You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tinySA/si4468.c

1923 lines
49 KiB

/*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "nanovna.h"
#include <math.h>
#include "si4432.h"
#include "spi.h"
#pragma GCC push_options
#pragma GCC optimize ("O2")
// Define for use hardware SPI mode
#define USE_HARDWARE_SPI_MODE
// 10MHz clock
#define SI4432_10MHZ 10000000U
// !!!! FROM ili9341.c for disable it !!!!
//#define LCD_CS_HIGH palSetPad(GPIOB, GPIOB_LCD_CS)
#define SI_CS_LOW palClearLine(LINE_RX_SEL)
#define SI_CS_HIGH palSetLine(LINE_RX_SEL)
#define SI_SDN_LOW palClearLine(LINE_RX_SDN)
#define SI_SDN_HIGH palSetLine(LINE_RX_SDN)
// Hardware or software SPI use
#ifdef USE_HARDWARE_SPI_MODE
#define SI4432_SPI SPI1
//#define SI4432_SPI_SPEED SPI_BR_DIV64
//#define SI4432_SPI_SPEED SPI_BR_DIV32
#define SI4432_SPI_SPEED SPI_BR_DIV2
//#define ADF_SPI_SPEED SPI_BR_DIV64
//#define ADF_SPI_SPEED SPI_BR_DIV32
#define ADF_SPI_SPEED SPI_BR_DIV2
#define PE_SPI_SPEED SPI_BR_DIV32
static uint32_t old_spi_settings;
#else
static uint32_t old_port_moder;
static uint32_t new_port_moder;
#endif
#define SPI1_CLK_HIGH palSetPad(GPIOB, GPIOB_SPI_SCLK)
#define SPI1_CLK_LOW palClearPad(GPIOB, GPIOB_SPI_SCLK)
#define SPI1_SDI_HIGH palSetPad(GPIOB, GPIOB_SPI_MOSI)
#define SPI1_SDI_LOW palClearPad(GPIOB, GPIOB_SPI_MOSI)
#define SPI1_RESET palClearPort(GPIOB, (1<<GPIOB_SPI_SCLK)|(1<<GPIOB_SPI_MOSI))
#define SPI1_SDO ((palReadPort(GPIOB)>>GPIOB_SPI_MISO)&1)
#define SPI1_portSDO (palReadPort(GPIOB)&(1<<GPIOB_SPI_MISO))
#ifdef __PE4302__
#define CS_PE_HIGH palSetLine(LINE_PE_SEL)
#define CS_PE_LOW palClearLine(LINE_PE_SEL)
#endif
//#define MAXLOG 1024
//unsigned char SI4432_logging[MAXLOG];
//volatile int log_index = 0;
//#define SI4432_log(X) { if (log_index < MAXLOG) SI4432_logging[log_index++] = X; }
#define SI4432_log(X)
void start_SI4432_SPI_mode(void){
#ifdef USE_HARDWARE_SPI_MODE
old_spi_settings = SI4432_SPI->CR1;
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
#else
// Init legs mode for software bitbang
old_port_moder = GPIOB->MODER;
new_port_moder = old_port_moder & ~(PIN_MODE_ANALOG(GPIOB_SPI_SCLK)|PIN_MODE_ANALOG(GPIOB_SPI_MISO)|PIN_MODE_ANALOG(GPIOB_SPI_MOSI));
new_port_moder|= PIN_MODE_OUTPUT(GPIOB_SPI_SCLK)|PIN_MODE_INPUT(GPIOB_SPI_MISO)|PIN_MODE_OUTPUT(GPIOB_SPI_MOSI);
GPIOB->MODER = new_port_moder;
// Pull down SPI
SPI1_SDI_LOW;
SPI1_CLK_LOW;
#endif
}
void stop_SI4432_SPI_mode(void){
#ifdef USE_HARDWARE_SPI_MODE
SI4432_SPI->CR1 = old_spi_settings;
#else
// Restore hardware SPI
GPIOB->MODER = old_port_moder;
#endif
}
static void shiftOut(uint8_t val)
{
#ifdef USE_HARDWARE_SPI_MODE
while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI));
SPI_WRITE_8BIT(SI4432_SPI, val);
while (SPI_IS_BUSY(SI4432_SPI)) // drop rx and wait tx
(void)SPI_READ_8BIT(SI4432_SPI);
#else
SI4432_log(SI4432_Sel);
SI4432_log(val);
uint8_t i = 0;
do {
SPI1_SDI_HIGH;
SPI1_CLK_HIGH;
SPI1_RESET;
val<<=1;
}while((++i) & 0x07);
#endif
}
static uint8_t shiftIn(void)
{
#ifdef USE_HARDWARE_SPI_MODE
// while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI));
SPI_WRITE_8BIT(SI4432_SPI, 0xFF);
while (SPI_IS_BUSY(SI4432_SPI) || SPI_RX_IS_EMPTY(SI4432_SPI)) ; // drop rx and wait tx
// while (); //wait rx data in buffer
return SPI_READ_8BIT(SI4432_SPI);
#else
uint32_t value = 0;
uint8_t i = 0;
do {
value<<=1;
SPI1_CLK_HIGH;
value|=SPI1_portSDO;
SPI1_CLK_LOW;
}while((++i) & 0x07);
return value>>GPIOB_SPI_MISO;
#endif
}
uint32_t SI4432_step_delay = 1500;
uint32_t SI4432_offset_delay = 1500;
#define MINIMUM_WAIT_FOR_RSSI 280
//------------PE4302 -----------------------------------------------
#ifdef __PE4302__
// Comment out this define to use parallel mode PE4302
#define PE4302_en 10
void PE4302_init(void) {
CS_PE_LOW;
}
#define PE4302_DELAY 100
#if 0
void PE4302_shiftOut(uint8_t val)
{
uint8_t i;
SI4432_log(SI4432_Sel);
SI4432_log(val);
for (i = 0; i < 8; i++) {
if (val & (1 << (7 - i)))
SPI1_SDI_HIGH;
else
SPI1_SDI_LOW;
// my_microsecond_delay(PE4302_DELAY);
SPI1_CLK_HIGH;
// my_microsecond_delay(PE4302_DELAY);
SPI1_CLK_LOW;
// my_microsecond_delay(PE4302_DELAY);
}
}
#endif
static unsigned char old_attenuation = 255;
bool PE4302_Write_Byte(unsigned char DATA )
{
if (old_attenuation == DATA)
return false;
// my_microsecond_delay(PE4302_DELAY);
// SPI1_CLK_LOW;
// my_microsecond_delay(PE4302_DELAY);
// PE4302_shiftOut(DATA);
set_SPI_mode(SPI_MODE_SI);
if (SI4432_SPI_SPEED != PE_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, PE_SPI_SPEED);
shiftOut(DATA);
// my_microsecond_delay(PE4302_DELAY);
CS_PE_HIGH;
// my_microsecond_delay(PE4302_DELAY);
CS_PE_LOW;
// my_microsecond_delay(PE4302_DELAY);
if (SI4432_SPI_SPEED != PE_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
return true;
}
#endif
//------------------------------- ADF4351 -------------------------------------
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))
#define CS_ADF0_HIGH palSetLine(LINE_LO_SEL)
#define CS_ADF1_HIGH palSetLine(LINE_LO_SEL)
#define CS_ADF0_LOW palClearLine(LINE_LO_SEL)
#define CS_ADF1_LOW palClearLine(LINE_LO_SEL)
//uint32_t t_R[6] = {0x320000, 0x8008011, 0x4E42, 0x4B3,0x8C803C , 0x580005} ; //25 MHz ref
#ifdef TINYSA4_PROTO
uint32_t registers[6] = {0xC80000, 0x8008011, 0x1800C642, 0x48963,0xA5003C , 0x580005} ; //10 MHz ref
#else
uint32_t registers[6] = {0xA00000, 0x8000011, 0x4E42, 0x4B3,0xDC003C , 0x580005} ; //10 MHz ref
#endif
uint32_t old_registers[6];
bool reg_dirty[6] = {true, true, true, true, true, true};
int debug = 0;
ioline_t ADF4351_LE[2] = { LINE_LO_SEL, LINE_LO_SEL};
//int ADF4351_Mux = 7;
bool ADF4351_frequency_changed = false;
//#define DEBUG(X) // Serial.print( X )
//#define DEBUGLN(X) Serial.println( X )
//#define DEBUGFLN(X,Y) Serial.println( X,Y )
//#define DEBUGF(X,Y) Serial.print( X,Y )
#define DEBUG(X)
#define DEBUGLN(X)
#ifdef TINYSA4_PROTO
#define XTAL 29999960
#else
#define XTAL 26000000
#endif
//double RFout; //Output freq in MHz
uint64_t PFDRFout[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000}; //Reference freq in MHz
//uint64_t Chrystal[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000};
//double FRACF; // Temp
int64_t
// INTA, // Temp
ADF4350_modulo = 0, // Linked to spur table!!!!!
