
|
|
}
|
|
if (old_R >= 5) {
|
|
if (my_step_delay <500)
|
|
my_step_delay *= 6;
|
|
else if (my_step_delay <1000)
|
|
my_step_delay *= 4;
|
|
else
|
|
my_step_delay *= 2;
|
|
} else if (old_R == 4) {
|
|
if (my_step_delay <500)
|
|
my_step_delay *= 4;
|
|
else if (my_step_delay <1000)
|
|
my_step_delay *= 2;
|
|
else if (my_step_delay <10000)
|
|
my_step_delay += my_step_delay>>1;
|
|
} else if (old_R == 3) {
|
|
if (my_step_delay <500)
|
|
my_step_delay *= 3;
|
|
else if (my_step_delay <1000)
|
|
my_step_delay += my_step_delay>>2;
|
|
} else if (old_R <= -3) {
|
|
if (my_step_delay <1000)
|
|
my_step_delay += my_step_delay >> 1 ;
|
|
}
|
|
}
|
|
my_microsecond_delay(my_step_delay);
|
|
ADF4351_frequency_changed = false;
|
|
SI4463_frequency_changed = false;
|
|
SI4463_offset_changed = false;
|
|
} else if (SI4432_offset_delay && SI4463_offset_changed) {
|
|
my_microsecond_delay(SI4432_offset_delay);
|
|
SI4463_offset_changed = false;
|
|
}
|
|
#endif
|
|
|
|
//else
|
|
{
|
|
#ifdef __SI4432__
|
|
pureRSSI = SI4432_RSSI(lf, MODE_SELECT(setting.mode)); // Get RSSI, either from pre-filled buffer
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (real_old_freq[SI4463_RX] == 0)
|
|
pureRSSI = 0;
|
|
else
|
|
pureRSSI = Si446x_RSSI();
|
|
//#define __DEBUG_FREQUENCY_SETTING__
|
|
#ifdef __DEBUG_FREQUENCY_SETTING__ // For debugging the frequency calculation
|
|
stored_t[i] = -60.0 + (real_old_freq[ADF4351_LO] - f - old_freq[2])/10;
|
|
#endif
|
|
#endif
|
|
}
|
|
// if (pureRSSI < 400) {
|
|
// volatile int i = 0;
|
|
// i = i + 1;
|
|
// }
|
|
#ifdef __ULTRA__
|
|
float debug_rssi = PURE_TO_float(pureRSSI+ correct_RSSI + correct_RSSI_freq);
|
|
#endif
|
|
#ifdef __SPUR__
|
|
static pureRSSI_t spur_RSSI = -1; // Initialization only to avoid warning.
|
|
if ((setting.mode == M_LOW || setting.mode == M_HIGH) && S_STATE(setting.spur_removal) && !debug_avoid) {
|
|
if (!spur_second_pass) { // If first spur pass
|
|
#ifdef __ULTRA__
|
|
if (debug_spur) {
|
|
if (t == 0)
|
|
temp_t[i] = debug_rssi;
|
|
else if (temp_t[i] < debug_rssi)
|
|
temp_t[i] = debug_rssi;
|
|
}
|
|
#endif
|
|
spur_RSSI = pureRSSI; // remember measure RSSI
|
|
spur_second_pass = true;
|
|
goto again; // Skip all other processing
|
|
} else { // If second spur pass
|
|
#ifdef __ULTRA__
|
|
if (debug_spur) {
|
|
if (t == 0)
|
|
stored_t[i] = debug_rssi;
|
|
else if (stored_t[i] < debug_rssi)
|
|
stored_t[i] = debug_rssi;
|
|
}
|
|
#endif
|
|
pureRSSI = ( pureRSSI < spur_RSSI ? pureRSSI : spur_RSSI); // Take minimum of two
|
|
if (S_IS_AUTO(setting.below_IF))
|
|
setting.below_IF = S_AUTO_OFF; // make sure it is off for next pass
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef TINYSA4
|
|
if (LO_shifting)
|
|
pureRSSI -= float_TO_PURE_RSSI(config.shift_level_offset);
|
|
if (LO_harmonic)
|
|
pureRSSI -= float_TO_PURE_RSSI(config.harmonic_level_offset);
|
|
#endif
|
|
|
|
if (RSSI < pureRSSI) // Take max during subscanning
|
|
RSSI = pureRSSI;
|
|
t++; // one subscan done
|
|
if (break_on_operation && operation_requested) // break subscanning if requested
|
|
break; // abort
|
|
} while (t < local_vbw_steps); // till all sub steps done
|
|
#ifdef TINYSA4
|
|
// if (old_CFGR != orig_CFGR) { // Never happens ???
|
|
// old_CFGR = orig_CFGR;
|
|
// RCC->CFGR = orig_CFGR;
|
|
// }
|
|
#define IGNORE_RSSI 30000
|
|
// pureRSSI_t rssi = (RSSI>0 ? RSSI + correct_RSSI + correct_RSSI_freq : IGNORE_RSSI); // add correction
|
|
pureRSSI_t rssi;
|
|
if (setting.unit == U_RAW)
|
|
rssi = RSSI - float_TO_PURE_RSSI(120); // don't add correction;
|
|
else
|
|
rssi = RSSI + correct_RSSI + correct_RSSI_freq; // add correction
|
|
if (false) {
|
|
abort:
|
|
rssi = 0;
|
|
}
|
|
return rssi;
|
|
#else
|
|
return RSSI + correct_RSSI + correct_RSSI_freq; // add correction
|
|
#endif
|
|
|
|
}
|
|
|
|
static uint16_t max_index[MAX_MAX];
|
|
static uint16_t cur_max = 0;
|
|
|
|
static uint8_t low_count = 0;
|
|
static uint8_t sweep_counter = 0; // Only used for HW refresh
|
|
|
|
// main loop for measurement
|
|
static bool sweep(bool break_on_operation)
|
|
{
|
|
float RSSI;
|
|
float local_peakLevel = -150.0;
|
|
int local_peakIndex = 0;
|
|
#ifdef __SI4432__
|
|
freq_t agc_peak_freq = 0;
|
|
float agc_peak_rssi = -150;
|
|
float agc_prev_rssi = -150;
|
|
int last_AGC_value = 0;
|
|
uint8_t last_AGC_direction_up = false;
|
|
int AGC_flip_count = 0;
|
|
#endif
|
|
// if (setting.mode== -1)
|
|
// return;
|
|
// START_PROFILE;
|
|
#ifdef TINYSA3
|
|
palClearPad(GPIOB, GPIOB_LED);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
palClearLine(LINE_LED);
|
|
#endif
|
|
// float temp_min_level = 100;
|
|
|
|
// spur_old_stepdelay = 0;
|
|
// shell_printf("\r\n");
|
|
|
|
modulation_counter = 0; // init modulation counter in case needed
|
|
int refreshing = false;
|
|
|
|
if (MODE_OUTPUT(setting.mode) && config.cor_nfm == 0) { // Calibrate the modulation frequencies at first use
|
|
#ifndef TINYSA4
|
|
calibrate_modulation(MO_AM, &config.cor_am); // No AM mondulation for now
|
|
#endif
|
|
calibrate_modulation(MO_NFM, &config.cor_nfm);
|
|
calibrate_modulation(MO_WFM, &config.cor_wfm);
|
|
}
|
|
|
|
if (dirty) { // Calculate new scanning solution
|
|
sweep_counter = 0;
|
|
if (get_sweep_frequency(ST_SPAN) < 300000) // Check if AM signal
|
|
check_for_AM = true;
|
|
else {
|
|
signal_is_AM = false;
|
|
check_for_AM = false;
|
|
}
|
|
} else if ( MODE_INPUT(setting.mode) && setting.frequency_step > 0) {
|
|
sweep_counter++;
|
|
#ifdef TINYSA3
|
|
if (sweep_counter > 50 ) { // refresh HW after 50 sweeps
|
|
dirty = true;
|
|
refreshing = true;
|
|
sweep_counter = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool show_bar = ( MODE_INPUT(setting.mode) || setting.frequency_step != 0 || setting.level_sweep != 0.0 ? true : false);
|
|
|
|
#if 0
|
|
#ifdef TINYSA4
|
|
float vbw_factor = (float)setting.frequency_step / ((float) actual_rbw_x10*50.0);
|
|
float vbw_rssi;
|
|
#endif
|
|
#endif
|
|
#ifdef __MARKER_CACHE__
|
|
clear_marker_cache();
|
|
#endif
|
|
again: // Waiting for a trigger jumps back to here
|
|
setting.measure_sweep_time_us = 0; // start measure sweep time
|
|
// start_of_sweep_timestamp = chVTGetSystemTimeX(); // Will be set in perform
|
|
|
|
sweep_again: // stay in sweep loop when output mode and modulation on.
|
|
|
|
temppeakLevel = -150;
|
|
float temp_min_level = 100; // Initialize the peak search algorithm
|
|
int16_t downslope = true;
|
|
#ifdef __ULTRA__
|
|
if (setting.mode == M_LOW && config.ultra_threshold == 0) {
|
|
if (getFrequency(sweep_points-1) <= 800000000)
|
|
ultra_threshold = 800000000;
|
|
else
|
|
ultra_threshold = 700000000;
|
|
}
|
|
#endif
|
|
// ------------------------- start sweep loop -----------------------------------
|
|
for (int i = 0; i < sweep_points ; i++) {
|
|
debug_avoid_second = false;
|
|
debug_avoid_label:
|
|
debug_avoid_second = debug_avoid_second;
|
|
freq_t current_freq = getFrequency(i);
|
|
// --------------------- measure -------------------------
|
|
pureRSSI_t rssi = perform(break_on_operation, i, current_freq, setting.tracking); // Measure RSSI for one of the frequencies
|
|
#ifdef TINYSA4
|
|
if (rssi == IGNORE_RSSI)
|
|
RSSI = -174.0;
|
|
else
|
|
#endif
|
|
|
|
RSSI = PURE_TO_float(rssi);
|
|
// if break back to top level to handle ui operation
|
|
if (refreshing)
|
|
scandirty = false;
|
|
if ((break_on_operation && operation_requested )
|
|
#ifdef __SWEEP_RESTART__
|
|
|| (MODE_OUTPUT(setting.mode) && !setting.sweep && (setting.level_sweep != 0 || get_sweep_frequency(ST_SPAN) != 0))
|
|
#endif
|
|
) { // break loop if needed
|
|
abort:
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME /* && MODE_INPUT(setting.mode) */) {
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1); // Erase progress bar
|
|
#ifdef __SWEEP_RESTART__
|
|
refresh_sweep_menu(-1);
|
|
#endif
|
|
}
|
|
return false;
|
|
}
|
|
#ifdef __SWEEP_OUTPUT__
|
|
dacPutChannelX(&DACD2, 0, (((float)i)*config.sweep_voltage)*4.279); // Output sweep voltage 4095 -> 3.3 Volt
|
|
#endif
|
|
|
|
// ----------------------- in loop AGC ---------------------------------
|
|
|
|
#ifdef __SI4432__
|
|
if (!in_selftest && setting.mode == M_HIGH && S_IS_AUTO(setting.agc) && UNIT_IS_LOG(setting.unit)) {
|
|
#define AGC_RSSI_THRESHOLD (-55+get_attenuation())
|
|
float local_rssi = RSSI +setting.external_gain;
|
|
if (local_rssi > AGC_RSSI_THRESHOLD && local_rssi > agc_prev_rssi) {
|
|
agc_peak_freq = current_freq;
|
|
agc_peak_rssi = agc_prev_rssi = local_rssi;
|
|
}
|
|
if (local_rssi < AGC_RSSI_THRESHOLD)
|
|
agc_prev_rssi = -150;
|
|
freq_t delta_freq = current_freq - agc_peak_freq;
|
|
if (agc_peak_freq != 0 && delta_freq < 2000000) {
|
|
int max_gain = (-25 - agc_peak_rssi ) / 4;
|
|
auto_set_AGC_LNA(false, 16 + delta_freq * max_gain / 2000000 ); // enable LNA and stepwise gain
|
|
}
|
|
else
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
#endif
|
|
|
|
// Delay between points if needed, (all delays can apply in SI4432 fill)
|
|
if (setting.measure_sweep_time_us == 0){ // If not already in buffer
|
|
if (setting.additional_step_delay_us && (MODE_INPUT(setting.mode) || setting.modulation == MO_NONE)) { // No delay when modulation is active
|
|
if (setting.additional_step_delay_us < 30*ONE_MS_TIME) // Maximum delay time using my_microsecond_delay
|
|
my_microsecond_delay(setting.additional_step_delay_us);
|
|
else {
|
|
int tm = setting.additional_step_delay_us / ONE_MS_TIME;
|
|
do {
|
|
osalThreadSleepMilliseconds(tm>100?100:tm);
|
|
if (break_on_operation && operation_requested)
|
|
goto abort;
|
|
tm -= 100;
|
|
} while (tm > 0);
|
|
}
|
|
}
|
|
}
|
|
systime_t local_sweep_time = sa_ST2US(chVTGetSystemTimeX() - start_of_sweep_timestamp);
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME)
|
|
local_sweep_time = setting.actual_sweep_time_us;
|
|
if (show_bar && (( local_sweep_time > ONE_SECOND_TIME && (i & 0x07) == 0) /* || ( local_sweep_time > ONE_SECOND_TIME*10)*/ ) )
|
|
{
|
|
int pos = i * (WIDTH+1) / sweep_points;
|
|
ili9341_set_background(LCD_SWEEP_LINE_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, pos, 1); // update sweep progress bar
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX+pos, CHART_BOTTOM+1, WIDTH-pos, 1);
|
|
|
|
if (local_sweep_time > 2 * ONE_SECOND_TIME) {
|
|
plot_into_index(measured);
|
|
redraw_request |= REDRAW_CELLS | REDRAW_BATTERY;
|
|
// plot trace and other indications as raster
|
|
draw_all(true); // flush markmap only if scan completed to prevent
|
|
}
|
|
|
|
|
|
#ifdef __SWEEP_RESTART__
|
|
if (MODE_OUTPUT(setting.mode) && (setting.level_sweep != 0 || get_sweep_frequency(ST_SPAN) != 0))
|
|
refresh_sweep_menu(i);
|
|
#endif
|
|
}
|
|
// ----------------------- debug avoid --------------------------------
|
|
if (debug_avoid) {
|
|
if (!debug_avoid_second) {
|
|
temp_t[i] = RSSI;
|
|
debug_avoid_second = true;
|
|
goto debug_avoid_label;
|
|
} else {
|
|
debug_avoid_second = false;
|
|
}
|
|
}
|
|
#ifdef __DOUBLE_LOOP__
|
|
}
|
|
|
|
// -------------------------------- Scan finished, do all postprocessing --------------------
|
|
|
|
if (MODE_INPUT(setting.mode)) {
|
|
|
|
// #ifdef __VBW__
|
|
#if 0
|
|
#ifdef __FFT_VBW__
|
|
if (setting.vbw_x100 != 0 && sweep_points == 256) {
|
|
float m = 150;
|
|
for (int i=0;i<sweep_points;i++) {
|
|
if (m > temp_t[i])
|
|
m = temp_t[i];
|
|
real[i] = 0;
|
|
imag[i] = 0;
|
|
actual_t[i] = -150;
|
|
}
|
|
for (int i=0;i<sweep_points;i++) {
|
|
real[i] = temp_t[i] - m;
|
|
}
|
|
FFT(real, imag, 256, false);
|
|
#if 1
|
|
for (int i = 128 - setting.vbw_x100; i<128+setting.vbw_x100; i++) {
|
|
real[i] = 0;
|
|
imag[i] = 0;
|
|
}
|
|
#endif
|
|
FFT(real, imag, 256, true);
|
|
|
|
for (int i=0;i<sweep_points;i++) {
|
|
float re = real[i];
|
|
temp_t[i] = re + m;
|
|
// actual_t[i] = sqrtf(re*re + im*im) + m;
|
|
}
|
|
}
|
|
#else
|
|
|
|
// ------------------------ do VBW processing ------------------------------
|
|
if (setting.frequency_step) {
|
|
int vbw_count_div2 = actual_rbw_x10 * 100 / setting.frequency_step / (setting.vbw_x100 == 0 ? 10 : setting.vbw_x100);
|
|
while(vbw_count_div2-- > 0){
|
|
pureRSSI_t prev = temp_t[0];
|
|
int j;
|
|
// first point smooth
|
|
temp_t[0] = (prev + prev + temp_t[1])/3.0f;
|
|
for (j=1;j<sweep_points-1;j++){
|
|
pureRSSI_t old = temp_t[j]; // save current data point for next point smooth
|
|
temp_t[j] = (prev + temp_t[j] + temp_t[j] + temp_t[j+1])/4;
|
|
prev = old;
|
|
}
|
|
// last point smooth
|
|
temp_t[j] = (temp_t[j] + temp_t[j] + prev)/3;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __FFT_DECONV__
|
|
int d_width = 0;
|
|
float d_scale = 0.0;
|
|
float d_offset = 0.0;
|
|
int d_start = 0;
|
|
if (setting.average == AV_DECONV && setting.frequency_step != 0) {
|
|
d_width = (sweep_points * (actual_rbw_x10 * 250) / get_sweep_frequency(ST_SPAN));
|
|
d_start = sweep_points/2 - d_width/2;
|
|
d_offset = stored_t[d_start];
|
|
for (int i=0; i<d_width; i++)
|
|
if (d_offset > stored_t[d_start + i])
|
|
d_offset = stored_t[d_start + i];
|
|
// d_offset -= 1; // To avoid divide by zero
|
|
for (int i=0; i<d_width; i++)
|
|
d_scale += stored_t[d_start + i] - d_offset;
|
|
// d_scale *= d_wid;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __FFT_DECONV__
|
|
if (setting.average == AV_DECONV && setting.frequency_step != 0 && sweep_points == 256) {
|
|
float m = 150;
|
|
for (int i=0;i<sweep_points;i++) {
|
|
if (m > temp_t[i])
|
|
m = temp_t[i];
|
|
real[i] = 0.000000000001;
|
|
imag[i] = 0;
|
|
real2[0] = 0.000000000001;
|
|
imag2[i] = 0;
|
|
actual_t[i] = -150;
|
|
}
|
|
for (int i=0;i<sweep_points;i++) {
|
|
if (temp_t[i] > m+25)
|
|
real[i] = temp_t[i] - m;
|
|
}
|
|
FFT(real, imag, 256, false);
|
|
#if 1
|
|
#if 0
|
|
for (int i = 128 - d_width*2; i<128+d_width*2; i++) {
|
|
real[i] = 0;
|
|
imag[i] = 0;
|
|
}
|
|
#endif
|
|
#if 1
|
|
for (int i=0;i<d_width/2;i++) {
|
|
real2[i] = (stored_t[i+d_start + d_width/2] - d_offset) / d_scale*4;
|
|
}
|
|
for (int i=-d_width/2;i<0;i++) {
|
|
real2[i+256] = (stored_t[i+d_start + d_width/2] - d_offset) / d_scale*4;
|
|
}
|
|
#else
|
|
#if 0
|
|
for (int i=0;i<d_width;i++) {
|
|
real2[i] = (stored_t[i+d_start] - d_offset) / d_scale;
|
|
}
|
|
// for (int i=-d_width/2;i<0;i++) {
|
|
// real2[i+256] = (stored_t[i+d_start + d_width/2] - d_offset) / d_scale;
|
|
// }
|
|
#else
|
|
real2[0] = 1;
|
|
// real2[1] = 1;
|
|
// real2[255] = 1;
|
|
// real2[255] = -0.5;
|
|
#endif
|
|
#endif
|
|
FFT(real2, imag2, 256, false);
|
|
|
|
for (int i=0;i<256;i++) {
|
|
float a = real[i];
|
|
float b = imag[i];
|
|
float c = real2[i];
|
|
float d = imag2[i];
|
|
float cd2 = c*c+d*d;
|
|
static volatile int dummy;
|
|
if (cd2 == 0)
|
|
cd2 = 1e-24;
|
|
// while(dummy++) ;
|
|
real[i] = (a*c+b*d)/cd2;
|
|
imag[i] = (b*c-a*d)/cd2;
|
|
}
|
|
#endif
|
|
FFT(real, imag, 256, true);
|
|
|
|
for (int i=0;i<sweep_points;i++) {
|
|
float re = real[i];
|
|
float im = imag[i];
|
|
actual_t[i] = re + m;
|
|
// actual_t[i] = sqrtf(re*re + im*im) + m;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i < sweep_points; i++) {
|
|
|
|
#if 0
|
|
// -------------------------- smoothing -----------------------------------------
|
|
#ifdef TINYSA4
|
|
if (vbw_factor < 1) {
|
|
if (i == 0) {
|
|
RSSI = /* vbw_factor * */ RSSI;
|
|
} else {
|
|
RSSI = vbw_factor * RSSI + (1-vbw_factor)* vbw_rssi;
|
|
}
|
|
vbw_rssi = RSSI;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __FFT_DECONV__
|
|
if (setting.average == AV_DECONV)
|
|
RSSI = actual_t[i];
|
|
else
|
|
#endif
|
|
RSSI = temp_t[i];
|
|
|
|
#else
|
|
if (MODE_INPUT(setting.mode)) {
|
|
for (int t=0; t<TRACES_MAX;t++) {
|
|
if (setting.stored[t])
|
|
continue;
|
|
#ifdef __ULTRA__
|
|
if (debug_spur && t >0)
|
|
continue;
|
|
#endif
|
|
float RSSI_calc = RSSI;
|
|
float *trace_data = measured[t];
|
|
#endif // __DOUBLE_LOOP__
|
|
// ------------------------ do all RSSI calculations from CALC menu -------------------
|
|
if (setting.normalized[t])
|
|
RSSI_calc -= measured[TRACE_TEMP][i];
|
|
if (setting.subtract[t]) {
|
|
RSSI_calc = RSSI_calc - measured[setting.subtract[t]-1][i] + setting.normalize_level;
|
|
}
|
|
#ifdef __SI4432__
|
|
//#define __DEBUG_AGC__
|
|
#ifdef __DEBUG_AGC__ // For debugging the AGC control
|
|
stored_t[i] = (SI4432_Read_Byte(0x69) & 0x01f) * 3.0 - 90.0; // Display the AGC value in the stored trace
|
|
#endif
|
|
if (check_for_AM) {
|
|
int AGC_value = (SI4432_Read_Byte(0x69) & 0x01f) * 3 - 90;
|
|
if (AGC_value < last_AGC_value && last_AGC_direction_up ) {
|
|
AGC_flip_count++;
|
|
} else if (AGC_value > last_AGC_value && !last_AGC_direction_up ) {
|
|
AGC_flip_count++;
|
|
}
|
|
last_AGC_value = AGC_value;
|
|
}
|
|
#endif
|
|
if (scandirty || setting.average[t] == AV_OFF) { // Level calculations
|
|
if (setting.average[t] == AV_MAX_DECAY) age[i] = 0;
|
|
trace_data[i] = RSSI_calc;
|
|
} else {
|
|
switch(setting.average[t] ) {
|
|
case AV_MIN: if (trace_data[i] > RSSI_calc) trace_data[i] = RSSI_calc; break;
|
|
case AV_MAX_HOLD: if (trace_data[i] < RSSI_calc) trace_data[i] = RSSI_calc; break;
|
|
case AV_MAX_DECAY:
|
|
if (trace_data[i] < RSSI_calc) {
|
|
age[i] = 0;
|
|
trace_data[i] = RSSI_calc;
|
|
} else {
|
|
if (age[i] > setting.decay)
|
|
trace_data[i] -= 0.5;
|
|
else
|
|
age[i] += 1;
|
|
}
|
|
break;
|
|
case AV_4: trace_data[i] = (trace_data[i]*3.0 + RSSI_calc) / 4.0; break;
|
|
case AV_16: trace_data[i] = (trace_data[i]*15.0 + RSSI_calc) / 16.0; break;
|
|
case AV_100:
|
|
#ifdef TINYSA4
|
|
if (linear_averaging)
|
|
{
|
|
#if 0
|
|
int old_unit = setting.unit;
|
|
setting.unit = U_WATT; // Power averaging should always be done in Watts
|
|
trace_data[i] = to_dBm((value(trace_data[i])*(setting.scan_after_dirty[t]-1) + value(RSSI_calc)) / setting.scan_after_dirty[t] );
|
|
setting.unit = old_unit;
|
|
#else
|
|
float v = (expf(trace_data[i]*(logf(10.0)/10.0)) * (setting.scan_after_dirty[t]-1) + expf(RSSI_calc * (logf(10.0)/10.0))) / setting.scan_after_dirty[t];
|
|
trace_data[i] = logf(v)*(10.0/logf(10.0));
|
|
#endif
|
|
}
|
|
else
|
|
trace_data[i] = (trace_data[i]*(setting.scan_after_dirty[t]-1) + RSSI_calc)/ setting.scan_after_dirty[t];
|
|
#else
|
|
trace_data[i] = (trace_data[i]*(setting.scan_after_dirty[t]-1) + RSSI_calc)/ setting.scan_after_dirty[t];
|
|
#endif
|
|
break;
|
|
#ifdef __QUASI_PEAK__
|
|
case AV_QUASI:
|
|
{ static float old_RSSI = -150.0;
|
|
if (i == 0) old_RSSI = trace_data[sweep_points-1];
|
|
if (RSSI_calc > old_RSSI && setting.attack > 1)
|
|
old_RSSI += (RSSI_calc - old_RSSI)/setting.attack;
|
|
else if (RSSI_calc < old_RSSI && setting.decay > 1)
|
|
old_RSSI += (RSSI_calc - old_RSSI)/setting.decay;
|
|
else
|
|
old_RSSI = RSSI_calc;
|
|
trace_data[i] = old_RSSI;
|
|
}
|
|
break;
|
|
#endif
|
|
#if 0
|
|
case AV_DECONV:
|
|
trace_data[i] = temp_t[i] - temp_t[0];
|
|
|
|
int lower = ( i - d_width + 1 < 0 ? 0 : i - d_width + 1);
|
|
for (int k = lower; k < i; k++)
|
|
trace_data[i] -= trace_data[k] * (stored_t[d_start + i - k] - d_offset) / d_scale;
|
|
// trace_data[i] /= (stored_t[d_start] - d_offset ) /d_scale;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
if ( actual_t[i] > -174.0 && temp_min_level > actual_t[i]) // Remember minimum
|
|
temp_min_level = actual_t[i];
|
|
|
|
// --------------------------- find peak and add to peak table if found ------------------------
|
|
|
|
|
|
// START_PROFILE
|
|
if (i == 0 || getFrequency(i) < actual_rbw_x10 * 200) { // Prepare peak finding
|
|
cur_max = 0; // Always at least one maximum
|
|
temppeakIndex = 0;
|
|
temppeakLevel = actual_t[0];
|
|
max_index[0] = 0;
|
|
downslope = true;
|
|
local_peakIndex = 0;
|
|
local_peakLevel = temppeakLevel;
|
|
}
|
|
if (cur_max == 0 && local_peakLevel < actual_t[i]) {
|
|
local_peakIndex = i;
|
|
local_peakLevel = actual_t[i];
|
|
}
|
|
if (downslope) { // If in down slope peak finding
|
|
if (temppeakLevel > actual_t[i]) { // Follow down
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
} else if (temppeakLevel + setting.noise < actual_t[i] ) { // Local minimum found
|
|
temppeakIndex = i; // This is now the latest maximum
|
|
temppeakLevel = actual_t[i];
|
|
downslope = false;
|
|
}
|
|
} else { // up slope peak finding
|
|
if (temppeakLevel < actual_t[i]) { // Follow up
|
|
temppeakIndex = i;
|
|
temppeakLevel = actual_t[i];
|
|
} else if (actual_t[i] < temppeakLevel - setting.noise) { // Local max found
|
|
|
|
// maintain sorted peak table
|
|
int j = 0; // Insert max in sorted table
|
|
while (j<cur_max && actual_t[max_index[j]] >= temppeakLevel) // Find where to insert
|
|
j++;
|
|
if (j < MAX_MAX) { // Larger then one of the previous found
|
|
int k = MAX_MAX-1;
|
|
while (k > j) { // Shift to make room for max
|
|
max_index[k] = max_index[k-1];
|
|
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
|
|
k--;
|
|
}
|
|
max_index[j] = temppeakIndex;
|
|
// maxlevel_index[j] = actual_t[temppeakIndex]; // Only for debugging
|
|
if (cur_max < MAX_MAX) {
|
|
cur_max++;
|
|
}
|
|
//STOP_PROFILE
|
|
}
|
|
// Insert done
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
|
|
downslope = true;
|
|
}
|
|
} // end of peak finding
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ---------------------- end of postprocessing -----------------------------
|
|
|
|
if (MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE) { // if in output mode with modulation
|
|
if (!in_selftest)
|
|
goto sweep_again; // Keep repeating sweep loop till user aborts by input
|
|
}
|
|
// --------------- check if maximum is above trigger level -----------------
|
|
|
|
if (setting.trigger != T_AUTO && setting.frequency_step > 0) { // Trigger active
|
|
if (actual_t[max_index[0]] < setting.trigger_level) {
|
|
goto again; // not yet, sweep again
|
|
} else {
|
|
if (setting.trigger == T_SINGLE) {
|
|
set_trigger(T_DONE);
|
|
}
|
|
}
|
|
// scandirty = true; // To show trigger happened
|
|
}
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME /* && MODE_INPUT(setting.mode) */) {
|
|
// ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1, 0); // Erase progress bar before updating actual_sweep_time
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1);
|
|
#ifdef __SWEEP_RESTART__
|
|
refresh_sweep_menu(sweep_points-1);
|
|
#endif
|
|
}
|
|
// ---------------------- process measured actual sweep time -----------------
|
|
// For CW mode value calculated in SI4432_Fill
|
|
if (setting.measure_sweep_time_us == 0)
|
|
setting.measure_sweep_time_us = sa_ST2US(chVTGetSystemTimeX() - start_of_sweep_timestamp);
|
|
|
|
// Update actual time on change on status panel
|
|
uint32_t delta = abs((int)(setting.actual_sweep_time_us - setting.measure_sweep_time_us));
|
|
if ((delta<<3) > setting.actual_sweep_time_us){ // update if delta > 1/8
|
|
redraw_request|=REDRAW_CAL_STATUS | REDRAW_FREQUENCY;
|
|
}
|
|
setting.actual_sweep_time_us = setting.measure_sweep_time_us;
|
|
// Not possible reduce sweep time, it minimum!
|
|
if (setting.sweep_time_us < setting.actual_sweep_time_us && setting.additional_step_delay_us == 0){
|
|
// Warning!! not correct set sweep time here, you get error!!