// MOD,
// FRAC, //Temp
target_freq;
uint8_t OutputDivider; // Temp
uint8_t lock=2; //Not used
int old_R = 0;
// Lock = A4
void ADF4351_Setup(void)
{
// palSetPadMode(GPIOA, 1, PAL_MODE_OUTPUT_PUSHPULL );
// palSetPadMode(GPIOA, 2, PAL_MODE_OUTPUT_PUSHPULL );
// SPI3_CLK_HIGH;
// SPI3_SDI_HIGH;
CS_ADF0_HIGH;
// CS_ADF1_HIGH;
// bitSet (registers[2], 17); // R set to 8
// bitClear (registers[2], 14); // R set to 8
// while(1) {
//
ADF4351_R_counter(1);
ADF4351_CP(0);
ADF4351_fastlock(1); // Fastlock enabled
ADF4351_csr(1); //Cycle slip enabled
ADF4351_set_frequency(0,200000000);
ADF4351_mux(2); // No led
// ADF4351_mux(6); // Show lock on led
// ADF4351_set_frequency(1,150000000,0);
// ADF4351_Set(0);
// ADF4351_Set(1);
// chThdSleepMilliseconds(1000);
// }
// bitSet (registers[2], 17); // R set to 8
// bitClear (registers[2], 14); // R set to 8
// for (int i=0; i<6; i++) pinMode(ADF4351_LE[i], OUTPUT); // Setup pins
// for (int i=0; i<6; i++) digitalWrite(ADF4351_LE[i], HIGH);
// pinMode(ADF4351_Mux, INPUT);
// SPI.begin(); // Init SPI bus
// SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0));
//SPI.setDataMode(SPI_MODE0); // CPHA = 0 Clock positive
//SPI.setBitOrder(MSBFIRST);
}
void ADF4351_WriteRegister32(int channel, const uint32_t value)
{
// if (reg_dirty[value & 0x07] || (value & 0x07) == 0) {
if (old_registers[value & 0x07] != registers[value & 0x07] || (value & 0x07) == 0 ) {
registers[value & 0x07] = value;
for (int i = 3; i >= 0; i--) shiftOut((value >> (8 * i)) & 0xFF);
palSetLine(ADF4351_LE[channel]);
my_microsecond_delay(1); // Must
palClearLine(ADF4351_LE[channel]);
// reg_dirty[value & 0x07] = false;
old_registers[value & 0x07] = registers[value & 0x07];
}
}
void ADF4351_Set(int channel)
{
set_SPI_mode(SPI_MODE_SI);
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, ADF_SPI_SPEED);
// my_microsecond_delay(1);
palClearLine(ADF4351_LE[channel]);
// my_microsecond_delay(1);
for (int i = 5; i >= 0; i--) {
ADF4351_WriteRegister32(channel, registers[i]);
}
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
}
static freq_t prev_actual_freq = 0;
void ADF4351_force_refresh(void) {
prev_actual_freq = 0;
// old_R = -1; // Force updating from config.actual_frequency_30MHz
}
void ADF4351_modulo(int m)
{
ADF4350_modulo = m;
// ADF4351_set_frequency(0, (uint64_t)prev_actual_freq);
}
uint64_t ADF4351_set_frequency(int channel, uint64_t freq) // freq / 10Hz
{
// freq -= 71000;
// SI4463_set_gpio(3,GPIO_HIGH);
// uint32_t offs = ((freq / 1000)* ( 0) )/ 1000;
uint32_t offs = 0;
uint64_t actual_freq = ADF4351_prepare_frequency(channel,freq + offs);
// SI4463_set_gpio(3,GPIO_LOW);
if (actual_freq != prev_actual_freq) {
//START_PROFILE;
ADF4351_frequency_changed = true;
ADF4351_Set(channel);
prev_actual_freq = actual_freq;
}
//STOP_PROFILE;
return actual_freq;
}
void ADF4351_spur_mode(int S)
{
if (S & 1) {
bitSet (registers[2], 29); // R set to 8
} else {
bitClear (registers[2], 29); // R set to 8
}
if (S & 2)
bitSet (registers[2], 30); // R set to 8
else
bitClear (registers[2], 30); // R set to 8
reg_dirty[2] = true;
ADF4351_Set(0);
}
void ADF4351_R_counter(int R)
{
if (R == old_R)
return;
old_R = R;
int dbl = false;
if (R < 0) {
dbl = true;
R = -R;
}
if (R<1)
return;
if (dbl) {
bitSet (registers[2], 25); // Reference doubler
} else {
bitClear (registers[2], 25); // Reference doubler
}
for (int channel=0; channel < 6; channel++) {
PFDRFout[channel] = (config.setting_frequency_30mhz * (dbl?2:1)) / R;
}
clear_frequency_cache(); // When R changes the possible frequencies will change
registers[2] &= ~ (((unsigned long)0x3FF) << 14);
registers[2] |= (((unsigned long)R) << 14);
reg_dirty[2] = true;
ADF4351_Set(0);
}
void ADF4351_recalculate_PFDRFout(void){
int local_r = old_R;
old_R = -1;
ADF4351_R_counter(local_r);
}
void ADF4351_mux(int R)
{
registers[2] &= ~ (((unsigned long)0x7) << 26);
registers[2] |= (((unsigned long)R & (unsigned long)0x07) << 26);
reg_dirty[2] = true;
ADF4351_Set(0);
}
void ADF4351_csr(int c)
{
registers[3] &= ~ (((unsigned long)0x1) << 18);
registers[3] |= (((unsigned long)c & (unsigned long)0x01) << 18);
reg_dirty[3] = true;
ADF4351_Set(0);
}
void ADF4351_fastlock(int c)
{
registers[3] &= ~ (((unsigned long)0x3) << 15);
registers[3] |= (((unsigned long)c & (unsigned long)0x03) << 15);
reg_dirty[3] = true;
ADF4351_Set(0);
}
void ADF4351_CP(int p)
{