|
|
// value update to real and after + recalculated additional delay
|
|
// setting.sweep_time_us = setting.actual_sweep_time_us;
|
|
// redraw_request |= REDRAW_CAL_STATUS;
|
|
// if (FREQ_IS_CW()) // if zero span mode
|
|
// update_grid();
|
|
}
|
|
else{
|
|
uint32_t dt = 0;
|
|
static uint32_t last_dt = 0;
|
|
// selected time less then actual, need reduce delay
|
|
if (setting.sweep_time_us < setting.actual_sweep_time_us){
|
|
dt = (setting.actual_sweep_time_us - setting.sweep_time_us)/(sweep_points);
|
|
if (setting.additional_step_delay_us > dt)
|
|
setting.additional_step_delay_us-=dt;
|
|
else
|
|
setting.additional_step_delay_us = 0;
|
|
}// selected time greater then actual, need increase delay
|
|
else if (setting.sweep_time_us > setting.actual_sweep_time_us){
|
|
dt = (setting.sweep_time_us - setting.actual_sweep_time_us)/(sweep_points);
|
|
setting.additional_step_delay_us+=dt;
|
|
}
|
|
// Update info on correction on next step, after apply . Always show when changed
|
|
if (last_dt /* && dt == 0 */){
|
|
redraw_request|=REDRAW_CAL_STATUS;
|
|
if (FREQ_IS_CW()) // if zero span mode
|
|
update_grid(); // and update grid and frequency
|
|
}
|
|
last_dt = dt;
|
|
}
|
|
|
|
// ---------------------- sweep finished, do all postprocessing ---------------------
|
|
|
|
if (scandirty) {
|
|
scandirty = false;
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
}
|
|
|
|
if (MODE_OUTPUT(setting.mode) && (sweep_mode & SWEEP_ENABLE) ) // Sweep time is calculated, we can sweep again in output mode
|
|
goto again; // Keep repeating sweep loop till user aborts by input
|
|
|
|
#define __MIRROR_MASKING__
|
|
#ifdef __MIRROR_MASKING__
|
|
#ifdef __SI4432__
|
|
if (setting.mode == M_HIGH && setting.mirror_masking) {
|
|
int mirror_offset = 2 * 937000 / setting.frequency_step;
|
|
// int mask_start = 0;
|
|
// int mask_end = 0;
|
|
if (mirror_offset > 3) {
|
|
for (int i = 1; i < sweep_points - mirror_offset; i++) {
|
|
int m = i+mirror_offset;
|
|
if (actual_t[i] > -80 && actual_t[m] < actual_t[i] - 25 && ( actual_t[m] > actual_t[m-1] || actual_t[m+1] > actual_t[m-1] ) /* && (i < mask_start || mask_start == 0) */ ) {
|
|
// if (mask_start == 0)
|
|
// mask_start = m;
|
|
actual_t[m] = actual_t[m-1];
|
|
actual_t[m+1] = actual_t[m-1];
|
|
}
|
|
// else {
|
|
// if (i == mask_start)
|
|
// i += mirror_offset;
|
|
// mask_start =0;
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
// -------------------------- auto attenuate ----------------------------------
|
|
#ifdef TINYSA4
|
|
#define AUTO_TARGET_LEVEL (actual_rbw_x10 >= 10 ? -30 : -40)
|
|
#define LNA_AUTO_TARGET_LEVEL -45
|
|
#else
|
|
#define AUTO_TARGET_LEVEL -25
|
|
#endif
|
|
#define AUTO_TARGET_WINDOW 2
|
|
|
|
if (!in_selftest && setting.mode == M_LOW && setting.auto_attenuation
|
|
#ifdef TINYSA4_4
|
|
&& !setting.extra_lna
|
|
#endif
|
|
) { // calculate and apply auto attenuate
|
|
setting.atten_step = false; // No step attenuate in low mode auto attenuate
|
|
int changed = false;
|
|
int delta = 0;
|
|
int target_level = AUTO_TARGET_LEVEL;
|
|
#ifdef TINYSA4
|
|
freq_t min_target_freq = get_sweep_frequency(ST_START);
|
|
if (min_target_freq > 30000000) // 30M and lower has zero correction
|
|
target_level += PURE_TO_float(get_frequency_correction(min_target_freq));
|
|
if (setting.extra_lna)
|
|
target_level = LNA_AUTO_TARGET_LEVEL;
|
|
#endif
|
|
int actual_max_level = (max_index[0] == 0 ? -100 :(int) (actual_t[max_index[0]] - get_attenuation()) ) + setting.external_gain; // If no max found reduce attenuation
|
|
if (actual_max_level < target_level && setting.attenuate_x2 > 0) {
|
|
delta = - (target_level - actual_max_level);
|
|
} else if (actual_max_level > target_level && setting.attenuate_x2 < 60) {
|
|
delta = actual_max_level - target_level;
|
|
}
|
|
if ((chVTGetSystemTimeX() - sweep_elapsed > MS2ST(1000) && ( delta < -5 || delta > +5)) || delta > 10 ) {
|
|
setting.attenuate_x2 += delta + delta;
|
|
if (setting.attenuate_x2 < 0)
|
|
setting.attenuate_x2= 0;
|
|
if (setting.attenuate_x2 > 60)
|
|
setting.attenuate_x2 = 60;
|
|
changed = true;
|
|
sweep_elapsed = chVTGetSystemTimeX();
|
|
}
|
|
|
|
// Try update settings
|
|
if (changed){
|
|
#ifdef __PE4302__
|
|
PE4302_Write_Byte((int) get_attenuation() * 2);
|
|
#endif
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
#if 0 // this should never happen
|
|
if (setting.atten_step) {
|
|
set_switch_transmit(); // This should never happen
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#endif
|
|
calculate_static_correction(); // Update correction
|
|
// dirty = true; // Needed to recalculate the correction factor
|
|
}
|
|
}
|
|
|
|
// ---------------------------------- auto AGC ----------------------------------
|
|
|
|
|
|
#ifdef __SI4432__
|
|
if (!in_selftest && MODE_INPUT(setting.mode)) {
|
|
if (S_IS_AUTO(setting.agc)) {
|
|
int actual_max_level = actual_t[max_index[0]] - get_attenuation() + setting.external_gain; // No need to use float
|
|
if (UNIT_IS_LINEAR(setting.unit)) { // Auto AGC in linear mode
|
|
if (actual_max_level > - 45)
|
|
auto_set_AGC_LNA(false, 0); // Strong signal, no AGC and no LNA
|
|
else
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
if (check_for_AM) {
|
|
if (signal_is_AM) {
|
|
if (actual_max_level < - 40 )
|
|
signal_is_AM = false;
|
|
} else {
|
|
if (AGC_flip_count > 20 && actual_max_level >= - 40)
|
|
signal_is_AM = true;
|
|
}
|
|
if (signal_is_AM) { // if log mode and AM signal
|
|
auto_set_AGC_LNA(false, 16); // LNA on and no AGC
|
|
} else {
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
}
|
|
} else
|
|
signal_is_AM = false;
|
|
}
|
|
#else
|
|
signal_is_AM = false;
|
|
#endif
|
|
|
|
|
|
// -------------------------- auto reflevel ---------------------------------
|
|
if (max_index[0] > 0)
|
|
temppeakLevel = actual_t[max_index[0]];
|
|
|
|
if (!in_selftest && MODE_INPUT(setting.mode) && setting.auto_reflevel) { // Auto reflevel
|
|
|
|
float r = value(temppeakLevel);
|
|
float s_max = r / setting.scale; // Peak level normalized to /div
|
|
|
|
if (UNIT_IS_LINEAR(setting.unit)) { // Linear scales can not have negative values
|
|
if (setting.reflevel > REFLEVEL_MIN) {
|
|
if (s_max < 2)
|
|
low_count = 5;
|
|
else if (s_max < 4)
|
|
low_count++;
|
|
else
|
|
low_count = 0;
|
|
}
|
|
if ((low_count > 4) || (setting.reflevel < REFLEVEL_MAX && s_max > NGRIDY) ) { // ensure minimum and maximum reflevel
|
|
if (r < REFLEVEL_MIN)
|
|
r = REFLEVEL_MIN;
|
|
if (r > REFLEVEL_MAX)
|
|
r = REFLEVEL_MAX;
|
|
if (r != setting.reflevel) {
|
|
//if (setting.scale * NGRIDY > r)
|
|
set_scale(r / NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
// dirty = false; // Prevent reset of SI4432
|
|
}
|
|
}
|
|
} else {
|
|
#define MAX_FIT (NGRIDY-1.2)
|
|
float s_min = value(temp_min_level)/setting.scale;
|
|
#ifdef TINYSA4
|
|
float noise = (noise_level - setting.external_gain - (setting.extra_lna ? 20 : 0))/setting.scale;
|
|
if (s_min < noise)
|
|
s_min = noise;
|
|
#endif
|
|
float s_ref = setting.reflevel/setting.scale;
|
|
if (s_max < s_ref - NGRIDY || s_min > s_ref || s_max > s_ref + 2.0) { //Completely outside or way too low
|
|
if (s_max - s_min < NGRIDY - 2)
|
|
set_reflevel(setting.scale*(floorf(s_min+8.8+ 1)));
|
|
else
|
|
set_reflevel(setting.scale*(floorf(s_max)+1));
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
} else if (s_max > s_ref - 0.5 || s_min > s_ref - 8.8 ) { // maximum to high or minimum to high
|
|
set_reflevel(setting.reflevel + setting.scale);
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
} else if (s_min < s_ref - 10.1 && s_max < s_ref - 1.5) { // minimum too low and maximum can move up
|
|
set_reflevel(setting.reflevel - setting.scale);
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
}
|
|
// dirty = false; // Prevent reset of SI4432
|
|
}
|
|
}
|
|
|
|
// --------------------- set tracking markers from maximum table -----------------
|
|
|
|
if (cur_max == 0) {
|
|
max_index[0] = local_peakIndex;
|
|
cur_max = 1;
|
|
}
|
|
if (MODE_INPUT(setting.mode)) { // Assign maxima found to tracking markers
|
|
int i = 0;
|
|
int m = 0;
|
|
while (i < cur_max) { // For all maxima found
|
|
while (m < MARKERS_MAX) {
|
|
if (markers[m].enabled && markers[m].mtype & M_TRACKING) { // Available marker found
|
|
markers[m].index = max_index[i];
|
|
interpolate_maximum(m);
|
|
m++;
|
|
break; // Next maximum
|
|
}
|
|
m++; // Try next marker
|
|
}
|
|
i++;
|
|
}
|
|
while (m < MARKERS_MAX) { // Insufficient maxima found
|
|
if (markers[m].enabled && markers[m].mtype & M_TRACKING) { // More available markers found
|
|
set_marker_index(m, 0); // Enabled but no max so set to left most frequency
|
|
}
|
|
m++; // Try next marker
|
|
}
|
|
|
|
// ----------------------- now follow all the special marker calculations for the measurement modes ----------------------------
|
|
|
|
|
|
#ifdef __MEASURE__
|
|
if (setting.measurement == M_IMD && markers[0].index > 10) { // ----- IMD measurement
|
|
#ifdef TINYSA4
|
|
#define H_SPACING 7
|
|
#else
|
|
#define H_SPACING 4
|
|
#endif
|
|
for (int i=1; i < MARKER_COUNT;i++)
|
|
markers[i].enabled = search_maximum(i, getFrequency(markers[0].index)*(i+1), (i+1)*H_SPACING);
|
|
#ifdef TINYSA4
|
|
} else if (setting.measurement == M_AM && markers[0].index > 10) { // ----------AM measurement
|
|
int l = markers[1].index;
|
|
int r = markers[2].index;
|
|
if (r < l) {
|
|
l = markers[2].index;
|
|
r = markers[1].index;
|
|
markers[1].index = l;
|
|
markers[2].index = r;
|
|
}
|
|
freq_t lf = getFrequency(l);
|
|
freq_t rf = getFrequency(r);
|
|
markers[1].frequency = lf;
|
|
markers[2].frequency = rf;
|
|
#endif
|
|
} else if (setting.measurement == M_OIP3 && markers[0].index > 10 && markers[1].index > 10) { // ----------IOP measurement
|
|
int l = markers[0].index;
|
|
int r = markers[1].index;
|
|
if (r < l) {
|
|
l = markers[1].index;
|
|
r = markers[0].index;
|
|
}
|
|
set_marker_index(0, l);
|
|
set_marker_index(1, r);
|
|
freq_t lf = markers[0].frequency;
|
|
freq_t rf = markers[1].frequency;
|
|
markers[2].enabled = search_maximum(2, lf - (rf - lf), 12);
|
|
markers[3].enabled = search_maximum(3, rf + (rf - lf), 12);
|
|
} else if (setting.measurement == M_PHASE_NOISE && markers[0].index > 10) { // ------------Phase noise measurement
|
|
// Position phase noise marker at requested offset
|
|
set_marker_index(1, markers[0].index + (setting.mode == M_LOW ? WIDTH/4 : -WIDTH/4));
|
|
} else if ((setting.measurement == M_PASS_BAND || setting.measurement == M_FM) && markers[0].index > 10) { // ----------------Pass band measurement
|
|
int t1 = 0;
|
|
int t2 = 0;
|
|
float v = actual_t[markers[0].index] - (in_selftest ? 6.0 : 3.0);
|
|
while (t1 < markers[0].index && actual_t[t1+1] < v) // Find left -3dB point
|
|
t1++;
|
|
if (t1< markers[0].index)
|
|
set_marker_index(1, t1);
|
|
t2 = setting._sweep_points-1;;
|
|
while (t2 > markers[0].index && actual_t[t2-1] < v) // find right -3dB point
|
|
t2--;
|
|
if (t2 > markers[0].index)
|
|
set_marker_index(2, t2);
|
|
#if 1
|
|
int t = (t1+t2)/2;
|
|
t1 += (t-t1)/2;
|
|
t2 -= (t2-t)/2;
|
|
if (t2-t1 < 100 && t2-t1 > 10 ) {
|
|
float aver = 0.0;
|
|
for (int i=t1;i<=t2;i++)
|
|
aver +=actual_t[i];
|
|
aver /= (t2-t1+1);
|
|
float stdev=0.0;
|
|
for (int i=t1;i<=t2;i++)
|
|
stdev +=(actual_t[i] - aver) * (actual_t[i] - aver);
|
|
stdev /= (t2-t1+1);
|
|
// stdev = sqrtf(stdev);
|
|
flatness = stdev;
|
|
} else
|
|
flatness = -1;
|
|
#endif
|
|
|
|
} else if (setting.measurement == M_AM) { // ----------------AM measurement
|
|
if (S_IS_AUTO(setting.agc )) {
|
|
#ifdef __SI4432__
|
|
int actual_level = actual_t[max_index[0]] - get_attenuation() + setting.external_gain; // no need for float
|
|
if (actual_level > -20 ) {
|
|
setting.agc = S_AUTO_OFF;
|
|
setting.lna = S_AUTO_OFF;
|
|
} else if (actual_level < -45 ) {
|
|
setting.agc = S_AUTO_ON;
|
|
setting.lna = S_AUTO_ON;
|
|
} else {
|
|
setting.agc = S_AUTO_OFF;
|
|
setting.lna = S_AUTO_ON;
|
|
}
|
|
set_AGC_LNA();
|
|
#endif
|
|
}
|
|
#ifdef __CHANNEL_POWER__
|
|
} else if (setting.measurement == M_CP || setting.measurement == M_SNR || setting.measurement == M_NF_TINYSA|| setting.measurement == M_NF_VALIDATE|| setting.measurement == M_NF_AMPLIFIER) { // ----------------CHANNEL_POWER measurement
|
|
freq_t bw = get_sweep_frequency(ST_SPAN)/3;
|
|
int old_unit = setting.unit;
|
|
setting.unit = U_WATT;
|
|
for (int c = 0; c < 3 ;c++) {
|
|
channel_power_watt[c] = 0.0;
|
|
int sp_div3 = sweep_points/3;
|
|
for (int i =0; i < sp_div3; i++) {
|
|
channel_power_watt[c] += value(actual_t[i + c*sp_div3]);
|
|
}
|
|
float rbw_cor = ((float)bw) / ((float)actual_rbw_x10 * 100.0);
|
|
channel_power_watt[c] = channel_power_watt[c] * rbw_cor /(float)sp_div3;
|
|
channel_power[c] = to_dBm(channel_power_watt[c]);
|
|
}
|
|
setting.unit = old_unit;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
if (cur_max > 0) {
|
|
peakIndex = max_index[0];
|
|
cur_max = 1;
|
|
} else
|
|
peakIndex = local_peakIndex;
|
|
peakLevel = actual_t[peakIndex];
|
|
peakFreq = getFrequency(peakIndex);
|
|
min_level = temp_min_level;
|
|
}
|
|
// } while (MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE); // Never exit sweep loop while in output mode with modulation
|
|
#if 0 // Read ADC
|
|
extern int fix_fft(short fr[], short fi[], short m, short inverse);
|
|
extern int16_t adc_buf_read(uint32_t chsel, uint16_t *result, uint32_t count);
|
|
trace[TRACE_STORED].enabled = true;
|
|
adc_buf_read(ADC_CHSELR_CHSEL4, spi_buffer, 290);
|
|
#if 1 // Perform FFT on input
|
|
int32_t zero = 0;
|
|
for (int i=0;i<256;i++) {
|
|
zero += spi_buffer[i];
|
|
}
|
|
zero = zero >> 8;
|
|
int16_t *rfft = (int16_t *)&spi_buffer[0];
|
|
int16_t *ifft = (int16_t *)&spi_buffer[512];
|
|
for (int i=0;i<256;i++) {
|
|
rfft[i] = spi_buffer[i] - zero;
|
|
ifft[i] = rfft[i]; // Imaginary part equal to real part
|
|
rfft[511 - i] = rfft[i]; // Mirror real
|
|
ifft[511 - i] = -rfft[i]; // Conjugate mirror for imaginary part
|
|
}
|
|
fix_fft(rfft,ifft, 9,false);
|
|
#endif
|
|
for (int i=0;i<256;i++) { // Concert to
|
|
#if 1 // Linear
|
|
stored_t[i] = (((int16_t *)spi_buffer)[i]/44.0) - 80.0;
|
|
#else
|
|
float r = rfft[i]; // Log
|
|
if (r < 0)
|
|
r = -r;
|
|
float im = ifft[i];
|
|
if (im < 0)
|
|
im = -im;
|
|
if (r == 0)
|
|
r = 1;
|
|
if (im==0)
|
|
im = 1;
|
|
stored_t[i] = (log10(r) * 2.0 + log10(im) * 2.0)/2.0 - 80.0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef __LINEARITY__
|
|
//---------------- in Linearity measurement the attenuation has to be adapted ------------------
|
|
if (setting.measurement == M_LINEARITY && setting.linearity_step < sweep_points) {
|
|
setting.attenuate_x2 = (29.0 - setting.linearity_step * 30.0 / (sweep_points))*2.0;
|
|
dirty = true;
|
|
setting.stored[TRACE_STORED]=true;
|
|
stored_t[setting.linearity_step] = peakLevel;
|
|
setting.linearity_step++;
|
|
}
|
|
#endif
|
|
// redraw_marker(peak_marker, FALSE);
|
|
// STOP_PROFILE;
|
|
#ifdef TINYSA3
|
|
palSetPad(GPIOB, GPIOB_LED);
|
|
#endif
|
|
#ifdef TINYSA4
|
|
// palSetLine(LINE_LED);
|
|
#endif
|
|
|
|
// Enable traces at sweep complete for redraw
|
|
if (enable_after_complete){
|
|
TRACE_ENABLE(enable_after_complete);
|
|
enable_after_complete = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//------------------------------- SEARCH ---------------------------------------------
|
|
|
|
int
|
|
marker_search_left_max(int m)
|
|
{
|
|
int i;
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
int from = markers[m].index;
|
|
|
|
int found = -1;
|
|
if (uistat.current_trace == TRACE_INVALID)
|
|
return -1;
|
|
|
|
float value = ref_marker_levels[from];
|
|
for (i = from - 1; i >= 0; i--) {
|
|
float new_value = ref_marker_levels[i];
|
|
if (new_value < value) {
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value > value + setting.noise )
|
|
break;
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
float new_value = ref_marker_levels[i];
|
|
if (new_value > value) {
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value < value - setting.noise )
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
int
|
|
marker_search_right_max(int m)
|
|
{
|
|
int i;
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
int from = markers[m].index;
|
|
|
|
int found = -1;
|
|
|
|
if (uistat.current_trace == TRACE_INVALID)
|
|
return -1;
|
|
float value = ref_marker_levels[from];
|
|
for (i = from + 1; i < sweep_points; i++) {
|
|
float new_value = ref_marker_levels[i];
|
|
if (new_value < value) { // follow down
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value > value + setting.noise) // larger then lowest value + noise
|
|
break; // past the minimum
|
|
}
|
|
for (; i < sweep_points; i++) {
|
|
float new_value = ref_marker_levels[i];
|
|
if (new_value > value) { // follow up
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value < value - setting.noise)
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
void markers_reset()
|
|
{
|
|
for (uint8_t i = 0; i< MARKERS_MAX; i++) {
|
|
markers[i].enabled = M_DISABLED;
|
|
markers[i].mtype = M_DELTA;
|
|
markers[i].ref = 0;
|
|
markers[i].trace = 0;
|
|
}
|
|
markers[0].mtype = M_TRACKING;
|
|
markers[0].enabled = M_ENABLED;
|
|
active_marker = 0;
|
|
}
|
|
|
|
int marker_search_max(int m)
|
|
{
|
|
int i = 0;
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
int found = 0;
|
|
|
|
float value = ref_marker_levels[i];
|
|
for (; i < sweep_points; i++) {
|
|
int new_value = ref_marker_levels[i];
|
|
if (new_value > value) { // follow up
|
|
value = new_value;
|
|
found = i;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
#define MINMAX_DELTA_X10 100
|
|
|
|
|
|
int
|
|
marker_search_left_min(int m)
|
|
{
|
|
int i;
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
int from = markers[m].index;
|
|
int found = from;
|
|
if (uistat.current_trace == TRACE_INVALID)
|
|
return -1;
|
|
|
|
int value_x10 = ref_marker_levels[from]*10;
|
|
for (i = from - 1; i >= 0; i--) {
|
|
int new_value_x10 = ref_marker_levels[i]*10;
|
|
if (new_value_x10 > value_x10) {
|
|
value_x10 = new_value_x10; // follow up
|
|
// found = i;
|
|
} else if (new_value_x10 < value_x10 - MINMAX_DELTA_X10 )
|
|
break; // past the maximum
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
int new_value_x10 = ref_marker_levels[i]*10;
|
|
if (new_value_x10 < value_x10) {
|
|
value_x10 = new_value_x10; // follow down
|
|
found = i;
|
|
} else if (new_value_x10 > value_x10 + MINMAX_DELTA_X10 )
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
int
|
|
marker_search_right_min(int m)
|
|
{
|
|
int i;
|
|
float *ref_marker_levels = measured[markers[m].trace];
|
|
int from = markers[m].index;
|
|
int found = from;
|
|
|
|
if (uistat.current_trace == TRACE_INVALID)
|
|
return -1;
|
|
int value_x10 = ref_marker_levels[from]*10;
|
|
for (i = from + 1; i < sweep_points; i++) {
|
|
int new_value_x10 = ref_marker_levels[i]*10;
|
|
if (new_value_x10 > value_x10) { // follow up
|
|
value_x10 = new_value_x10;
|
|
// found = i;
|
|
} else if (new_value_x10 < value_x10 - MINMAX_DELTA_X10) // less then largest value_x10 - noise
|
|
break; // past the maximum
|
|
}
|
|
for (; i < sweep_points; i++) {
|
|
int new_value_x10 = ref_marker_levels[i]*10;
|
|
if (new_value_x10 < value_x10) { // follow down
|
|
value_x10 = new_value_x10;
|
|
found = i;
|
|
} else if (new_value_x10 > value_x10 + MINMAX_DELTA_X10) // larger then smallest value_x10 + noise
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
|
|
|
|
|
|
// -------------------- Self testing -------------------------------------------------
|
|
|
|
enum {
|
|
TC_SIGNAL, TC_BELOW, TC_ABOVE, TC_FLAT, TC_MEASURE, TC_SET, TC_END, TC_ATTEN, TC_DISPLAY, TC_LEVEL, TC_SWITCH
|
|
};
|
|
|
|
enum {
|
|
TP_SILENT, TPH_SILENT, TP_10MHZ, TP_10MHZEXTRA, TP_30MHZ_SWITCH, TP_30MHZ, TPH_30MHZ, TPH_30MHZ_SWITCH,
|
|
#ifdef TINYSA4
|
|
TP_30MHZ_ULTRA, TP_30MHZ_DIRECT, TP_30MHZ_LNA,
|
|
#endif
|
|
};
|
|
|
|
#define TEST_COUNT (sizeof test_case / sizeof test_case[0])
|
|
|
|
#define W2P(w) (sweep_points * w / 100) // convert width in % to actual sweep points
|
|
|
|
#ifdef TINYSA4
|
|
//#define CAL_LEVEL -23.5
|
|
//#define CAL_LEVEL -24.2
|
|
#define CAL_LEVEL -35.50
|
|
#else
|
|
#define CAL_LEVEL (has_esd ? -26.2 : -25)
|
|
#endif
|
|
|
|
// TODO made more compact this structure (need use aligned data)
|
|
typedef struct test_case {
|
|
uint8_t kind;
|
|
uint8_t setup;
|
|
int16_t width;
|
|
float center; // In MHz
|
|
float span; // In MHz
|
|
float pass;
|
|
float stop;
|
|
} test_case_t;
|
|
|
|
// Use this data parser for init structure data
|
|
#define TEST_CASE_STRUCT(Condition, Preparation, Center, Span, Pass, Width, Stop) {Condition, Preparation, Width, Center, Span, Pass, Stop}
|
|
|
|
const test_case_t test_case [] =
|
|
#ifdef TINYSA4
|
|
{// Condition Preparation Center Span Pass Width(%)Stop
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 0.06, 0.11, -30, 0, -30), // 1 Zero Hz leakage
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 0.1, 0.1, -50, 0, 0), // 2 Phase noise of zero Hz
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ, 30, 1, CAL_LEVEL, 10, -85), // 3
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ_ULTRA, 30, 1, CAL_LEVEL, 10, -85), // 4 Test Ultra mode
|
|
#define TEST_SILENCE 4
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 200, 100, -70, 0, 0), // 5 Wide band noise floor low mode
|
|
TEST_CASE_STRUCT(TC_ABOVE, TP_30MHZ_DIRECT,990, 10, -90, 0, -90), // 6 Direct path with harmonic
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_10MHZEXTRA, 30, 14, CAL_LEVEL, 27, -45), // 7 BPF loss and stop band
|
|
TEST_CASE_STRUCT(TC_FLAT, TP_10MHZEXTRA, 30, 14, -18, 9, -60), // 8 BPF pass band flatness
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_30MHZ, 880, 1, -95, 0, -100), // 9 LPF cutoff
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ_SWITCH,30, 7, CAL_LEVEL, 10, -50), // 10 Switch isolation using high attenuation
|
|
TEST_CASE_STRUCT(TC_DISPLAY, TP_30MHZ, 30, 0, CAL_LEVEL, 50, -60), // 11 test display
|
|
TEST_CASE_STRUCT(TC_ATTEN, TP_30MHZ, 30, 0, CAL_LEVEL, 50, -60), // 12 Measure atten step accuracy
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ_LNA, 30, 5, CAL_LEVEL, 10, -75), // 13 Measure LNA
|
|
#define TEST_END 13
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
#define TEST_POWER 14
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 30, 50, CAL_LEVEL, 10, -55), // 12 Measure power level and noise
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 270, 4, -50, 10, -75), // 13 Measure powerlevel and noise
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ, 270, 4, -40, 10, -65), // 14 Calibrate power high mode
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
#define TEST_RBW 18
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 30, 1, CAL_LEVEL, 10, -60), // 16 Measure RBW step time
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ, 300, 4, -48, 10, -65), // 14 Calibrate power high mode
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ_SWITCH,300, 4, -40, 10, -65), // 14 Calibrate power high mode
|
|
#define TEST_ATTEN 22
|
|
TEST_CASE_STRUCT(TC_ATTEN, TP_30MHZ, 30, 0, CAL_LEVEL, 50, -60), // 20 Measure atten step accuracy
|
|
#define TEST_SPUR 23
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 144, 8, -95, 0, 0), // 22 Measure 48MHz spur
|
|
#define TEST_LEVEL 24
|
|
TEST_CASE_STRUCT(TC_LEVEL, TP_30MHZ, 30.000, 0, CAL_LEVEL, 50, -55), // 23 Measure level
|
|
TEST_CASE_STRUCT(TC_LEVEL, TP_30MHZ_LNA, 30.000, 0, CAL_LEVEL, 50, -55), // 23 Measure level
|
|
TEST_CASE_STRUCT(TC_LEVEL, TPH_30MHZ, 150, 0, CAL_LEVEL-30, 50, -55), // 23 Measure level
|
|
#define TEST_NOISE 27
|
|
TEST_CASE_STRUCT(TC_LEVEL, TP_SILENT, 201.000, 0, -166, 50, -166), // 23 Measure level
|
|
#define TEST_NOISE_RBW 28
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_SILENT, 201, 1, -166, 10, -166), // 16 Measure RBW step time
|
|
};
|
|
#else
|
|
{// Condition Preparation Center Span Pass Width(%)Stop
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 0.005, 0.01, 0, 0, 0), // 1 Zero Hz leakage
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 0.015, 0.01, -30, 0, 0), // 2 Phase noise of zero Hz
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ, 30, 7, -25, 10, -90), // 3
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_10MHZ, 30, 7, -34, 10, -90), // 4
|
|
#define TEST_SILENCE 4
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 200, 100, -75, 0, 0), // 5 Wide band noise floor low mode
|
|
TEST_CASE_STRUCT(TC_BELOW, TPH_SILENT, 600, 720, -75, 0, 0), // 6 Wide band noise floor high mode
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_10MHZEXTRA, 10, 7, -20, 27, -80), // 7 BPF loss and stop band
|
|
TEST_CASE_STRUCT(TC_FLAT, TP_10MHZEXTRA, 10, 4, -18, 9, -60), // 8 BPF pass band flatness
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_30MHZ, 450, 80, -75, 0, -75), // 9 LPF cutoff
|
|
TEST_CASE_STRUCT(TC_SIGNAL, TP_30MHZ_SWITCH, 30, 7, -25, 10, -60), // 10 Switch isolation using high attenuation
|
|
TEST_CASE_STRUCT(TC_DISPLAY, TP_30MHZ, 30, 0, -25, 145, -60), // 11 Test display
|
|
TEST_CASE_STRUCT(TC_ATTEN, TP_30MHZ, 30, 0, -25, 145, -60), // 12 Measure atten step accuracy
|
|
#define TEST_END 12
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
#define TEST_POWER 13
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 30, 7, -25, 10, -55), // 12 Measure power level and noise
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 270, 4, -50, 10, -75), // 13 Measure powerlevel and noise
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ, 270, 4, -40, 10, -65), // 14 Calibrate power high mode
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
#define TEST_RBW 17
|
|
TEST_CASE_STRUCT(TC_MEASURE, TP_30MHZ, 30, 1, -20, 10, -60), // 16 Measure RBW step time
|
|
TEST_CASE_STRUCT(TC_END, 0, 0, 0, 0, 0, 0),
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ, 300, 4, -48, 10, -65), // 14 Calibrate power high mode
|
|
TEST_CASE_STRUCT(TC_MEASURE, TPH_30MHZ_SWITCH,300, 4, -40, 10, -65), // 14 Calibrate power high mode
|
|
#define TEST_ATTEN 21
|
|
TEST_CASE_STRUCT(TC_ATTEN, TP_30MHZ, 30, 0, -25, 145, -60), // 20 Measure atten step accuracy
|
|
#define TEST_SPUR 22
|
|
TEST_CASE_STRUCT(TC_BELOW, TP_SILENT, 96, 8, -95, 0, 0), // 22 Measure 48MHz spur
|
|
#define TEST_LEVEL 23
|
|
TEST_CASE_STRUCT(TC_LEVEL, TP_30MHZ, 30, 0, -25, 145, -55), // 23 Measure level
|
|
};
|
|
#endif
|
|
|
|
|
|
enum {
|
|
TS_WAITING, TS_PASS, TS_FAIL, TS_CRITICAL
|
|
};
|
|
static const char *(test_text [4]) =
|
|
{
|
|
"Waiting", "Pass", "Fail", "Critical"
|
|
};
|
|
|
|
static const char *(test_fail_cause [TEST_COUNT]);
|
|
static int test_status[TEST_COUNT];
|
|
static int show_test_info = FALSE;
|
|
static volatile int test_wait = false;
|
|
static float test_value;
|
|
|
|
static void test_acquire(int i)
|
|
{
|
|
(void)i;
|
|
pause_sweep();
|
|
if (test_case[i].kind == TC_LEVEL) {
|
|
float summed_peak_level = 0;
|
|
#define LEVEL_TEST_SWEEPS 10
|
|
for (int k=0; k<LEVEL_TEST_SWEEPS; k++) {
|
|
sweep(false);
|
|
float local_peak_level = 0.0;
|
|
#define FROM_START 50
|
|
for (int n = FROM_START ; n < sweep_points; n++)
|
|
local_peak_level += actual_t[n];
|
|
local_peak_level /= (sweep_points - FROM_START);
|
|
summed_peak_level += local_peak_level;
|
|
}
|
|
peakLevel = summed_peak_level / LEVEL_TEST_SWEEPS;
|
|
} else
|
|
sweep(false);
|
|
TRACE_ENABLE(TRACE_STORED_FLAG);
|
|
plot_into_index(measured);
|
|
redraw_request |= REDRAW_CELLS | REDRAW_FREQUENCY;
|
|
}
|
|
|
|
int cell_printf(int16_t x, int16_t y, const char *fmt, ...);
|
|
void cell_draw_test_info(int x0, int y0)
|
|
{
|
|
#define INFO_SPACING 13
|
|
// char self_test_status_buf[35];
|
|
if (!show_test_info)
|
|
return;
|
|
int i = -2;
|
|
do {
|
|
i++;
|
|
int xpos = 25 - x0;
|
|
int ypos = 50+i*INFO_SPACING - y0;
|
|
pixel_t color;
|
|
if (i < 0)
|
|
color = LCD_FG_COLOR;
|
|
else if (test_status[i] == TS_PASS)
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else if (test_status[i] == TS_CRITICAL)
|
|
color = LCD_TRACE_3_COLOR; // Yellow
|
|
else if (test_status[i] == TS_FAIL)
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_BLUE;
|
|
ili9341_set_foreground(color);
|
|
if (i == -1) {
|
|
cell_printf(xpos, ypos, FONT_s"Self test status:");
|
|
} else if (test_case[i].kind == TC_END) {
|
|
if (test_wait)
|
|
cell_printf(xpos, ypos, FONT_s"Touch screen to continue");
|
|
continue;
|
|
} else {
|
|
cell_printf(xpos, ypos, FONT_s"Test %d: %s%s", i+1, test_fail_cause[i], test_text[test_status[i]] );
|
|
continue;
|
|
}
|
|
} while (test_case[i].kind != TC_END);
|
|
}
|
|
|
|
int validate_signal_within(int i, float margin)
|
|
{
|
|
test_fail_cause[i] = "Signal level ";
|
|
if (fabsf(peakLevel-test_case[i].pass) > 2*margin) {
|
|
return TS_FAIL;
|
|
}
|
|
if (fabsf(peakLevel-test_case[i].pass) > margin) {
|
|
return TS_CRITICAL;
|
|
}
|
|
if (setting.measurement == M_PASS_BAND) {
|
|
peakFreq = (markers[2].frequency + markers[1].frequency)/2;
|
|
markers[0].frequency = peakFreq;
|
|
markers[0].index = (markers[2].index + markers[1].index)/2;
|
|
if (flatness > 0.8) {
|
|
test_fail_cause[i] = "Flatness ";
|
|
return TS_FAIL;
|
|
}
|
|
}
|
|
test_fail_cause[i] = "Frequency ";
|
|
if (peakFreq < test_case[i].center * 1000000 - 500000 || test_case[i].center * 1000000 + 500000 < peakFreq )
|
|
return TS_FAIL;
|
|
test_fail_cause[i] = "";
|
|
return TS_PASS;
|
|
}
|
|
|
|
int validate_peak_below(int i, float margin) {
|
|
return(test_case[i].pass - peakLevel > margin);
|
|
}
|
|
|
|
int validate_below(int tc, int from, int to) {
|
|
int status = TS_PASS;
|
|
float threshold=stored_t[from];
|
|
float sum = 0;
|
|
int sum_count = 0;
|
|
for (int j = from; j < to; j++) {
|
|
sum += actual_t[j];
|
|
sum_count++;
|
|
if (actual_t[j] > threshold) {
|
|
status = TS_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
sum = sum / sum_count;
|
|
if (sum > threshold - 5)
|
|
status = TS_CRITICAL;
|
|
if (status != TS_PASS)
|
|
test_fail_cause[tc] = "Above ";
|
|
return(status);
|
|
}
|
|
|
|
int validate_flatness(int i) {
|
|
volatile int j,k;
|
|
test_fail_cause[i] = "Passband ";
|
|
for (j = peakIndex; j < setting._sweep_points; j++) {
|
|
if (actual_t[j] < peakLevel - 15) // Search right -3dB
|
|
break;
|
|
}
|
|
for (k = peakIndex; k > 0; k--) {
|
|
if (actual_t[k] < peakLevel - 15) // Search left -3dB
|
|
break;
|
|
}
|
|
// shell_printf("Width %d between %d and %d\n\r", j - k, 2* W2P(test_case[i].width), 3* W2P(test_case[i].width) );
|
|
if (j - k < 2* W2P(test_case[i].width))
|
|
return(TS_FAIL);
|
|
if (j - k > 3* W2P(test_case[i].width))
|
|
return(TS_FAIL);
|
|
test_fail_cause[i] = "";
|
|
return(TS_PASS);
|
|
}
|
|
|
|
const float atten_step[7] = { 0.0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 };
|
|
|
|
#ifdef TINYSA4
|
|
bool saved_direct;
|
|
freq_t saved_direct_start;
|
|
freq_t saved_direct_stop;
|
|
#endif
|
|
|
|
|
|
int test_validate(int i);
|
|
|
|
int validate_atten(int i) {
|
|
int status = TS_PASS;
|
|
float reference_peak_level = 0.0;
|
|
test_fail_cause[i] = "Attenuator ";
|
|
// for (int j= 0; j < 64; j++ ) {
|
|
for (int j= 0; j < 7; j++ ) {
|
|
// float a = ((float)j)/2.0;
|
|
float a = atten_step[j];
|
|
set_attenuation(a);
|
|
test_acquire(TEST_LEVEL); // Acquire test, does also the averaging.