registers[2] &= ~ (((unsigned long)0xF) << 9);
registers[2] |= (((unsigned long)p) << 9);
reg_dirty[2] = true;
ADF4351_Set(0);
}
void ADF4351_drive(int p)
{
p &= 0x03;
registers[4] &= ~ (((unsigned long)0x3) << 3);
registers[4] |= (((unsigned long)p) << 3);
reg_dirty[4] = true;
ADF4351_Set(0);
}
void ADF4351_aux_drive(int p)
{
p &= 0x03;
registers[4] &= ~ (((unsigned long)0x3) << 6);
registers[4] |= (((unsigned long)p) << 6);
reg_dirty[4] = true;
ADF4351_Set(0);
}
#if 0
static uint32_t gcd(uint32_t x, uint32_t y)
{
uint32_t z;
while (y != 0) {
z = x % y;
x = y;
y = z;
}
return x;
}
#endif
uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz
{
target_freq = freq;
if (freq >= 2200000000) {
OutputDivider = 1;
bitWrite (registers[4], 22, 0);
bitWrite (registers[4], 21, 0);
bitWrite (registers[4], 20, 0);
} else if (freq >= 1100000000) {
OutputDivider = 2;
bitWrite (registers[4], 22, 0);
bitWrite (registers[4], 21, 0);
bitWrite (registers[4], 20, 1);
} else if (freq >= 550000000) {
OutputDivider = 4;
bitWrite (registers[4], 22, 0);
bitWrite (registers[4], 21, 1);
bitWrite (registers[4], 20, 0);
} else if (freq >= 275000000) {
OutputDivider = 8;
bitWrite (registers[4], 22, 0);
bitWrite (registers[4], 21, 1);
bitWrite (registers[4], 20, 1);
} else { // > 137500000
OutputDivider = 16;
bitWrite (registers[4], 22, 1);
bitWrite (registers[4], 21, 0);
bitWrite (registers[4], 20, 0);
}
reg_dirty[4] = true;
uint32_t PFDR = (uint32_t)PFDRFout[channel];
uint32_t MOD = ADF4350_modulo;
if (MOD == 0)
MOD = 60;
uint32_t MOD_X2 = MOD<<1;
uint32_t INTA_F = ((freq * (uint64_t)OutputDivider) * (uint64_t)MOD_X2/ PFDR) + 1;
uint32_t INTA = INTA_F / MOD_X2;
uint32_t FRAC = (INTA_F - INTA * MOD_X2)>>1;
if (FRAC >= MOD) {
FRAC -= MOD;
INTA++;
}
#if 0 // No visible performance improvement
uint32_t reduce = gcd(MOD, FRAC);
if (reduce>1) {
FRAC /= reduce;
MOD /= reduce;
if (MOD == 1)
MOD=2;
}
#endif
uint64_t actual_freq = ((uint64_t)PFDR *(INTA * MOD +FRAC))/OutputDivider / MOD;
#if 0 // Only for debugging
int max_delta = PFDRFout[channel]/OutputDivider/MOD/100;
if (actual_freq < freq - max_delta || actual_freq > freq + max_delta ){
while(1)
my_microsecond_delay(10);
}
max_delta = freq - actual_freq;
if (max_delta > 200000 || max_delta < -200000 || freq == 0) {
while(1)
my_microsecond_delay(10);
}
if (FRAC >= MOD ){
while(1)
my_microsecond_delay(10);
}
#endif
bitWrite (registers[4], 10, 1); // Mute till lock detect
registers[0] = 0;
registers[0] = INTA << 15; // OK
registers[0] = registers[0] + (FRAC << 3);
reg_dirty[0] = true;
if (MOD == 1) MOD = 2;
registers[1] = 0;
registers[1] = MOD << 3;
registers[1] = registers[1] + 1 ; // restore address "001"
bitSet (registers[1], 27); // Prescaler at 8/9
reg_dirty[1] = true;
return actual_freq;
}
void ADF4351_enable(int s)
{
if (s)
bitClear(registers[4], 11); // Inverse logic!!!!!
else
bitSet(registers[4], 11);
reg_dirty[4] = true;
ADF4351_Set(0);
}
void ADF4351_enable_aux_out(int s)
{
if (s)
bitSet(registers[4], 8);
else
bitClear(registers[4], 8);
reg_dirty[4] = true;
ADF4351_Set(0);
}
void ADF4351_enable_out(int s)
{
if (s) {
bitClear(registers[2], 11); // Disable VCO power down
bitClear(registers[2], 5); // Disable power down
bitSet(registers[4], 5); // Enable output
} else {
bitClear(registers[4], 5); // Disable output
bitSet(registers[2], 5); // Enable power down
bitSet(registers[2], 11); // Enable VCO power down
}
reg_dirty[2] = true;
reg_dirty[4] = true;
ADF4351_Set(0);
}
// ------------------------------ SI4468 -------------------------------------
bool SI4463_frequency_changed = false;
bool SI4463_offset_changed = false;
int SI4463_offset_value = 0;
static int SI4463_band = -1;
static int64_t SI4463_outdiv = -1;
//static freq_t SI4463_prev_freq = 0;
//static float SI4463_step_size = 100; // Will be recalculated once used
static uint8_t SI4463_channel = 0;
static uint8_t SI4463_in_tx_mode = false;
int SI4463_R = 5;
static int SI4463_output_level = 0x20;
static si446x_state_t SI4463_get_state(void);
static void SI4463_set_state(si446x_state_t);
#define SI4463_READ_CTS (palReadLine(LINE_RX_CTS))
static int SI4463_wait_for_cts(void)
{
// set_SPI_mode(SPI_MODE_SI);
while (!SI4463_READ_CTS) {
// chThdSleepMicroseconds(100);
my_microsecond_delay(1);
}
return 1;
}
#if 0 // not used
static void SI4463_write_byte(uint8_t ADR, uint8_t DATA)
{
set_SPI_mode(SPI_MODE_SI);