|
|
test_validate(TEST_LEVEL); // Validate test, does nothing actually
|
|
if (j == 0)
|
|
reference_peak_level = peakLevel;
|
|
else {
|
|
// if (SDU1.config->usbp->state == USB_ACTIVE) shell_printf("Attenuation %.2fdB, measured level %.2fdBm, delta %.2fdB\n\r",a, summed_peak_level, summed_peak_level - reference_peak_level);
|
|
#define ATTEN_TEST_CRITERIA 1.5
|
|
if (peakLevel - reference_peak_level <= -ATTEN_TEST_CRITERIA || peakLevel - reference_peak_level >= ATTEN_TEST_CRITERIA) {
|
|
status = TS_FAIL;
|
|
}
|
|
}
|
|
}
|
|
if (status == TS_PASS)
|
|
test_fail_cause[i] = "";
|
|
return(status);
|
|
}
|
|
|
|
int validate_display(int tc)
|
|
{
|
|
test_fail_cause[tc] = "Display ";
|
|
if (!display_test()) {
|
|
return(TS_FAIL);
|
|
}
|
|
test_fail_cause[tc] = "";
|
|
return(TS_PASS);
|
|
}
|
|
|
|
int validate_above(int tc) {
|
|
int status = TS_FAIL;
|
|
for (int j = 0; j < setting._sweep_points; j++) {
|
|
if (actual_t[j] > stored_t[j]+5) {
|
|
status = TS_PASS;
|
|
break;
|
|
} else if (actual_t[j] > stored_t[j]) {
|
|
status = TS_CRITICAL;
|
|
}
|
|
}
|
|
if (status != TS_PASS)
|
|
test_fail_cause[tc] = "Above ";
|
|
return(status);
|
|
}
|
|
|
|
int validate_level(int i) {
|
|
int status = TS_PASS;
|
|
test_fail_cause[i] = "Level ";
|
|
#if 0
|
|
#define LEVEL_TEST_CRITERIA 3
|
|
if (peakLevel - test_case[i].pass <= -LEVEL_TEST_CRITERIA || peakLevel - test_case[i].pass >= LEVEL_TEST_CRITERIA) {
|
|
status = TS_FAIL;
|
|
} else
|
|
#endif
|
|
test_fail_cause[i] = "";
|
|
return(status);
|
|
}
|
|
|
|
|
|
int test_validate(int i)
|
|
{
|
|
// draw_all(TRUE);
|
|
#ifdef TINYSA4
|
|
if (saved_direct_start && test_case[i].setup ==TP_30MHZ_ULTRA) {
|
|
config.direct = saved_direct;
|
|
config.direct_start = saved_direct_start;
|
|
config.direct_stop = saved_direct_stop;
|
|
}
|
|
#endif
|
|
int current_test_status = TS_PASS;
|
|
switch (test_case[i].kind) {
|
|
case TC_SET:
|
|
if (test_case[i].pass == 0) {
|
|
if (test_value != 0)
|
|
set_actual_power(test_value);
|
|
} else
|
|
set_actual_power(test_case[i].pass);
|
|
goto common;
|
|
case TC_MEASURE:
|
|
case TC_SIGNAL: // Validate signal
|
|
common: current_test_status = validate_signal_within(i, 10.0);
|
|
if (current_test_status == TS_PASS) { // Validate noise floor
|
|
current_test_status = validate_below(i, 0, setting._sweep_points/2 - W2P(test_case[i].width));
|
|
if (current_test_status == TS_PASS) {
|
|
current_test_status = validate_below(i, setting._sweep_points/2 + W2P(test_case[i].width), setting._sweep_points);
|
|
}
|
|
if (current_test_status != TS_PASS)
|
|
test_fail_cause[i] = "Stopband ";
|
|
}
|
|
if (current_test_status == TS_PASS && test_case[i].kind == TC_MEASURE)
|
|
test_value = peakLevel;
|
|
else
|
|
test_value = 0; // Not valid
|
|
break;
|
|
case TC_ABOVE: // Validate signal above curve
|
|
current_test_status = validate_above(i);
|
|
break;
|
|
case TC_BELOW: // Validate signal below curve
|
|
current_test_status = validate_below(i, 0, setting._sweep_points);
|
|
break;
|
|
case TC_FLAT: // Validate passband flatness
|
|
current_test_status = validate_flatness(i);
|
|
break;
|
|
case TC_ATTEN:
|
|
current_test_status = validate_atten(i); // Measures and validates the attenuator
|
|
break;
|
|
case TC_LEVEL:
|
|
current_test_status = validate_level(i);
|
|
break;
|
|
case TC_DISPLAY:
|
|
current_test_status = validate_display(i);
|
|
break;
|
|
}
|
|
|
|
// Report status
|
|
|
|
if (current_test_status != TS_PASS || test_case[i+1].kind == TC_END)
|
|
test_wait = true;
|
|
test_status[i] = current_test_status; // Must be set before draw_all() !!!!!!!!
|
|
// draw_frequencies();
|
|
// draw_cal_status();
|
|
// redraw_request |= REDRAW_CAL_STATUS;
|
|
redraw_request |= REDRAW_AREA | REDRAW_CAL_STATUS;
|
|
draw_all(TRUE);
|
|
return current_test_status;
|
|
}
|
|
|
|
void test_prepare(int i)
|
|
{
|
|
setting.measurement = M_OFF;
|
|
markers[1].enabled = M_DISABLED;
|
|
markers[2].enabled = M_DISABLED;
|
|
setting.stored[TRACE_STORED] = true;
|
|
setting.tracking = false; //Default test setup
|
|
setting.atten_step = false;
|
|
#ifdef TINYSA4
|
|
setting.frequency_IF = config.frequency_IF1; // Default frequency
|
|
setting.extra_lna = false;
|
|
#else
|
|
setting.frequency_IF = DEFAULT_IF; // Default frequency
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
ultra = true;
|
|
ultra_threshold = 2000000000;
|
|
#endif
|
|
setting.auto_IF = true;
|
|
setting.auto_attenuation = false;
|
|
setting.attenuate_x2 = 0;
|
|
setting.spur_removal = S_OFF;
|
|
in_selftest = true;
|
|
|
|
switch(test_case[i].setup) { // Prepare test conditions
|
|
case TPH_SILENT: // No input signal
|
|
set_mode(M_HIGH);
|
|
goto common_silent;
|
|
case TP_SILENT: // No input signal
|
|
set_mode(M_LOW);
|
|
common_silent:
|
|
set_refer_output(-1);
|
|
setting.stored[TRACE_STORED] = true;
|
|
for (int j = 0; j < setting._sweep_points; j++)
|
|
stored_t[j] = test_case[i].pass;
|
|
in_selftest = false; // Otherwise spurs will be visible
|
|
break;
|
|
case TP_30MHZ_SWITCH:
|
|
set_mode(M_LOW);
|
|
set_refer_output(0);
|
|
goto common;
|
|
case TP_10MHZEXTRA: // Swept receiver
|
|
set_mode(M_LOW);
|
|
setting.tracking = true; //Sweep BPF
|
|
setting.auto_IF = false;
|
|
#ifdef TINYSA4
|
|
setting.frequency_IF = config.frequency_IF1 + STATIC_DEFAULT_SPUR_OFFSET/3; // Center on SAW filters
|
|
set_refer_output(0);
|
|
#else
|
|
setting.frequency_IF = DEFAULT_IF+210000; // Center on SAW filters
|
|
set_refer_output(2);
|
|
#endif
|
|
markers[1].enabled = M_ENABLED;
|
|
markers[1].mtype = M_DELTA;
|
|
markers[2].enabled = M_ENABLED;
|
|
markers[2].mtype = M_DELTA;
|
|
setting.measurement = M_PASS_BAND;
|
|
goto common;
|
|
case TP_10MHZ: // 10MHz input
|
|
set_mode(M_LOW);
|
|
set_refer_output(2);
|
|
setting.step_delay_mode = SD_PRECISE;
|
|
// set_step_delay(1); // Precise scanning speed
|
|
#ifdef __SPUR__
|
|
#ifdef TINYSA4
|
|
setting.spur_removal = S_AUTO_OFF;
|
|
#else
|
|
setting.spur_removal = S_ON;
|
|
#endif
|
|
#endif
|
|
common:
|
|
setting.stored[TRACE_STORED] = true;
|
|
for (int j = 0; j < setting._sweep_points/2 - W2P(test_case[i].width); j++)
|
|
stored_t[j] = test_case[i].stop;
|
|
for (int j = setting._sweep_points/2 + W2P(test_case[i].width); j < setting._sweep_points; j++)
|
|
#ifdef TINYSA4
|
|
stored_t[j] = test_case[i].stop;
|
|
#else
|
|
stored_t[j] = test_case[i].stop - (i == 6?3:0);
|
|
#endif
|
|
for (int j = setting._sweep_points/2 - W2P(test_case[i].width); j < setting._sweep_points/2 + W2P(test_case[i].width); j++)
|
|
stored_t[j] = test_case[i].pass;
|
|
break;
|
|
#ifdef TINYSA4
|
|
case TP_30MHZ_DIRECT:
|
|
case TP_30MHZ_ULTRA:
|
|
case TP_30MHZ_LNA:
|
|
#endif
|
|
case TP_30MHZ:
|
|
set_mode(M_LOW);
|
|
#ifdef TINYSA4
|
|
maxFreq = 9900000000ULL; // needed to measure the LPF rejection
|
|
#else
|
|
maxFreq = 2000000000; // needed to measure the LPF rejection
|
|
#endif
|
|
set_refer_output(0);
|
|
dirty = true;
|
|
// set_step_delay(1); // Do not set !!!!!