SI_CS_LOW;
ADR |= 0x80 ; // RW = 1
shiftOut( ADR );
shiftOut( DATA );
SI_CS_HIGH;
}
static void SI4463_write_buffer(uint8_t ADR, uint8_t *DATA, int len)
{
set_SPI_mode(SPI_MODE_SI);
SI_CS_LOW;
ADR |= 0x80 ; // RW = 1
shiftOut( ADR );
while (len-- > 0)
shiftOut( *(DATA++) );
SI_CS_HIGH;
}
#endif
static uint8_t SI4463_read_byte( uint8_t ADR )
{
uint8_t DATA ;
set_SPI_mode(SPI_MODE_SI);
// SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
// __disable_irq();
SI_CS_LOW;
shiftOut( ADR );
DATA = shiftIn();
SI_CS_HIGH;
// __enable_irq();
return DATA ;
}
#ifdef NOTUSED
static uint8_t SI4463_get_response(void* buff, uint8_t len)
{
uint8_t cts = 0;
// set_SPI_mode(SPI_MODE_SI);
cts = SI4463_READ_CTS;
if (!cts) {
return false;
}
// __disable_irq();
SI_CS_LOW;
shiftOut( SI446X_CMD_READ_CMD_BUFF );
cts = (shiftIn() == 0xFF);
if (cts)
{
// Get response data
for(uint8_t i=0;i<len;i++) {
((uint8_t*)buff)[i] = shiftIn();
}
}
SI_CS_HIGH;
// __enable_irq();
return cts;
}
#endif
void SI4463_do_api(void* data, uint8_t len, void* out, uint8_t outLen)
{
uint8_t *ptr = (uint8_t *)data;
set_SPI_mode(SPI_MODE_SI);
//#define SHORT_DELAY my_microsecond_delay(1)
//#define SHORT_DELAY
while (!SI4463_READ_CTS);// {SHORT_DELAY; } // Wait for CTS
SI_CS_LOW;
#if 1 // Inline transfer
while (len-- > 0) {
while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI));
SPI_WRITE_8BIT(SI4432_SPI, *ptr++);
}
while (SPI_IS_BUSY(SI4432_SPI));
#else
while (len-- > 0)
shiftOut(*ptr++); // (pgm_read_byte(&((uint8_t*)data)[i]));
#endif
SI_CS_HIGH;
if(out == NULL) return; // If we have an output buffer then read command response into it
while(SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes
while (!SI4463_READ_CTS);// { SHORT_DELAY; } // Wait for CTS
SI_CS_LOW;
#if 1
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_CMD_BUFF);
SPI_WRITE_8BIT(SI4432_SPI, 0x00);
while (SPI_IS_BUSY(SI4432_SPI));
SPI_READ_16BIT(SI4432_SPI); // drop SI446X_CMD_READ_CMD_BUFF and CTS 0xFF
#else
shiftOut( SI446X_CMD_READ_CMD_BUFF );
shiftIn(); // Should always be 0xFF
#endif
// Get response data
ptr = (uint8_t *)out;
while (outLen-- > 0) {
#if 1 // Inline transfer
SPI_WRITE_8BIT(SI4432_SPI, 0x00);
while (SPI_RX_IS_EMPTY(SI4432_SPI)); //wait rx data in buffer
*ptr++ = SPI_READ_8BIT(SI4432_SPI);
#else
*ptr++ = shiftIn();
#endif
SI_CS_HIGH;
}
// __enable_irq();
}
#ifdef notused
static void SI4463_set_properties(uint16_t prop, void* values, uint8_t len)
{
// len must not be greater than 12
uint8_t data[16] = {
SI446X_CMD_SET_PROPERTY,
(uint8_t)(prop>>8),
len,
(uint8_t)prop
};
// Copy values into data, starting at index 4
memcpy(data + 4, values, len);
SI4463_do_api(data, len + 4, NULL, 0);
}
#endif
#include "SI446x_cmd.h"
#include "radio_config_Si4468_undef.h"
#undef RADIO_CONFIGURATION_DATA_ARRAY
#include "radio_config_Si4468_default.h"
// Used in RBW setting
#define GLOBAL_GPIO_PIN_CFG 0x13, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00
#define GLOBAL_CLK_CFG 0x11, 0x00, 0x01, 0x01, 0x00
// ---------------------------------------------------------------------------------------------------- v ------------ RSSI control byte
#define GLOBAL_RF_MODEM_RAW_CONTROL 0x11, 0x20, 0x0A, 0x45, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x06, 0x03, 0x10, 0x40
//0x11 SI446X_CMD_SET_PROPERTY
//0x20 SI446X_PROP_GROUP_MODEM
//0x0A 10 Count
//0x45 Start register
//0x03 [0x45] MODEM_RAW_CONTROL
//0x00 [0x46] RAWEYE[10:8]
//0x00 [0x47] RAWEYE[7:0]
//0x01 [0x48] MODEM_ANT_DIV_MODE
//0x00 [0x49] MODEM_ANT_DIV_CONTROL
//0xFF [0x4A] MODEM_RSSI_THRESH
//0x06 [0x4B] MODEM_RSSI_JUMP_THRESH
//0x03 [0x4C] MODEM_RSSI_CONTROL
//0x10 [0x4D] MODEM_RSSI_CONTROL2
//0x40 [0x4E] MODEM_RSSI_COMP
// -----------------------------------------------------------------------------------------------------^ --------------
#define GLOBAL_RF_MODEM_AGC_CONTROL 0x11, 0x20, 0x01, 0x35, 0xF1 // Override AGC gain increase
#undef RF_MODEM_AGC_CONTROL_1
#define RF_MODEM_AGC_CONTROL_1 GLOBAL_RF_MODEM_AGC_CONTROL
#undef RF_MODEM_AGC_WINDOW_SIZE_12_1
#define RF_MODEM_AGC_WINDOW_SIZE_12_1 0x11, 0x20, 0x0C, 0x38, 0x11, 0x07, 0x07, 0x80, 0x02, 0x4C, 0xCD, 0x00, 0x27, 0x0C, 0x84, 0x23
#undef RF_GPIO_PIN_CFG
#define RF_GPIO_PIN_CFG GLOBAL_GPIO_PIN_CFG
#undef RF_GLOBAL_CLK_CFG_1
#define RF_GLOBAL_CLK_CFG_1 GLOBAL_CLK_CFG
// Remember to change RF_MODEM_AFC_LIMITER_1_3_1 !!!!!!!!!