|
|
#ifdef __SPUR__
|
|
setting.spur_removal = S_ON;
|
|
#endif
|
|
|
|
goto common;
|
|
case TPH_30MHZ_SWITCH:
|
|
case TPH_30MHZ:
|
|
set_mode(M_HIGH);
|
|
set_refer_output(0);
|
|
setting.spur_removal = S_ON;
|
|
goto common;
|
|
}
|
|
switch(test_case[i].setup) { // Prepare test conditions
|
|
#ifdef TINYSA4
|
|
case TP_30MHZ_ULTRA:
|
|
ultra_threshold = 0;
|
|
break;
|
|
case TP_30MHZ_DIRECT:
|
|
ultra_threshold = 800000000;
|
|
saved_direct = config.direct;
|
|
config.direct = true;
|
|
saved_direct_start = config.direct_start;
|
|
config.direct_start = 965000000;
|
|
saved_direct_stop = config.direct_stop;
|
|
config.direct_stop = 1000000000;
|
|
break;
|
|
case TP_30MHZ_LNA:
|
|
setting.extra_lna = true;
|
|
break;
|
|
#endif
|
|
case TP_30MHZ_SWITCH:
|
|
set_attenuation(32); // This forces the switch to transmit so isolation can be tested
|
|
break;
|
|
case TPH_30MHZ_SWITCH:
|
|
set_attenuation(0);
|
|
setting.atten_step = true; // test high switch isolation
|
|
break;
|
|
default:
|
|
set_attenuation(0.0);
|
|
}
|
|
TRACE_ENABLE(TRACE_STORED_FLAG);
|
|
setting.stored[TRACE_STORED] = true;
|
|
set_reflevel(test_case[i].pass+10);
|
|
set_sweep_frequency(ST_CENTER, (freq_t)(test_case[i].center * 1000000));
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(test_case[i].span * 1000000));
|
|
draw_cal_status();
|
|
}
|
|
|
|
extern void menu_autosettings_cb(int item, uint16_t data);
|
|
|
|
#ifdef TINYSA4
|
|
int last_spur = 0;
|
|
int add_spur(int f, float p)
|
|
{
|
|
for (int i = 0; i < last_spur; i++) {
|
|
if (temp_t[i]-1 <= f && f <= temp_t[i]+1) {
|
|
stored_t[i] += 1;
|
|
if (stored2_t[i] < p)
|
|
stored2_t[i] = p;
|
|
return stored_t[i];
|
|
}
|
|
}
|
|
if (last_spur < POINTS_COUNT) {
|
|
temp_t[last_spur] = f;
|
|
#if TRACES_MAX == 4
|
|
stored2_t[last_spur] = p;
|
|
#endif
|
|
stored_t[last_spur++] = 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void sort_dynamic_spur_table(void) {
|
|
for (int counter = 0 ; counter < dynamic_spur_table_size - 1; counter++)
|
|
{
|
|
for (int counter1 = 0 ; counter1 < dynamic_spur_table_size - counter - 1; counter1++)
|
|
{
|
|
if (dynamic_spur_table[counter1] > dynamic_spur_table[counter1+1]) //increasing frequency
|
|
{
|
|
float swap_var = dynamic_spur_table[counter1]; dynamic_spur_table[counter1] = dynamic_spur_table[counter1+1]; dynamic_spur_table[counter1+1] = swap_var;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void sort_spur_freq(void) {
|
|
for (int counter = 0 ; counter < last_spur - 1; counter++)
|
|
{
|
|
for (int counter1 = 0 ; counter1 < last_spur - counter - 1; counter1++)
|
|
{
|
|
if (temp_t[counter1] > temp_t[counter1+1]) //increasing frequency
|
|
{
|
|
float swap_var = temp_t[counter1]; temp_t[counter1] = temp_t[counter1+1]; temp_t[counter1+1] = swap_var;
|
|
swap_var = stored_t[counter1]; stored_t[counter1] = stored_t[counter1+1]; stored_t[counter1+1] = swap_var;
|
|
swap_var = stored2_t[counter1]; stored2_t[counter1] = stored2_t[counter1+1]; stored2_t[counter1+1] = swap_var;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void sort_spur_level(void) {
|
|
for (int counter = 0 ; counter < last_spur - 1; counter++)
|
|
{
|
|
for (int counter1 = 0 ; counter1 < last_spur - counter - 1; counter1++)
|
|
{
|
|
if (stored2_t[counter1] < stored2_t[counter1+1]) // decreasing level
|
|
{
|
|
float swap_var = temp_t[counter1]; temp_t[counter1] = temp_t[counter1+1]; temp_t[counter1+1] = swap_var;
|
|
swap_var = stored_t[counter1]; stored_t[counter1] = stored_t[counter1+1]; stored_t[counter1+1] = swap_var;
|
|
swap_var = stored2_t[counter1]; stored2_t[counter1] = stored2_t[counter1+1]; stored2_t[counter1+1] = swap_var;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void sort_spur_count(void) {
|
|
for (int counter = 0 ; counter < last_spur - 1; counter++)
|
|
{
|
|
for (int counter1 = 0 ; counter1 < last_spur - counter - 1; counter1++)
|
|
{
|
|
if (stored_t[counter1] < stored_t[counter1+1]) // decreasing count
|
|
{
|
|
float swap_var = temp_t[counter1]; temp_t[counter1] = temp_t[counter1+1]; temp_t[counter1+1] = swap_var;
|
|
swap_var = stored_t[counter1]; stored_t[counter1] = stored_t[counter1+1]; stored_t[counter1+1] = swap_var;
|
|
swap_var = stored2_t[counter1]; stored2_t[counter1] = stored2_t[counter1+1]; stored2_t[counter1+1] = swap_var;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
//static bool test_wait = false;
|
|
static int test_step = 0;
|
|
|
|
void self_test(int test)
|
|
{
|
|
bool no_wait = false;
|
|
// set_sweep_points(POINTS_COUNT);
|
|
if (test == 0) {
|
|
if (test_wait ) {
|
|
if (test_case[test_step].kind == TC_END || setting.test_argument != 0)
|
|
goto resume2;
|
|
else
|
|
goto resume;
|
|
}
|
|
// Disable waterfall on selftest
|
|
if (setting.waterfall)
|
|
disable_waterfall();
|
|
reset_settings(M_LOW); // Make sure we are in a defined state
|
|
in_selftest = true;
|
|
menu_autosettings_cb(0, 0);
|
|
for (uint16_t i=0; i < TEST_COUNT; i++) { // All test cases waiting
|
|
if (test_case[i].kind == TC_END)
|
|
break;
|
|
test_status[i] = TS_WAITING;
|
|
test_fail_cause[i] = "";
|
|
}
|
|
show_test_info = TRUE;
|
|
test_step=0;
|
|
test_step = setting.test_argument;
|
|
if (test_step != 0) {
|
|
if (test_step < 0) {
|
|
test_step = -test_step;
|
|
no_wait = true;
|
|
}
|
|
test_step -= 1;
|
|
}
|
|
do {
|
|
test_prepare(test_step);
|
|
test_acquire(test_step); // Acquire test
|
|
test_status[test_step] = test_validate(test_step); // Validate test
|
|
|
|
if (test_step == 2) {
|
|
if (peakLevel < -60) {
|
|
test_step = TEST_END;
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Signal level too low", 30, 140);
|
|
ili9341_drawstring_7x13("Did you connect high and low ports with cable?", 0, 210);
|
|
goto resume2;
|
|
}
|
|
|
|
}
|
|
if (test_status[test_step] != TS_PASS) {
|
|
if (no_wait) {
|
|
peakFreq = 0; // Avoid changing IF
|
|
goto quit;
|
|
}
|
|
resume:
|
|
test_wait = true;
|
|
if (!check_touched())
|
|
return;
|
|
// wait_user();
|
|
}
|
|
test_step++;
|
|
} while (test_case[test_step].kind != TC_END && setting.test_argument == 0 );
|
|
if (no_wait) {
|
|
goto quit;
|
|
}
|
|
// draw_all(TRUE);
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
ili9341_drawstring_7x13("Self test complete", 50, 202);
|
|
ili9341_drawstring_7x13("Touch screen to continue", 50, 215);
|
|
resume2:
|
|
test_wait = true;
|
|
if (!check_touched())
|
|
return;
|
|
quit:
|
|
sweep_mode = SWEEP_ENABLE;
|
|
test_wait = false;
|
|
if (setting.test_argument == 0) ili9341_clear_screen();
|
|
#ifdef TINYSA4
|
|
config_recall();
|
|
config.cor_am = 0;
|
|
config.cor_nfm = 0;
|
|
config.cor_wfm = 0;
|
|
#endif
|
|
in_selftest = false;
|
|
reset_settings(M_LOW);
|
|
set_refer_output(-1);
|
|
#ifdef TINYSA4
|
|
} else if (test == 1) {
|
|
float average, p;
|
|
freq_t start = get_sweep_frequency(ST_START);
|
|
freq_t stop = get_sweep_frequency(ST_STOP);
|
|
debug_avoid = false;
|
|
in_selftest = true; // Spur search
|
|
reset_settings(M_LOW);
|
|
test_prepare(TEST_SILENCE);
|
|
setting.stored[TRACE_STORED] = true; // Prevent overwriting when used
|
|
setting.stored[TRACE_TEMP] = true;
|
|
setting.stored[TRACE_STORED2] = true;
|
|
setting.below_IF = S_OFF;
|
|
freq_t f;
|
|
#ifdef TINYSA4
|
|
setting.frequency_step = 3000;
|
|
#else
|
|
setting.auto_IF = false;
|
|
setting.frequency_IF=DEFAULT_IF;
|
|
setting.frequency_step = 30000;
|
|
#endif
|
|
if (setting.test_argument > 0) {
|
|
setting.frequency_step = setting.test_argument;
|
|
shell_printf("\n\rResetting spur table\n\r");
|
|
// int i = 0; // Index in spur table (temp_t)
|
|
dynamic_spur_table_size = 0; // Reset table before scanning
|
|
} else
|
|
shell_printf("\n\rAdding to current dynamic spur table\n\r");
|
|
|
|
set_RBW(setting.frequency_step/100);
|
|
last_spur = 0;
|
|
for (int j = 0; j < 4; j++) {
|
|
int k=0;
|
|
f = start;
|
|
average = PURE_TO_float(perform(false, 0, f, false));
|
|
vbwSteps = 1;
|
|
f += setting.frequency_step;
|
|
average += PURE_TO_float(perform(false, 1, f, false));
|
|
average /= 2.0;
|
|
f += setting.frequency_step;
|
|
shell_printf("\n\rStarting with average of %4.2f and IF at %DHz and step of %DHz till %DHz\n\r", average, setting.frequency_IF, setting.frequency_step, stop );
|
|
// while (f < DEFAULT_MAX_FREQ && !global_abort) {
|
|
while (f < stop && !global_abort) {
|
|
if ((k++ % 1000) == 0)
|
|
shell_printf("Pass %d, freq %D\r", j+1, f);
|
|
int cnt = 0;
|
|
p = 0;
|
|
#define SPUR_CHECK_COUNT 2 // 4
|
|
do {
|
|
cnt++;
|
|
p = PURE_TO_float(perform(false, 1, f, false));
|
|
#ifdef TINYSA4
|
|
#define SPUR_DELTA 10
|
|
#else
|
|
#define SPUR_DELTA 15
|
|
#endif
|
|
} while ( average + SPUR_DELTA < p && cnt < SPUR_CHECK_COUNT);
|
|
if (cnt == SPUR_CHECK_COUNT && average + SPUR_DELTA < p) {
|
|
shell_printf("Pass %d, %4.2fdBm spur at %DkHz with count %d\n\r", j+1, p,f/1000, add_spur(f, p));
|
|
}
|
|
average = (average*19+p)/20;
|
|
f += setting.frequency_step;
|
|
}
|
|
}
|
|
shell_printf("\n\rTable for IF at %D and step of %D\n\r", setting.frequency_IF, setting.frequency_step);
|
|
shell_printf("Freq(kHz), count, level(dBm), level with spur removal\n\r");
|
|
in_selftest = false;
|
|
setting.spur_removal = S_ON;
|
|
sort_spur_count(); // Reduce table to most certain spurs
|
|
if (last_spur > MAX_DYNAMIC_SPUR_TABLE_SIZE)
|
|
last_spur = MAX_DYNAMIC_SPUR_TABLE_SIZE;
|
|
sort_spur_level(); // Reduce table to only strongest spurs
|
|
if (last_spur > MAX_DYNAMIC_SPUR_TABLE_SIZE)
|
|
last_spur = MAX_DYNAMIC_SPUR_TABLE_SIZE;
|
|
sort_spur_freq();
|
|
// dynamic_spur_table_size = 0;
|
|
for (int j = 0; j < last_spur; j++) {
|
|
if ((int)stored_t[j] >= 1 && j < MAX_DYNAMIC_SPUR_TABLE_SIZE && (int)stored_t[j] > SPUR_CHECK_COUNT-2 && stored_t[j] - stored2_t[j] > 2) {
|
|
shell_printf("%d, %d, %4.2f, %4.2f\n\r", ((int)temp_t[j])/1000, (int)stored_t[j], stored2_t[j], PURE_TO_float(perform(false, 1, (freq_t)temp_t[j], false)));
|
|
dynamic_spur_table[dynamic_spur_table_size++] = temp_t[j];
|
|
}
|
|
}
|
|
sort_dynamic_spur_table();
|
|
always_use_dynamic_table = true;
|
|
reset_settings(M_LOW);
|
|
set_sweep_frequency(ST_START, start);
|
|
set_sweep_frequency(ST_STOP, stop);
|
|
#endif
|
|
} else if (false && test == 2) { // Attenuator test
|
|
in_selftest = true;
|
|
reset_settings(M_LOW);
|
|
#if 1
|
|
float reference_peak_level = 0;
|
|
int c = 0;
|
|
for (int j= 0; j < 64; j += 4 ) {
|
|
test_prepare(TEST_LEVEL);
|
|
set_attenuation(((float)j)/2.0);
|
|
if (setting.test_argument)
|
|
set_sweep_frequency(ST_CENTER, ((freq_t)setting.test_argument));
|
|
#ifdef __ULTRA__
|
|
ultra_threshold = (config.ultra_threshold == 0 ? DEFAULT_ULTRA_THRESHOLD : config.ultra_threshold);
|
|
#endif
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_validate(TEST_LEVEL); // Validate test
|
|
if (j == 0)
|
|
reference_peak_level = peakLevel;
|
|
shell_printf("Attenuation %.2fdB, measured level %.2fdBm, delta %.2fdB\n\r",((float)j)/2.0, peakLevel, peakLevel - reference_peak_level);
|
|
if ((j % 4) == 0) {
|
|
age[c++] = (uint8_t)((int)((peakLevel - reference_peak_level) * 8)+128);
|
|
}
|
|
|
|
}
|
|
shell_printf(" {");
|
|
for (int i=0; i < 16;i++)
|
|
shell_printf("%d, ", (int)(((int)age[i])-128));
|
|
shell_printf("}\n\r");
|
|
|
|
#else
|
|
test_prepare(TEST_ATTEN);
|
|
test_acquire(TEST_ATTEN); // Acquire test
|
|
test_validate(TEST_ATTEN); // Validate test
|
|
#endif
|
|
reset_settings(M_LOW);
|
|
#ifdef TINYSA4
|
|
} else if (test == 3) { // RBW step time search
|
|
#define R_TABLE_SIZE 5
|
|
static int R_table[R_TABLE_SIZE] = {1,3,-3,4,5};
|
|
|
|
int calculate_step[R_TABLE_SIZE][SI4432_RBW_count];
|
|
in_step_test = true;
|
|
in_selftest = true;
|
|
ui_mode_normal();
|
|
test_prepare(TEST_RBW);
|
|
// reset_settings(M_LOW);
|
|
setting.auto_IF = false;
|
|
#ifdef TINYSA4
|
|
int old_setting_r = setting.R;
|
|
setting.R = 1; // force to highest scan speed
|
|
setting.frequency_IF=config.frequency_IF1;
|
|
setting.step_delay = 25000;
|
|
#else
|
|
setting.frequency_IF=DEFAULT_IF;
|
|
setting.step_delay = 8000;
|
|
#endif
|
|
for (int j= 0; j < SI4432_RBW_count; j++ ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
// do_again:
|
|
#ifdef TINYSA4
|
|
for (int r=0;r<R_TABLE_SIZE;r++) {
|
|
setting.R = R_table[r]; // force to highest scan speed
|
|
#endif
|
|
test_prepare(TEST_RBW);
|
|
setting.spur_removal = S_OFF;
|
|
#if 1 // Disable for offset baseline scanning
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.repeat = 1;
|
|
#else
|
|
setting.step_delay_mode = SD_FAST;
|
|
setting.repeat = 20;
|
|
#endif
|
|
setting.step_delay = setting.step_delay * 5 / 4;
|
|
if (setting.step_delay < 1000)
|
|
setting.step_delay = 1000;
|
|
setting.offset_delay = setting.step_delay ;
|
|
setting.rbw_x10 = force_rbw(j);
|
|
#ifdef TINYSA4
|
|
shell_printf("RBW=%5.1f, R=%+d, ",setting.rbw_x10/10.0, setting.R);
|
|
#else
|
|
shell_printf("RBW=%5.1f, ",setting.rbw_x10/10.0);
|
|
#endif
|
|
#if 0
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * 1000)); // Wide
|
|
#else
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * 5000)); // Narrow
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(18000000));
|
|
#endif
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
// if (test_value == 0) {
|
|
// setting.step_delay = setting.step_delay * 4 / 5;
|
|
// goto do_again;
|
|
// }
|
|
// if (peakLevel < -35) {
|
|
// shell_printf("Peak level too low, abort\n\r");
|
|
// return;
|
|
// }
|
|
float aver_noise = 0;
|
|
for (int i=0;i<50;i++)
|
|
aver_noise += actual_t[i];
|
|
aver_noise /= 50;
|
|
float saved_aver_noise = aver_noise;
|
|
shell_printf("Start level=%6.1f, noise=%4.1f, delay=%5d\n\r",peakLevel, aver_noise, setting.step_delay);
|
|
|
|
#if 1 // Enable for step delay tuning
|
|
float saved_peakLevel = peakLevel;
|
|
while (setting.step_delay > 10 && test_value != 0 && test_value > saved_peakLevel - 1.5 && aver_noise < saved_aver_noise + 2) {
|
|
test_prepare(TEST_RBW);
|
|
setting.spur_removal = S_OFF;
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.step_delay = setting.step_delay * 4 / 5;
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * 5000));
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(18000000));
|
|
|
|
// setting.repeat = 10;
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
aver_noise = 0;
|
|
for (int i=0;i<50;i++)
|
|
aver_noise += actual_t[i];
|
|
aver_noise /= 50;
|
|
// shell_printf(" Level, noise, delay = %f, %f, %d\n\r",peakLevel, aver_noise, setting.step_delay);
|
|
}
|
|
|
|
setting.step_delay = setting.step_delay * 5 / 4; // back one level
|
|
#else
|
|
setting.step_delay = setting.step_delay * 4 / 5;
|
|
|
|
#endif
|
|
#ifdef TINYSA4
|
|
setting.offset_delay = 10000;
|
|
#else
|
|
setting.offset_delay = 1600;
|
|
#endif
|
|
#if 0 // Enable for offset tuning stepping
|
|
test_value = saved_peakLevel;
|
|
if ((uint32_t)(setting.rbw_x10 * 1000) / (sweep_points) < 8000) { // fast mode possible
|
|
while (setting.offset_delay > 0 && test_value != 0 && test_value > saved_peakLevel - 1.5) {
|
|
test_prepare(TEST_RBW);
|
|
setting.step_delay_mode = SD_FAST;
|
|
setting.offset_delay = setting.offset_delay * 4 / 5;
|
|
setting.spur_removal = S_OFF;
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * 5000)); // 50 times RBW
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(18000000)); // Limit to 18MHz
|
|
// setting.repeat = 10;
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
shell_printf(" Offset delay %f, %d\n\r",peakLevel, setting.offset_delay);
|
|
}
|
|
setting.offset_delay = setting.offset_delay * 5 / 4; // back one level