static const uint8_t SI4468_config[] = RADIO_CONFIGURATION_DATA_ARRAY;
// Set new state
static void SI4463_set_state(si446x_state_t newState)
{
uint8_t data[] = {
SI446X_CMD_CHANGE_STATE,
newState
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
static uint8_t gpio_state[4] = { 7,8,0,0 };
void SI4463_refresh_gpio(void)
{
#ifndef TINYSA4_PROTO // Force clock to max frequency for ADF
uint8_t data[] =
{
0x11, 0x00, 0x01, 0x01, 0x40 // GLOBAL_CLK_CFG Enable divided clock
};
SI4463_do_api(data, sizeof(data), NULL, 0);
#endif
uint8_t data2[] =
{
0x13, gpio_state[0], gpio_state[1], gpio_state[2], gpio_state[3], 0, 0, 0
};
SI4463_do_api(data2, sizeof(data2), NULL, 0);
}
void SI4463_set_gpio(int i, int s)
{
gpio_state[i] = s;
#if 0 // debug gpio
gpio_state[2] = 3;
gpio_state[3] = 2;
#endif
SI4463_refresh_gpio();
}
#if 0
static void SI4463_clear_FIFO(void)
{
// 'static const' saves 20 bytes of flash here, but uses 2 bytes of RAM
static const uint8_t clearFifo[] = {
SI446X_CMD_FIFO_INFO,
SI446X_FIFO_CLEAR_RX | SI446X_FIFO_CLEAR_TX
};
SI4463_do_api((uint8_t*)clearFifo, sizeof(clearFifo), NULL, 0);
}
#endif
void SI4463_set_output_level(int t)
{
SI4463_output_level = t;
if (SI4463_in_tx_mode) {
#if 1
{
uint8_t data[] =
{
0x11, 0x22, 0x04, 0x00, // PA_MODE
0x08, // Coarse PA mode and class E PA Fine PA mode = 0x04
(uint8_t)SI4463_output_level, // Level
0x00, // Duty
0x00 // Ramp
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
#else
SI4463_start_tx(0); // Refresh output level
#endif
}
}
void SI4463_start_tx(uint8_t CHANNEL)
{
// si446x_state_t s;
#if 0
s = SI4463_get_state();
if (s == SI446X_STATE_RX){
SI4463_set_state(SI446X_STATE_READY);
my_microsecond_delay(200);
s = SI4463_get_state();
if (s != SI446X_STATE_READY){
my_microsecond_delay(1000);
}
}
#endif
#if 1
{
uint8_t data[] =
{
0x11, 0x20, 0x01, 0x00,
0x00, // CW mode
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
#endif
#if 1
{
uint8_t data[] =
{
0x11, 0x22, 0x04, 0x00, // PA_MODE
0x08, // Coarse PA mode and class E PA Fine PA mode = 0x04
(uint8_t)SI4463_output_level, // Level
0x00, // Duty
0x00 // Ramp
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
#endif
// retry:
{
uint8_t data[] =
{
SI446X_CMD_ID_START_TX,
CHANNEL,
0, // Stay in TX state
0, // TX len
0, // TX len
0,// TX delay
0// Num repeat
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
SI4463_in_tx_mode = true;
my_microsecond_delay(1000);
#if 0
s = SI4463_get_state();
if (s != SI446X_STATE_TX){
my_microsecond_delay(1000);
goto retry;
}
#endif
}
void SI4463_start_rx(uint8_t CHANNEL)
{
si446x_state_t s = SI4463_get_state();
if (s == SI446X_STATE_TX){
SI4463_set_state(SI446X_STATE_READY);
}
SI4463_refresh_gpio();
#if 0
{
uint8_t data[] =
{
0x11, 0x10, 0x01, 0x03, 0xf0
};
SI4463_do_api(data, sizeof(data), NULL, 0); // Send PREAMBLE_CONFIG_STD_2 for long timeout
}
{
uint8_t data[] =
{
0x11, 0x20, 0x01, 0x00, 0x09, // Restore OOK mode
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
#endif
uint8_t data[] = {
SI446X_CMD_ID_START_RX,
CHANNEL,
0,
0,
0,
0,// 8,
0,// SI446X_CMD_START_RX_ARG_NEXT_STATE2_RXVALID_STATE_ENUM_RX,
0, //SI446X_CMD_START_RX_ARG_NEXT_STATE3_RXINVALID_STATE_ENUM_RX
};
//retry:
SI4463_do_api(data, sizeof(data), NULL, 0);
#if 0
si446x_state_t s = SI4463_get_state();
if (s != SI446X_STATE_RX) {
my_microsecond_delay(1000);
goto retry;
}
#endif
{
uint8_t data2[] = { 0x11, 0x20, 0x01, 0x58, 0x10 }; // set FAST_DELAY to 0x10
SI4463_do_api(data2, sizeof(data2), NULL, 0);
}
SI4463_in_tx_mode = false;
}
void SI4463_short_start_rx(void)
{
uint8_t data[] = {
SI446X_CMD_ID_START_RX,
};
SI4463_do_api(data, sizeof(data), NULL, 0);
SI4463_in_tx_mode = false;
}
void SI4463_clear_int_status(void)
{
uint8_t data[9] = {
SI446X_CMD_ID_GET_INT_STATUS
};
SI4463_do_api(data, 1, data, SI446X_CMD_REPLY_COUNT_GET_INT_STATUS);
}
void set_calibration_freq(int ref)
{
#ifndef TINYSA4_PROTO
ref = 0; // <--------------------- DISABLED FOR PROTOTYPE!!!!!!!!!!!!!!!!!!!!!!!!!
#endif
if (ref >= 0) {
SI4463_set_gpio(0, 7); // GPIO 0 is clock out
uint8_t data2[5] = {
0x11, 0x00, 0x01, 0x01, 0x40 // GLOBAL_CLK_CFG Clock config
};
data2[4] |= ref<<3;
SI4463_do_api(data2, 5, NULL, 0);
} else {
SI4463_set_gpio(0, 1); // stop clock out
}
}
si446x_info_t SI4463_info;
void Si446x_getInfo(si446x_info_t* info)
{
uint8_t data[8] = {
SI446X_CMD_PART_INFO
};
SI4463_do_api(data, 1, data, 8);
info->chipRev = data[0];
info->part = (data[1]<<8) | data[2];
info->partBuild = data[3];
info->id = (data[4]<<8) | data[5];
info->customer = data[6];
info->romId = data[7];
data[0] = SI446X_CMD_FUNC_INFO;
SI4463_do_api(data, 1, data, 6);
info->revExternal = data[0];
info->revBranch = data[1];
info->revInternal = data[2];
info->patch = (data[3]<<8) | data[4];
info->func = data[5];
}
float old_temp = -100;
#define TEMP_HISTERESE 0.5
float Si446x_get_temp(void)
{
uint8_t data[8] = { SI446X_CMD_GET_ADC_READING, 0x10, 0 };
SI4463_do_api(data, 3, data, 8);
int i = 4;
if (data[0]==255)
i = 6;
float t = (data[i] << 8) + data[i+1];
t = (899.0 * t /4096.0) - 293.0;
if (t > old_temp - TEMP_HISTERESE && t < old_temp + TEMP_HISTERESE) {
return(old_temp);
}
old_temp = t;
return t;
}
#ifdef notused
static uint8_t SI4463_get_device_status(void)
{
uint8_t data[2] =
{
SI446X_CMD_ID_REQUEST_DEVICE_STATE, 0
};
SI4463_do_api(data, 1, data, SI446X_CMD_REPLY_COUNT_REQUEST_DEVICE_STATE);
return(data[0]);
}
#endif
// Read a fast response register
uint8_t getFRR(uint8_t reg)
{
set_SPI_mode(SPI_MODE_SI);
// SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
return SI4463_read_byte(reg);
}
// Get current radio state
static si446x_state_t SI4463_get_state(void)
{
#if 0
#if 0
uint8_t data[2] = {
SI446X_CMD_REQUEST_DEVICE_STATE
};
SI4463_do_api(data, 1, data, 2);
uint8_t state = data[0] & 0x0F;
#endif
uint8_t state = SI4463_get_device_status();
#else
again:
SI4463_wait_for_cts();
uint8_t state = getFRR(SI446X_CMD_READ_FRR_B);
#endif
if (state == 255) {
my_microsecond_delay(100);
goto again;
}
if(state == SI446X_STATE_TX_TUNE)
state = SI446X_STATE_TX;
else if(state == SI446X_STATE_RX_TUNE)
state = SI446X_STATE_RX;
else if(state == SI446X_STATE_READY2)
state = SI446X_STATE_READY;
else
state = state;
return (si446x_state_t)state;
}
void set_RSSI_comp(void)
{
// Set properties: RF_MODEM_RSSI_COMP_1
// Number of properties: 1
// Group ID: 0x20
// Start ID: 0x4E
// Default values: 0x40,
// Descriptions:
// MODEM_RSSI_COMP - RSSI compensation value.