|
|
}
|
|
#endif
|
|
#ifdef TINYSA4
|
|
calculate_step[r][j] = setting.step_delay;
|
|
shell_printf("RBW=%5.1f, R=%+d, End level=%6.1f, noise=%4.1f, delay=%5d, fast delay=%d\n\r",setting.rbw_x10/10.0, setting.R, peakLevel, aver_noise, setting.step_delay, setting.offset_delay);
|
|
#else
|
|
calculate_step[j] = setting.step_delay;
|
|
shell_printf("End level=%5.1f, noise=%6.1f, delay=%5d, fast delay = %d\n\r",peakLevel, aver_noise, setting.step_delay, setting.offset_delay);
|
|
#endif
|
|
shell_printf("---------------------------------------------\n\r");
|
|
}
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
}
|
|
|
|
#ifdef TINYSA4
|
|
setting.R = old_setting_r;
|
|
#endif
|
|
for (int j= 0; j < SI4432_RBW_count; j++ ) {
|
|
#ifdef TINYSA4
|
|
for (int r=0;r<R_TABLE_SIZE;r++) {
|
|
shell_printf("RBW=%4.1f, R=%+d, time=%5d, fast delay=%4d\n\r",force_rbw(j)/10.0, R_table[r], calculate_step[r][j], setting.offset_delay);
|
|
}
|
|
#else
|
|
shell_printf("RBW=%4.1f, time=%5d, fast delay=%4d\n\r",force_rbw(j)/10.0, calculate_step[r][j], setting.offset_delay);
|
|
#endif
|
|
}
|
|
in_step_test = false;
|
|
in_selftest = false;
|
|
reset_settings(M_LOW);
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.step_delay = 0;
|
|
#endif
|
|
} else if (false && test == 4) { // Calibrate modulation frequencies
|
|
reset_settings(M_LOW);
|
|
set_mode(M_GENLOW);
|
|
set_sweep_frequency(ST_CENTER, (freq_t)30000000);
|
|
set_sweep_frequency(ST_SPAN, (freq_t)0);
|
|
setting.modulation = MO_AM;
|
|
setting.modulation_frequency = 5000;
|
|
in_selftest = true;
|
|
config.cor_am = 0;
|
|
perform(false,0, 30000000, false);
|
|
perform(false,1, 30000000, false);
|
|
config.cor_am = -(start_of_sweep_timestamp - (ONE_SECOND_TIME / setting.modulation_frequency))/8;
|
|
|
|
setting.modulation = MO_NFM;
|
|
setting.modulation_frequency = 5000;
|
|
in_selftest = true;
|
|
config.cor_nfm = 0;
|
|
perform(false,0, 30000000, false);
|
|
perform(false,1, 30000000, false);
|
|
config.cor_nfm = -(start_of_sweep_timestamp - (ONE_SECOND_TIME / setting.modulation_frequency))/8;
|
|
|
|
setting.modulation = MO_WFM;
|
|
setting.modulation_frequency = 5000;
|
|
in_selftest = true;
|
|
config.cor_wfm = 0;
|
|
perform(false,0, 30000000, false);
|
|
perform(false,1, 30000000, false);
|
|
config.cor_wfm = -(start_of_sweep_timestamp - (ONE_SECOND_TIME / setting.modulation_frequency))/8;
|
|
|
|
// shell_printf("\n\rCycle time = %d\n\r", start_of_sweep_timestamp);
|
|
reset_settings(M_LOW);
|
|
} else if (false && test == 5) {
|
|
// reset_settings(M_LOW); // Make sure we are in a defined state
|
|
in_selftest = true;
|
|
switch (setting.test_argument) {
|
|
case 0:
|
|
touch_draw_test();
|
|
area_width = AREA_WIDTH_NORMAL;
|
|
area_height = AREA_HEIGHT_NORMAL;
|
|
break;
|
|
case 1:
|
|
reset_settings(M_LOW);
|
|
set_sweep_frequency(ST_START, 0);
|
|
set_sweep_frequency(ST_STOP, 50000000);
|
|
break;
|
|
case 2:
|
|
reset_settings(M_LOW);
|
|
set_sweep_frequency(ST_START, 300000000);
|
|
set_sweep_frequency(ST_STOP, DEFAULT_MAX_FREQ);
|
|
break;
|
|
case 3:
|
|
reset_settings(M_HIGH);
|
|
set_sweep_frequency(ST_START, 300000000);
|
|
set_sweep_frequency(ST_STOP, DEFAULT_MAX_FREQ);
|
|
break;
|
|
case 4:
|
|
reset_settings(M_GENLOW);
|
|
set_sweep_frequency(ST_CENTER, 20000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.mute = false;
|
|
break;
|
|
case 5:
|
|
reset_settings(M_GENHIGH);
|
|
set_sweep_frequency(ST_CENTER, 320000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
break;
|
|
}
|
|
} else if (false && test == 6) {
|
|
in_selftest = true; // MCU Spur search
|
|
reset_settings(M_LOW);
|
|
test_prepare(TEST_SPUR);
|
|
set_RBW(300);
|
|
#ifdef TINYSA4
|
|
setting.extra_lna = true;
|
|
#endif
|
|
for (int i = 0; i < 31; i++) {
|
|
hsical = (RCC->CR & 0xff00) >> 8;
|
|
RCC->CR &= RCC_CR_HSICAL;
|
|
RCC->CR |= ( (hsical) << 8 );
|
|
RCC->CR &= RCC_CR_HSITRIM | RCC_CR_HSION; /* CR Reset value. */
|
|
RCC->CR |= (i << 3 ) & RCC_CR_HSITRIM;
|
|
test_acquire(TEST_SPUR); // Acquire test
|
|
shell_printf("%d: %9.3q\n\r",i, peakFreq);
|
|
test_validate(TEST_SPUR); // Validate test
|
|
}
|
|
#ifdef TINYSA4
|
|
} else if (test == 7) { // RBW level test, param -1 keeps correction
|
|
int arg = setting.test_argument;
|
|
in_selftest = true;
|
|
ui_mode_normal();
|
|
set_scale(2);
|
|
set_reflevel(-22);
|
|
shell_printf("\n\r");
|
|
float first_level=-35.0;
|
|
// setting.R = 3;
|
|
if (arg == -1) {
|
|
switch_SI4463_RSSI_correction(false);
|
|
setting.test_argument = 0;
|
|
}
|
|
for (int j= SI4432_RBW_count-1; j >= 0; j-- ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
test_prepare(TEST_LEVEL);
|
|
setting.rbw_x10 = force_rbw(j);
|
|
osalThreadSleepMilliseconds(200);
|
|
// setting.spur_removal = S_ON;
|
|
setting.R = 3;
|
|
set_average(0,AV_100);
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_validate(TEST_LEVEL); // Validate test
|
|
if (j == SI4432_RBW_count-1)
|
|
first_level = peakLevel;
|
|
shell_printf("RBW = %7.1fk, level = %6.2f, corr = %6.2f\n\r",actual_rbw_x10/10.0 , peakLevel, (first_level - peakLevel)*10.0 );
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
}
|
|
#if 1
|
|
for (int k = 0; k< 4; k++) {
|
|
shell_printf("\n\r%d ", k);
|
|
for (int j= SI4432_RBW_count-1; j >= 0; j-- ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
test_prepare(TEST_RBW);
|
|
// setting.step_delay_mode = SD_PRECISE;
|
|
set_repeat(5);
|
|
setting.rbw_x10 = force_rbw(j);
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * (1000 << k)));
|
|
set_average(0,AV_100);
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
// if (j == SI4432_RBW_count-1)
|
|
// first_level = peakLevel;
|
|
// shell_printf("RBW = %7.1fk, level = %6.2f, corr = %6.2f\n\r",actual_rbw_x10/10.0 , peakLevel, (first_level - peakLevel)*10.0 );
|
|
shell_printf("%6.2f ", (first_level - peakLevel)*10.0 );
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
if (operation_requested) goto abort;
|
|
}
|
|
}
|
|
#endif
|
|
abort:
|
|
shell_printf("\n\r");
|
|
setting.R = 0;
|
|
switch_SI4463_RSSI_correction(true);
|
|
reset_settings(M_LOW);
|
|
} else if (test == 8) { // RBW level test
|
|
in_selftest = true;
|
|
ui_mode_normal();
|
|
// set_scale(2);
|
|
set_reflevel(-100);
|
|
shell_printf("\n\r");
|
|
float first_level=-166.0;
|
|
// setting.R = 3;
|
|
switch_SI4463_RSSI_correction(false);
|
|
for (int j= SI4432_RBW_count-1; j >= 0; j-- ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
test_prepare(TEST_NOISE);
|
|
markers[0].mtype = M_NOISE | M_AVER;
|
|
setting.rbw_x10 = force_rbw(j);
|
|
setting.extra_lna = true;
|
|
osalThreadSleepMilliseconds(200);
|
|
set_average(0,AV_100);
|
|
for (int w=0; w<50; w++) {
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
}
|
|
test_validate(TEST_NOISE); // Validate test
|
|
peakLevel += - logf(actual_rbw_x10*100.0) * (10.0/logf(10.0))
|
|
#ifdef TINYSA4
|
|
+ SI4463_noise_correction_x10/10.0
|
|
#endif
|
|
;
|
|
if (j == SI4432_RBW_count-1)
|
|
first_level = peakLevel;
|
|
shell_printf("RBW = %7.1fk, level = %6.2f, corr = %6.2f\n\r",actual_rbw_x10/10.0 , peakLevel, (first_level - peakLevel)*10.0 );
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
}
|
|
#if 1 // Does not center on frequency!!!!!
|
|
|
|
for (int k = 0; k< 4; k++) {
|
|
shell_printf("\n\r%d ", k);
|
|
for (int j= SI4432_RBW_count-1; j >= 0; j-- ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
test_prepare(TEST_NOISE_RBW);
|
|
// setting.step_delay_mode = SD_PRECISE;
|
|
set_repeat(5);
|
|
setting.rbw_x10 = force_rbw(j);
|
|
setting.extra_lna = true;
|
|
osalThreadSleepMilliseconds(200);
|
|
markers[0].mtype = M_NOISE | M_AVER;
|
|
set_sweep_frequency(ST_SPAN, (freq_t)(setting.rbw_x10 * (1000 << k)));
|
|
set_average(0,AV_100);
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
test_acquire(TC_LEVEL); // Acquire test
|
|
test_validate(TEST_NOISE_RBW); // Validate test
|
|
peakLevel += - logf(actual_rbw_x10*100.0) * (10.0/logf(10.0))
|
|
#ifdef TINYSA4
|
|
+ SI4463_noise_correction_x10/10.0
|
|
#endif
|
|
;
|
|
// if (j == SI4432_RBW_count-1)
|
|
// first_level = peakLevel;
|
|
// shell_printf("RBW = %7.1fk, level = %6.2f, corr = %6.2f\n\r",actual_rbw_x10/10.0 , peakLevel, (first_level - peakLevel)*10.0 );
|
|
shell_printf("%6.2f ", (first_level - peakLevel)*10.0 );
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
if (operation_requested) goto abort;
|
|
}
|
|
if (operation_requested) break;
|
|
}
|
|
#endif
|
|
shell_printf("\n\r");
|
|
setting.R = 0;
|
|
switch_SI4463_RSSI_correction(true);
|
|
reset_settings(M_LOW);
|
|
} else if (test == 9) { // temperature level
|
|
in_selftest = true;
|
|
ui_mode_normal();
|
|
set_scale(2);
|
|
set_reflevel(-22);
|
|
float first_level=-23.5;
|
|
while (Si446x_get_temp() < 45.0) {
|
|
// setting.R = 3;
|
|
test_prepare(TEST_LEVEL);
|
|
test_acquire(TEST_LEVEL); // Acquire test
|
|
test_validate(TEST_LEVEL); // Validate test
|
|
shell_printf("Temp = %4.1f, level = %6.2f, delta = %6.2f\n\r",Si446x_get_temp() , peakLevel, (first_level - peakLevel)*10.0 );
|
|
if (operation_requested) break;
|
|
}
|
|
} else if (test == 10) { // Test 30MHz spurs
|
|
// reset_settings(M_LOW);
|
|
set_refer_output(-1);
|
|
if (setting.test_argument > 0)
|
|
set_R(((int)setting.test_argument) % 10);
|
|
int freq_step = 30;
|
|
if (setting.test_argument > 9)
|
|
freq_step = (((int)setting.test_argument)/10) * 1000000 ;
|
|
set_attenuation(0);
|
|
int test_case = TEST_POWER;
|
|
for (freq_t f=freq_step; f<900000000; f += freq_step) {
|
|
set_sweep_points(51);
|
|
set_sweep_frequency(ST_CENTER, f);
|
|
set_sweep_frequency(ST_SPAN, 3000);
|
|
test_acquire(test_case); // Acquire test
|
|
test_validate(test_case);
|
|
shell_printf("Freq = %8.3fMHz, level = %6.2f\n\r", ((float)peakFreq) / 1000000.0, peakLevel);
|
|
if (operation_requested) break;
|
|
}
|
|
set_sweep_points(450);
|
|
reset_settings(M_LOW);
|
|
#endif
|
|
}
|
|
|
|
|
|
show_test_info = FALSE;
|
|
in_selftest = false;
|
|
test_wait = false;
|
|
sweep_mode = SWEEP_ENABLE;
|
|
}
|
|
|
|
void reset_calibration(void)
|
|
{
|
|
config.high_level_offset = 100;
|
|
config.low_level_offset = 100;
|
|
#ifdef TINYSA4
|
|
config.lna_level_offset = 100;
|
|
#endif
|
|
}
|
|
|
|
void calibrate_modulation(int modulation, int8_t *correction)
|
|
{
|
|
if (*correction == 0) {
|
|
setting.modulation = modulation;
|
|
setting.modulation_frequency = 5000;
|
|
in_selftest = true;
|
|
perform(false,0, 30000000, false);
|
|
perform(false,1, 30000000, false);
|
|
in_selftest = false;
|
|
*correction = -(start_of_sweep_timestamp - (ONE_SECOND_TIME / setting.modulation_frequency ))/8;
|
|
setting.modulation = M_OFF;
|
|
}
|
|
}
|
|
|
|
#define CALIBRATE_RBWS 1
|
|
const int power_rbw [5] = { 100, 300, 30, 10, 3 };
|
|
|
|
void calibrate(void)
|
|
{
|
|
int local_test_status;
|
|
int old_sweep_points = setting._sweep_points;
|
|
#ifdef TINYSA4
|
|
setting.test_argument = -7;
|
|
self_test(0);
|
|
int if_error = peakFreq - 30000000;
|
|
if (if_error > -1000000 && if_error < 1000000) {
|
|
config.frequency_IF1 += if_error;
|
|
fill_spur_table();
|
|
}
|
|
#endif
|
|
reset_calibration();
|
|
#ifdef TINYSA4
|
|
bool calibrate_lna = false;
|
|
#endif
|
|
bool calibrate_switch = false;
|
|
again:
|
|
for (int k = 0; k<2; k++) {
|
|
for (int j= 0; j < CALIBRATE_RBWS; j++ ) {
|
|
#if 1
|
|
reset_settings(M_LOW);
|
|
set_refer_output(0);
|
|
#ifdef TINYSA4
|
|
set_attenuation(0);
|
|
#else
|
|
set_attenuation(10);
|
|
#endif
|
|
set_sweep_frequency(ST_CENTER, 30000000);
|
|
set_sweep_frequency(ST_SPAN, 5000000);
|
|
setting.rbw_x10 = 3000;
|
|
int test_case = TEST_POWER;
|
|
setting.atten_step = calibrate_switch;
|
|
#ifdef TINYSA4
|
|
if (!calibrate_switch)
|
|
set_extra_lna(calibrate_lna);
|
|
#endif
|
|
set_average(0, AV_100);
|
|
for (int m=1; m<20; m++) {
|
|
test_acquire(test_case); // Acquire test
|
|
local_test_status = test_validate(test_case);
|
|
}
|
|
local_test_status = TS_PASS;
|
|
#else
|
|
// set_RBW(power_rbw[j]);
|
|
// set_sweep_points(21);
|
|
#if 0
|
|
int test_case = TEST_POWER;
|
|
test_prepare(test_case);
|
|
setting.step_delay_mode = SD_PRECISE;
|
|
#ifndef TINYSA4
|
|
setting.agc = S_ON;
|
|
setting.lna = S_OFF;
|
|
// set_RBW(6000);
|
|
#else
|
|
set_RBW(3000);
|
|
#endif
|
|
set_attenuation(10);
|
|
set_repeat(5);
|
|
setting.spur_removal = S_OFF;
|
|
set_average(0,AV_100);
|
|
test_acquire(test_case); // Acquire test
|
|
test_acquire(test_case); // Acquire test
|
|
test_acquire(test_case); // Acquire test
|
|
local_test_status = test_validate(test_case); // Validate test
|
|
#else
|
|
int test_case = TEST_LEVEL;
|
|
#ifdef TINYSA4
|
|
if (calibrate_lna)
|
|
test_case += 1;
|
|
#endif
|
|
test_prepare(test_case);
|
|
set_RBW(3000);
|
|
set_attenuation(10);
|
|
set_average(0,AV_100);
|
|
test_acquire(test_case); // Acquire test
|
|
test_acquire(test_case); // Acquire test
|
|
test_acquire(test_case); // Acquire test
|
|
test_acquire(test_case); // Acquire test
|
|
local_test_status = test_validate(test_case); // Validate test also sets attenuation if zero span
|
|
#endif
|
|
#endif
|
|
if (k ==0 || k == 1) {
|
|
if (peakLevel < -50) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Signal level too low", 30, 140);
|
|
ili9341_drawstring_7x13("Check cable between High and Low connectors", 30, 160);
|
|
goto quit;
|
|
}
|
|
// chThdSleepMilliseconds(1000);
|
|
if (local_test_status != TS_PASS) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Calibration failed", 30, 140);
|
|
goto quit;
|
|
} else {
|
|
set_actual_power(CAL_LEVEL); // Should be -23.5dBm (V0.2) OR 25 (V0.3)
|
|
chThdSleepMilliseconds(1000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#ifdef TINYSA4
|
|
if (!calibrate_lna) {
|
|
calibrate_lna = true;
|
|
goto again;
|
|
}
|
|
#endif
|
|
if (!calibrate_switch) {
|
|
calibrate_switch = true;
|
|
goto again;
|
|
}
|
|
#if 0 // No high input calibration as CAL OUTPUT is unreliable
|
|
|
|
set_RBW(100);
|
|
test_prepare(TEST_POWER+1);
|
|
test_acquire(TEST_POWER+1); // Acquire test
|
|
float last_peak_level = peakLevel;
|
|
local_test_status = test_validate(TEST_POWER+1); // Validate test
|
|
chThdSleepMilliseconds(1000);
|
|
|
|
config.high_level_offset = 0; /// Preliminary setting
|
|
|
|
for (int j = 0; j < CALIBRATE_RBWS; j++) {
|
|
set_RBW(power_rbw[j]);
|
|
test_prepare(TEST_POWER+2);
|
|
test_acquire(TEST_POWER+2); // Acquire test
|
|
local_test_status = test_validate(TEST_POWER+2); // Validate test
|
|
// if (local_test_status != TS_PASS) { // Do not validate due to variations in SI4432
|
|
// ili9341_set_foreground(BRIGHT_COLOR_RED);
|
|
// ili9341_drawstring_7x13("Calibration failed", 30, 120);
|
|
// goto quit;
|
|
// } else
|
|
set_actual_power(last_peak_level);
|
|
chThdSleepMilliseconds(1000);
|
|
}
|
|
|
|
#endif
|
|
config_save();
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
ili9341_drawstring_7x13("Calibration complete", 40, 140);
|
|
quit:
|
|
ili9341_drawstring_7x13("Touch screen to continue", 40, 200);
|
|
wait_user();
|
|
ili9341_clear_screen();
|
|
set_sweep_points(old_sweep_points);
|
|
in_selftest = false;
|
|
// set_refer_output(-1);
|
|
#ifdef TINYSA4
|
|
reset_settings(M_LOW);
|
|
// set_extra_lna(false);
|
|
// set_average(0,AV_OFF);
|
|
set_refer_output(-1);
|
|
#else
|
|
reset_settings(M_LOW);
|
|
set_refer_output(-1);
|
|
#endif
|
|
test_wait = false;
|
|
}
|
|
|
|
|
|
#ifdef TINYSA4
|
|
|
|
#define PI 3.1415926535897932384626433832795
|
|
|
|
|
|
// Fast Fourier Transform. length must be exactly 2^n.