//
// #define RF_MODEM_RSSI_COMP_1 0x11, 0x20, 0x01, 0x4E, 0x40
uint8_t data[5] = {
0x11,
0x20,
0x01,
0x4E,
0x40
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
int SI4463_offset_active = false;
void si_set_offset(int16_t offset)
{
// Set properties: MODEM_FREQ_OFFSET
// Number of properties: 2
// Group ID: 0x20
// Start ID: 0x0d
// Default values: 0x00, 0x00
// Descriptions:
// MODEM_FREQ_OFFSET1 - High byte of the offset
// MODEM_FREQ_OFFSET2 - Low byte of the offset
//
SI4463_offset_value = offset;
uint8_t data[] = {
0x11,
0x20,
0x02,
0x0d,
(uint8_t) ((offset>>8) & 0xff),
(uint8_t) ((offset) & 0xff)
};
SI4463_do_api(data, sizeof(data), NULL, 0);
SI4463_offset_changed = true;
SI4463_offset_active = (offset != 0);
}
void si_fm_offset(int16_t offset)
{
// Set properties: MODEM_FREQ_OFFSET
// Number of properties: 2
// Group ID: 0x20
// Start ID: 0x0d
// Default values: 0x00, 0x00
// Descriptions:
// MODEM_FREQ_OFFSET1 - High byte of the offset
// MODEM_FREQ_OFFSET2 - Low byte of the offset
//
offset = SI4463_offset_value + offset;
uint8_t data[] = {
0x11,
0x20,
0x02,
0x0d,
(uint8_t) ((offset>>8) & 0xff),
(uint8_t) ((offset) & 0xff)
};
SI4463_do_api(data, sizeof(data), NULL, 0);
SI4463_offset_changed = true;
SI4463_offset_active = (offset != 0);
}
#ifdef __FAST_SWEEP__
extern deviceRSSI_t age[POINTS_COUNT];
static int buf_index = 0;
static bool buf_read = false;
//#define __USE_FFR_FOR_RSSI__
static char Si446x_readRSSI(void){
char rssi;
#ifdef __USE_FFR_FOR_RSSI__
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_ID_START_RX);
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SPI_READ_8BIT(SI4432_SPI); // Skip command byte response
SI_CS_HIGH;
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_FRR_A);
SPI_WRITE_8BIT(SI4432_SPI, 0x00); // begin read 1 bytes
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SPI_READ_8BIT(SI4432_SPI); // Skip command byte response
rssi = SPI_READ_8BIT(SI4432_SPI); // Get FRR A
SI_CS_HIGH;
#else
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_GET_MODEM_STATUS);
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SI_CS_HIGH;
while (!SI4463_READ_CTS); // Wait for CTS
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_CMD_BUFF); // read answer
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SPI_READ_16BIT(SI4432_SPI); // Drop SI446X_CMD_GET_MODEM_STATUS read and SI446X_CMD_READ_CMD_BUFF read
SPI_WRITE_16BIT(SI4432_SPI, 0x00); // begin read 2 bytes
SPI_WRITE_16BIT(SI4432_SPI, 0x00); // next read 2 bytes
while (SPI_IS_BUSY(SI4432_SPI)); // wait tx
SPI_READ_8BIT(SI4432_SPI); // read CMD_ COMPLETE
SPI_READ_8BIT(SI4432_SPI); // MODEM_PEND
SPI_READ_8BIT(SI4432_SPI); // MODEM_STATUS
rssi = SPI_READ_8BIT(SI4432_SPI); // CURR_RSSI
// SPI_WRITE_8BIT(SI4432_SPI, 0x00);
// while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
// rssi = SPI_READ_8BIT(SI4432_SPI); // LATCH_RSSI
SI_CS_HIGH;
#endif
return rssi;
}
void SI446x_Fill(int s, int start)
{
(void)s;
#if 0 // Only for testing
uint8_t data2[] = {
0x11, 0x20, 0x01, 0x4C, 0x03 // set RSSI control
};
SI4463_do_api(data2, sizeof(data2), NULL, 0);
uint8_t data[] = {
0x12, 0x20, 0x01, 0x4C // get RSSI control
};
SI4463_do_api(data, sizeof(data), data, 1);
#endif
// SPI_BR_SET(SI4432_SPI, SI4432_SPI_FASTSPEED);
uint32_t t = setting.additional_step_delay_us;
static uint32_t old_t = 0;
if (t < old_t +100 && t + 100 > old_t) { // avoid oscillation
t = (t + old_t) >> 1;
}
old_t = t;
systime_t measure = chVTGetSystemTimeX();
int i = start;
while(SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes
#if 1
while (!SI4463_READ_CTS); // Wait for CTS
#endif
__disable_irq();
do {
#if 1
age[i] = Si446x_readRSSI();
if (++i >= sweep_points) break;
if (t)
my_microsecond_delay(t);
#else
#if 1
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_ID_START_RX);
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SPI_READ_8BIT(SI4432_SPI); // Skip command byte response
SI_CS_HIGH;
#endif
if (t)
my_microsecond_delay(t);
again:
SI_CS_LOW;
SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_FRR_A);
SPI_WRITE_8BIT(SI4432_SPI, 0x00); // begin read 1 bytes
while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx
SPI_READ_8BIT(SI4432_SPI); // Skip command byte response
age[i] = SPI_READ_8BIT(SI4432_SPI); // Get FRR A
SI_CS_HIGH;
// volatile uint8_t state = getFRR(SI446X_CMD_READ_FRR_B);
if (age[i] == 0) goto again;
if (++i >= sweep_points) break;
#endif
} while(1);
__enable_irq();
setting.measure_sweep_time_us = (chVTGetSystemTimeX() - measure)*100;
buf_index = (start<=0 ? 0 : start); // Is used to skip 1st entry during level triggering
buf_read = true;
}
#endif
#ifdef __LISTEN__
const uint8_t dBm_to_volt [] =
{
255,
225,
198,
175,
154,
136,
120,
106,
93,
82,
72,
64,
56,
50,
44,
39,
34,
30,
26,
23,
21,
18,
16,
14,
12,
11,
10,
8,
7,
7,
6,
5,
5,
};
void SI4432_Listen(int s)
{
(void) s;
uint8_t max = 0;
uint16_t count = 0;
operation_requested = OP_NONE;
while(SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes
while (!SI4463_READ_CTS); // Wait for CTS
do {
uint8_t v = Si446x_readRSSI();
if (max < v) // Peak
max = v;
if (count > 1000) { // Decay
max -= 1;
count = 0;
} else
count++;
v = max - v;
dacPutChannelX(&DACD1, 0, dBm_to_volt[v] << 4);
} while(operation_requested == OP_NONE);
count = 0;
// dacPutChannelX(&DACD2, 0, 0);
}
#endif
int16_t Si446x_RSSI(void)
{
#ifdef __FAST_SWEEP__
if (buf_read) {
if (buf_index == sweep_points-1)
buf_read = false;
return DEVICE_TO_PURE_RSSI(age[buf_index++]);
}
#endif
int i = setting.repeat;
int32_t RSSI_RAW = 0;
while(SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes
while (!SI4463_READ_CTS); // Wait for CTS
do{
// if (MODE_INPUT(setting.mode) && RSSI_R
#define SAMPLE_COUNT 1
int j = SAMPLE_COUNT; //setting.repeat;
int RSSI_RAW_ARRAY[3];
do{
RSSI_RAW_ARRAY[--j] = Si446x_readRSSI();
if (j == 0) break;
// my_microsecond_delay(20);
}while(1);
#if SAMPLE_COUNT == 3
int t;
if (RSSI_RAW_ARRAY[0] > RSSI_RAW_ARRAY[1]) {
t = RSSI_RAW_ARRAY[1];
RSSI_RAW_ARRAY[1] = RSSI_RAW_ARRAY[0];
RSSI_RAW_ARRAY[0] = t;
}
if (RSSI_RAW_ARRAY[1] > RSSI_RAW_ARRAY[2]) {
t = RSSI_RAW_ARRAY[2];
RSSI_RAW_ARRAY[2] = RSSI_RAW_ARRAY[1];
RSSI_RAW_ARRAY[1] = t;
}
if (RSSI_RAW_ARRAY[0] > RSSI_RAW_ARRAY[1]) {
t = RSSI_RAW_ARRAY[1];
RSSI_RAW_ARRAY[1] = RSSI_RAW_ARRAY[0];
RSSI_RAW_ARRAY[0] = t;
}
RSSI_RAW += DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[1]);
#else
RSSI_RAW += DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[0]);
#endif
if (--i <= 0) break;
// my_microsecond_delay(100);
}while(1);
if (setting.repeat > 1)
RSSI_RAW = RSSI_RAW / setting.repeat;
return RSSI_RAW;
}
void SI446x_set_AGC_LNA(uint8_t v)
{
uint8_t data[2] = {
0xd0, // AGC_OVERRIDE
v
};
SI4463_do_api(data, sizeof(data), NULL, 0);
#if 0
if (v == 0) {
data[0] = 0xd1; // Read AGC?????? NO
SI4463_do_api(data, 1, data, 1);
}
#endif
}
#ifdef notused
// Do an ADC conversion
static uint16_t getADC(uint8_t adc_en, uint8_t adc_cfg, uint8_t part)
{
uint8_t data[6] = {
SI446X_CMD_GET_ADC_READING,
adc_en,
adc_cfg
};
SI4463_do_api(data, 3, data, 6);
return (data[part]<<8 | data[part + 1]);
}
#endif
// -------------- 0.2 kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_200Hz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_02kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 1kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_1kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_1kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 3 kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_3kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_3kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 10 kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_10kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_10kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 30 kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_30kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_30kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 100kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_100kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_100kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 300kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_300kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_300kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// -------------- 850kHz ----------------------------
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_850kHz.h"
#include "radio_config_Si4468_short.h"
static const uint8_t SI4463_RBW_850kHz[] =
RADIO_CONFIGURATION_DATA_ARRAY;
// User asks for an RBW of WISH, go through table finding the last triple
// for which WISH is greater than the first entry, use those values,
// Return the first entry of the following triple for the RBW actually achieved
#define IF_BW(dwn3, ndec, filset) (((dwn3)<<7)|((ndec)<<4)|(filset))
typedef struct {
const uint8_t *reg; // IF_BW(dwn3, ndec, filset)
int16_t RSSI_correction_x_10; // Correction * 10
int16_t RBWx10; // RBW in kHz
}RBW_t; // sizeof(RBW_t) = 8 bytes
static const RBW_t RBW_choices[] =
{
// BW register corr freq
{SI4463_RBW_02kHz, 15,3},
{SI4463_RBW_1kHz, 14,10},
{SI4463_RBW_3kHz, 10,30},
{SI4463_RBW_10kHz, 14,100},
{SI4463_RBW_30kHz, 0,300},
{SI4463_RBW_100kHz,0,1000},
{SI4463_RBW_300kHz,1,3000},
{SI4463_RBW_850kHz,11,8500},
};
const uint8_t SI4432_RBW_count = ((int)(sizeof(RBW_choices)/sizeof(RBW_t)));
static pureRSSI_t SI4463_RSSI_correction = float_TO_PURE_RSSI(-120);
static int prev_band = -1;
pureRSSI_t getSI4463_RSSI_correction(void){
return SI4463_RSSI_correction;
};
uint16_t force_rbw(int f)
{
if (SI4463_in_tx_mode)
return(0);
SI4463_set_state(SI446X_STATE_READY);
const uint8_t *config = RBW_choices[f].reg;
uint16_t i=0;
while(config[i] != 0)
{
SI4463_do_api((void *)&config[i+1], config[i], NULL, 0);
i += config[i]+1;
}
SI4463_clear_int_status();
SI4463_short_start_rx(); // This can cause recalibration
SI4463_wait_for_cts();
set_RSSI_comp();
// prev_band = -1;
SI4463_RSSI_correction = float_TO_PURE_RSSI(RBW_choices[f].RSSI_correction_x_10 - 1200)/10; // Set RSSI correction
return RBW_choices[f].RBWx10; // RBW achieved by SI4463 in kHz * 10
}
uint16_t set_rbw(uint16_t WISH) {
int i;
for (i=0; i < (int)(sizeof(RBW_choices)/sizeof(RBW_t)) - 1; i++)
if (WISH <= RBW_choices[i].RBWx10)
break;
return force_rbw(i);
}
#define Npresc 1 // 0=low / 1=High performance mode
static int refresh_count = 0;
freq_t SI4463_set_freq(freq_t freq)
{
// SI4463_set_gpio(3,GPIO_HIGH);
int S = 4 ; // Approx 100 Hz channels
SI4463_channel = 0;
if (freq >= 822000000 && freq <= 1130000000) { // 822 to 1130MHz
SI4463_band = 0;
SI4463_outdiv = 4;
} else if (freq >= 411000000 && freq <= 566000000) { // 411 to 568MHz
SI4463_band = 2;
SI4463_outdiv = 8;
} else if (freq >= 329000000 && freq <= 454000000) { // 329 to 454MHz
SI4463_band = 1;
SI4463_outdiv = 10;
} else if (freq >= 274000000 && freq <= 378000000) { // 274 to 378
SI4463_band = 3;
SI4463_outdiv = 12;
} else if (freq >= 137000000 && freq <= 189000000){ // 137 to 189
SI4463_band = 5;
SI4463_outdiv = 24;
#if 0 // Band 4, 6 and 7 do not function
} else if (freq >= 137000000 && freq <= 189000000){ // 220 to 266
SI4463_band = 4;
SI4463_outdiv = 12;
#endif
} else
return 0;
si_set_offset(0);
uint32_t R = (freq * SI4463_outdiv) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz) - 1; // R between 0x00 and 0x7f (127)
uint64_t MOD = 524288; // = 2^19
uint32_t F = ((freq * SI4463_outdiv*MOD) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)) - R*MOD;
freq_t actual_freq = (R*MOD + F) * (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)/ SI4463_outdiv/MOD;
#if 0
int delta = freq - actual_freq;
if (delta < -100 || delta > 100 ){
while(1)
my_microsecond_delay(10);
}
if (F < MOD || F >= MOD*2){
while(1)
my_microsecond_delay(10);
}
#endif
if (false && (SI4463_band == prev_band)) {
int vco = 2091 + ((((freq / 4 ) * SI4463_outdiv - 850000000)/1000) * 492) / 200000;
if (SI4463_in_tx_mode) {
uint8_t data[] = {
0x37,
(uint8_t) R, // R data[4]
(uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7]
(vco>>8) & 0xff,
vco & 0xff,
0x00,
0x32
};
SI4463_do_api(data, sizeof(data), NULL, 0);
} else {
uint8_t data[] = {
0x36,
(uint8_t) R, // R data[4]
(uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7]
(vco>>8) & 0xff,
vco & 0xff
};
SI4463_do_api(data, sizeof(data), NULL, 0);
}
SI4463_frequency_changed = true;
// SI4463_set_gpio(3,GPIO_LOW);
return actual_freq;
}
#if 0
static int old_R = -1; // What about TX/RX switching?