|
|
// inverse = true computes InverseFFT
|
|
// inverse = false computes FFT.
|
|
// Overwrites the real and imaginary arrays in-place
|
|
|
|
void FFT(float *real, float *imag, int length, bool inverse)
|
|
{
|
|
|
|
float wreal, wpreal, wimag, wpimag, theta;
|
|
float tempreal, tempimag, tempwreal, direction;
|
|
|
|
int Addr, Position, Mask, BitRevAddr, PairAddr;
|
|
int m, k;
|
|
|
|
|
|
direction = -1.0; // direction of rotating phasor for FFT
|
|
|
|
if(inverse)
|
|
direction = 1.0; // direction of rotating phasor for IFFT
|
|
|
|
// bit-reverse the addresses of both the real and imaginary arrays
|
|
// real[0..length-1] and imag[0..length-1] are the paired complex numbers
|
|
|
|
for (Addr=0; Addr<length; Addr++)
|
|
{
|
|
// Derive Bit-Reversed Address
|
|
BitRevAddr = 0;
|
|
Position = length >> 1;
|
|
Mask = Addr;
|
|
while (Mask)
|
|
{
|
|
if(Mask & 1)
|
|
BitRevAddr += Position;
|
|
Mask >>= 1;
|
|
Position >>= 1;
|
|
}
|
|
|
|
if (BitRevAddr > Addr) // Swap
|
|
{
|
|
float s;
|
|
s = real[BitRevAddr]; // real part
|
|
real[BitRevAddr] = real[Addr];
|
|
real[Addr] = s;
|
|
s = imag[BitRevAddr]; // imaginary part
|
|
imag[BitRevAddr] = imag[Addr];
|
|
imag[Addr] = s;
|
|
}
|
|
}
|
|
|
|
// FFT, IFFT Kernel
|
|
|
|
for (k=1; k < length; k <<= 1)
|
|
{
|
|
theta = direction * PI / (float)k;
|
|
wpimag = sinf(theta);
|
|
wpreal = cosf(theta);
|
|
wreal = 1.0;
|
|
wimag = 0.0;
|
|
|
|
for (m=0; m < k; m++)
|
|
{
|
|
for (Addr = m; Addr < length; Addr += (k*2))
|
|
{
|
|
PairAddr = Addr + k;
|
|
|
|
tempreal = wreal * real[PairAddr] - wimag * imag[PairAddr];
|
|
tempimag = wreal * imag[PairAddr] + wimag * real[PairAddr];
|
|
real[PairAddr] = real[Addr] - tempreal;
|
|
imag[PairAddr] = imag[Addr] - tempimag;
|
|
real[Addr] += tempreal;
|
|
imag[Addr] += tempimag;
|
|
}
|
|
tempwreal = wreal;
|
|
wreal = wreal * wpreal - wimag * wpimag;
|
|
wimag = wimag * wpreal + tempwreal * wpimag;
|
|
}
|
|
}
|
|
|
|
if(inverse) // Normalize the IFFT coefficients
|
|
for(int i=0; i<length; i++)
|
|
{
|
|
real[i] /= (float)length;
|
|
imag[i] /= (float)length;
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#pragma GCC pop_options
|
|
|
|
#if 0 // fixed point FFT
|
|
|
|
/* fix_fft.c - Fixed-point in-place Fast Fourier Transform */
|
|
/*
|
|
All data are fixed-point short integers, in which -32768
|
|
to +32768 represent -1.0 to +1.0 respectively. Integer
|
|
arithmetic is used for speed, instead of the more natural
|
|
floating-point.
|
|
|
|
For the forward FFT (time -> freq), fixed scaling is
|
|
performed to prevent arithmetic overflow, and to map a 0dB
|
|
sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
|
|
coefficients. The return value is always 0.
|
|
|
|
For the inverse FFT (freq -> time), fixed scaling cannot be
|
|
done, as two 0dB coefficients would sum to a peak amplitude
|
|
of 64K, overflowing the 32k range of the fixed-point integers.
|
|
Thus, the fix_fft() routine performs variable scaling, and
|
|
returns a value which is the number of bits LEFT by which
|
|
the output must be shifted to get the actual amplitude
|
|
(i.e. if fix_fft() returns 3, each value of fr[] and fi[]
|
|
must be multiplied by 8 (2**3) for proper scaling.
|
|
Clearly, this cannot be done within fixed-point short
|
|
integers. In practice, if the result is to be used as a
|
|
filter, the scale_shift can usually be ignored, as the
|
|
result will be approximately correctly normalized as is.
|
|
|
|
Written by: Tom Roberts 11/8/89
|
|
Made portable: Malcolm Slaney 12/15/94 malcolm@interval.com
|
|
Enhanced: Dimitrios P. Bouras 14 Jun 2006 dbouras@ieee.org
|
|
*/
|
|
|
|
#define N_WAVE 1024 /* full length of Sinewave[] */
|
|
#define LOG2_N_WAVE 10 /* log2(N_WAVE) */
|
|
|
|
/*
|
|
Henceforth "short" implies 16-bit word. If this is not
|
|
the case in your architecture, please replace "short"
|
|
with a type definition which *is* a 16-bit word.
|
|
*/
|
|
|
|
/*
|
|
Since we only use 3/4 of N_WAVE, we define only
|
|
this many samples, in order to conserve data space.
|
|
*/
|
|
short Sinewave[N_WAVE-N_WAVE/4] = {
|
|
0, 201, 402, 603, 804, 1005, 1206, 1406,
|
|
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
|
|
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
|
|
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
|
|
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
|
|
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
|
|
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
|
|
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
|
|
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
|
|
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
|
|
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
|
|
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
|
|
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
|
|
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
|
|
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
|
|
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
|
|
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
|
|
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
|
|
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
|
|
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
|
|
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
|
|
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
|
|
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
|
|
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
|
|
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
|
|
30851, 30918, 30984, 31049, 31113, 31175, 31236, 31297,
|
|
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
|
|
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
|
|
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
|
|
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
|
|
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
|
|
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
|
|
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
|
|
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
|
|
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
|
|
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
|
|
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
|
|
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
|
|
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
|
|
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
|
|
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
|
|
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
|
|
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
|
|
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
|
|
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
|
|
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
|
|
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
|
|
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
|
|
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
|
|
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
|
|
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
|
|
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
|
|
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
|
|
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
|
|
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
|
|
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
|
|
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
|
|
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
|
|
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
|
|
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
|
|
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
|
|
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
|
|
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
|
|
1607, 1406, 1206, 1005, 804, 603, 402, 201,
|
|
0, -201, -402, -603, -804, -1005, -1206, -1406,
|
|
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
|
|
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
|
|
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
|
|
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
|
|
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
|
|
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
|
|
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
|
|
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
|
|
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
|
|
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
|
|
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
|
|
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
|
|
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
|
|
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
|
|
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
|
|
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
|
|
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
|
|
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
|
|
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
|
|
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
|
|
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
|
|
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
|
|
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
|
|
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
|
|
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
|
|
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
|
|
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
|
|
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
|
|
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
|
|
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
|
|
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
|
|
};
|
|
|
|
/*
|
|
FIX_MPY() - fixed-point multiplication & scaling.
|
|
Substitute inline assembly for hardware-specific
|
|
optimization suited to a particluar DSP processor.
|
|
Scaling ensures that result remains 16-bit.
|
|
*/
|
|
inline short FIX_MPY(short a, short b)
|
|
{
|
|
/* shift right one less bit (i.e. 15-1) */
|
|
int c = ((int)a * (int)b) >> 14;
|
|
/* last bit shifted out = rounding-bit */
|
|
b = c & 0x01;
|
|
/* last shift + rounding bit */
|
|
a = (c >> 1) + b;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
fix_fft() - perform forward/inverse fast Fourier transform.
|
|
fr[n],fi[n] are real and imaginary arrays, both INPUT AND
|
|
RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to
|
|
0 for forward transform (FFT), or 1 for iFFT.
|
|
*/
|
|
int fix_fft(short fr[], short fi[], short m, short inverse)
|
|
{
|
|
int mr, nn, i, j, l, k, istep, n, scale, shift;
|
|
short qr, qi, tr, ti, wr, wi;
|
|
|
|
n = 1 << m;
|
|
|
|
/* max FFT size = N_WAVE */
|
|
if (n > N_WAVE)
|
|
return -1;
|
|
|
|
mr = 0;
|
|
nn = n - 1;
|
|
scale = 0;
|
|
|
|
/* decimation in time - re-order data */
|
|
for (m=1; m<=nn; ++m) {
|
|
l = n;
|
|
do {
|
|
l >>= 1;
|
|
} while (mr+l > nn);
|
|
mr = (mr & (l-1)) + l;
|
|
|
|
if (mr <= m)
|
|
continue;
|
|
tr = fr[m];
|
|
fr[m] = fr[mr];
|
|
fr[mr] = tr;
|
|
ti = fi[m];
|
|
fi[m] = fi[mr];
|
|
fi[mr] = ti;
|
|
}
|
|
|
|
l = 1;
|
|
k = LOG2_N_WAVE-1;
|
|
while (l < n) {
|
|
if (inverse) {
|
|
/* variable scaling, depending upon data */
|
|
shift = 0;
|
|
for (i=0; i<n; ++i) {
|
|
j = fr[i];
|
|
if (j < 0)
|
|
j = -j;
|
|
m = fi[i];
|
|
if (m < 0)
|
|
m = -m;
|
|
if (j > 16383 || m > 16383) {
|
|
shift = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (shift)
|
|
++scale;
|
|
} else {
|
|
/*
|
|
fixed scaling, for proper normalization --
|
|
there will be log2(n) passes, so this results
|
|
in an overall factor of 1/n, distributed to
|
|
maximize arithmetic accuracy.
|
|
*/
|
|
shift = 1;
|
|
}
|
|
/*
|
|
it may not be obvious, but the shift will be
|
|
performed on each data point exactly once,
|
|
during this pass.
|
|
*/
|
|
istep = l << 1;
|
|
for (m=0; m<l; ++m) {
|
|
j = m << k;
|
|
/* 0 <= j < N_WAVE/2 */
|
|
wr = Sinewave[j+N_WAVE/4];
|
|
wi = -Sinewave[j];
|
|
if (inverse)
|
|
wi = -wi;
|
|
if (shift) {
|
|
wr >>= 1;
|
|
wi >>= 1;
|
|
}
|
|
for (i=m; i<n; i+=istep) {
|
|
j = i + l;
|
|
tr = FIX_MPY(wr,fr[j]) - FIX_MPY(wi,fi[j]);
|
|
ti = FIX_MPY(wr,fi[j]) + FIX_MPY(wi,fr[j]);
|
|
qr = fr[i];
|
|
qi = fi[i];
|
|
if (shift) {
|
|
qr >>= 1;
|
|
qi >>= 1;
|
|
}
|
|
fr[j] = qr - tr;
|
|
fi[j] = qi - ti;
|
|
fr[i] = qr + tr;
|
|
fi[i] = qi + ti;
|
|
}
|
|
}
|
|
--k;
|
|
l = istep;
|
|
}
|
|
return scale;
|
|
}
|
|
|
|
/*
|
|
fix_fftr() - forward/inverse FFT on array of real numbers.
|
|
Real FFT/iFFT using half-size complex FFT by distributing
|
|
even/odd samples into real/imaginary arrays respectively.
|
|
In order to save data space (i.e. to avoid two arrays, one
|
|
for real, one for imaginary samples), we proceed in the
|
|
following two steps: a) samples are rearranged in the real
|
|
array so that all even samples are in places 0-(N/2-1) and
|
|
all imaginary samples in places (N/2)-(N-1), and b) fix_fft
|
|
is called with fr and fi pointing to index 0 and index N/2
|
|
respectively in the original array. The above guarantees
|
|
that fix_fft "sees" consecutive real samples as alternating
|
|
real and imaginary samples in the complex array.
|
|
*/
|
|
int fix_fftr(short f[], int m, int inverse)
|
|
{
|
|
int i, N = 1<<(m-1), scale = 0;
|
|
short tt, *fr=f, *fi=&f[N];
|
|
|
|
if (inverse)
|
|
scale = fix_fft(fi, fr, m-1, inverse);
|
|
for (i=1; i<N; i+=2) {
|
|
tt = f[N+i-1];
|
|
f[N+i-1] = f[i];
|
|
f[i] = tt;
|
|
}
|
|
if (! inverse)
|
|
scale = fix_fft(fi, fr, m-1, inverse);
|
|
return scale;
|
|
}
|
|
#endif
|