static int old_F = -1;
if (old_R == R || old_F == F)
return;
old_R = R;
old_F = f;
#endif
refresh_count=0;
SI4463_set_state(SI446X_STATE_READY);
/*
// Set properties: RF_FREQ_CONTROL_INTE_8
// Number of properties: 8
// Group ID: 0x40
// Start ID: 0x00
// Default values: 0x3C, 0x08, 0x00, 0x00, 0x00, 0x00, 0x20, 0xFF,
// Descriptions:
// FREQ_CONTROL_INTE - Frac-N PLL Synthesizer integer divide number.
// FREQ_CONTROL_FRAC_2 - Frac-N PLL fraction number.
// FREQ_CONTROL_FRAC_1 - Frac-N PLL fraction number.
// FREQ_CONTROL_FRAC_0 - Frac-N PLL fraction number.
// FREQ_CONTROL_CHANNEL_STEP_SIZE_1 - EZ Frequency Programming channel step size.
// FREQ_CONTROL_CHANNEL_STEP_SIZE_0 - EZ Frequency Programming channel step size.
// FREQ_CONTROL_W_SIZE - Set window gating period (in number of crystal reference clock cycles) for counting VCO frequency during calibration.
// FREQ_CONTROL_VCOCNT_RX_ADJ - Adjust target count for VCO calibration in RX mode.
*/
// #define RF_FREQ_CONTROL_INTE_8_1 0x11, 0x40, 0x08, 0x00, 0x41, 0x0D, 0xA9, 0x5A, 0x4E, 0xC5, 0x20, 0xFE
uint8_t data[] = {
0x11, 0x40, 0x06, 0x00,
(uint8_t) R, // R data[4]
(uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7]
(uint8_t) ((S>> 8) & 255), // Step size data[8] .. data[9]
(uint8_t) ((S ) & 255), // Step size data[8] .. data[9]
#if 1
0x20, // Window gate
0xFF, // Adj count
#endif
};
SI4463_do_api(data, sizeof(data), NULL, 0);
if (SI4463_band != prev_band) {
/*
// Set properties: RF_MODEM_CLKGEN_BAND_1
// Number of properties: 1
// Group ID: 0x20
// Start ID: 0x51
// Default values: 0x08,
// Descriptions:
// MODEM_CLKGEN_BAND - Select PLL Synthesizer output divider ratio as a function of frequency band.
*/
// #define RF_MODEM_CLKGEN_BAND_1 0x11, 0x20, 0x01, 0x51, 0x0A
uint8_t data2[] = {
0x11, 0x20, 0x01, 0x51,
0x10 + (uint8_t)(SI4463_band + (Npresc ? 0x08 : 0)) // 0x08 for high performance mode, 0x10 to skip recal
};
SI4463_do_api(data2, sizeof(data2), NULL, 0);
SI4463_frequency_changed = true;
// my_microsecond_delay(30000);
}
// SI4463_clear_int_status();
if (SI4463_in_tx_mode)
SI4463_start_tx(0);
else {
SI4463_start_rx(SI4463_channel);
}
SI4463_wait_for_cts();
// SI4463_set_gpio(3,GPIO_LOW);
SI4463_frequency_changed = true;
prev_band = SI4463_band;
return actual_freq;
}
void SI4463_init_rx(void)
{
// reset:
SI_SDN_LOW;
my_microsecond_delay(100);
SI_SDN_HIGH;
my_microsecond_delay(1000);
SI_SDN_LOW;
my_microsecond_delay(1000);
#ifdef __SI4468__
for(uint16_t i=0;i<sizeof(SI4468_config);i++)
{
SI4463_do_api((void *)&SI4468_config[i+1], SI4468_config[i], NULL, 0);
i += SI4468_config[i];
}
#endif
clear_frequency_cache();
SI4463_start_rx(SI4463_channel);
// Si446x_getInfo(&SI4463_info);
prev_band = -1; // 433MHz
}
#if 0
#include "radio_config_Si4468_undef.h"
#include "radio_config_Si4468_tx.h"
static const uint8_t SI4463_config_tx[] =
RADIO_CONFIGURATION_DATA_ARRAY;
#endif
void SI4463_init_tx(void)
{
#if 0
reset:
SI_SDN_LOW;
my_microsecond_delay(100);
SI_SDN_HIGH;
my_microsecond_delay(1000);
SI_SDN_LOW;
my_microsecond_delay(1000);
#ifdef __SI4468__
for(uint16_t i=0;i<sizeof(SI4463_config_tx);i++)
{
SI4463_do_api((void *)&SI4463_config_tx[i+1], SI4463_config_tx[i], NULL, 0);
i += SI4463_config_tx[i];
}
#endif
#endif
SI4463_start_tx(0);
#if 0
si446x_state_t s ;
again:
Si446x_getInfo(&SI4463_info);
// s = SI4463_get_state();
// SI4463_clear_int_status();
my_microsecond_delay(15000);
s = SI4463_get_state();
if (s != SI446X_STATE_RX) {
ili9341_drawstring_7x13("Waiting for RX", 50, 200);
osalThreadSleepMilliseconds(3000);
goto reset;
}
ili9341_drawstring_7x13("Waiting ready ", 50, 200);
#endif
prev_band = -1; // 433MHz
}
void enable_extra_lna(int s)
{
#ifdef TINYSA4_PROTO
static int old_extra_lna = -1;
if (s != old_extra_lna) {
if (s)
palSetLine(LINE_LNA);
else
palClearLine(LINE_LNA);
old_extra_lna = s;
osalThreadSleepMilliseconds(500);
}
#else
(void)s;
#endif
}
void enable_ultra(int s)
{
#ifdef TINYSA4_PROTO
static int old_ultra = -1;
if (s != old_ultra) {
if (s)
palClearLine(LINE_ULTRA);
else
palSetLine(LINE_ULTRA);
old_ultra = s;
}
#else
(void)s;
#endif
}
void enable_rx_output(int s)
{
if (s)
SI4463_set_gpio(3,SI446X_GPIO_MODE_DRIVE1);
else
SI4463_set_gpio(3,SI446X_GPIO_MODE_DRIVE0);
}
void enable_high(int s)
{
if (s)
SI4463_set_gpio(2,SI446X_GPIO_MODE_DRIVE1);
else
SI4463_set_gpio(2,SI446X_GPIO_MODE_DRIVE0);
}
#pragma GCC pop_options

Powered by TurnKey Linux.