You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4350 lines
145 KiB
4350 lines
145 KiB
/*
|
|
* This is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3, or (at your option)
|
|
* any later version.
|
|
*
|
|
* The software is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU Radio; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
//#ifdef __SI4432__
|
|
#include "si4432.h" // comment out for simulation
|
|
//#endif
|
|
#include "stdlib.h"
|
|
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("Og")
|
|
|
|
|
|
//#define __DEBUG_AGC__ If set the AGC value will be shown in the stored trace and FAST_SWEEP rmmode will be disabled
|
|
#ifdef __DEBUG_AGC__
|
|
#ifdef __FAST_SWEEP__
|
|
#undef __FAST_SWEEP__
|
|
#endif
|
|
#endif
|
|
int dirty = true;
|
|
int scandirty = true;
|
|
|
|
setting_t setting;
|
|
uint32_t frequencies[POINTS_COUNT];
|
|
|
|
uint16_t actual_rbw_x10 = 0;
|
|
int vbwSteps = 1;
|
|
uint32_t minFreq = 0;
|
|
uint32_t maxFreq = 520000000;
|
|
|
|
//int setting.refer = -1; // Off by default
|
|
static const int reffer_freq[] = {30000000, 15000000, 10000000, 4000000, 3000000, 2000000, 1000000};
|
|
|
|
int in_selftest = false;
|
|
|
|
#if 0
|
|
const char *dummy = "this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available\
|
|
this is a very long string only used to fill memory so I know when the memory is full and I can remove some of this string to make more memory available"
|
|
;
|
|
#endif
|
|
|
|
void update_min_max_freq(void)
|
|
{
|
|
switch(setting.mode) {
|
|
case M_LOW:
|
|
minFreq = 0;
|
|
if (config.frequency_IF2 == 0)
|
|
maxFreq = DEFAULT_MAX_FREQ;
|
|
else
|
|
maxFreq = config.frequency_IF2;
|
|
break;
|
|
#ifdef __ULTRA__
|
|
case M_ULTRA:
|
|
minFreq = 674000000;
|
|
maxFreq = 4300000000;
|
|
break;
|
|
#endif
|
|
case M_GENLOW:
|
|
minFreq = 0;
|
|
maxFreq = DEFAULT_MAX_FREQ;
|
|
break;
|
|
case M_HIGH:
|
|
#ifdef __ULTRA_SA__
|
|
minFreq = 00000000;
|
|
maxFreq = 2000000000;
|
|
#else
|
|
minFreq = HIGH_MIN_FREQ_MHZ * 1000000;
|
|
maxFreq = HIGH_MAX_FREQ_MHZ * 1000000;
|
|
#endif
|
|
break;
|
|
case M_GENHIGH:
|
|
minFreq = 240000000;
|
|
maxFreq = 960000000;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void reset_settings(int m)
|
|
{
|
|
// strcpy((char *)spi_buffer, dummy);
|
|
setting.mode = m;
|
|
update_min_max_freq();
|
|
sweep_mode |= SWEEP_ENABLE;
|
|
setting.unit_scale_index = 0;
|
|
setting.unit_scale = 1;
|
|
setting.unit = U_DBM;
|
|
set_scale(10);
|
|
set_reflevel(-10);
|
|
setting.attenuate = 0;
|
|
setting.rbw_x10 = 0;
|
|
setting.average = 0;
|
|
setting.harmonic = 0;
|
|
setting.show_stored = 0;
|
|
setting.auto_attenuation = false;
|
|
setting.subtract_stored = 0;
|
|
setting.normalize_level = 0.0;
|
|
setting.drive=13;
|
|
setting.atten_step = 0; // Only used in low output mode
|
|
setting.agc = S_AUTO_ON;
|
|
setting.lna = S_AUTO_OFF;
|
|
setting.tracking = false;
|
|
setting.modulation = MO_NONE;
|
|
setting.modulation_frequency = 1000;
|
|
setting.step_delay = 0;
|
|
setting.offset_delay = 0;
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.vbw_x10 = 0;
|
|
setting.auto_reflevel = true; // Must be after SetReflevel
|
|
setting.decay=20;
|
|
setting.noise=5;
|
|
setting.below_IF = S_AUTO_OFF;
|
|
setting.repeat = 1;
|
|
setting.tracking_output = false;
|
|
setting.measurement = M_OFF;
|
|
setting.frequency_IF = DEFAULT_IF;
|
|
setting.auto_IF = true;
|
|
setting.offset = 0.0;
|
|
setting.trigger = T_AUTO;
|
|
setting.trigger_direction = T_UP;
|
|
setting.fast_speedup = 0;
|
|
setting.level_sweep = 0.0;
|
|
setting.level = -15.0;
|
|
setting.trigger_level = -150.0;
|
|
setting.linearity_step = 0;
|
|
trace[TRACE_STORED].enabled = false;
|
|
trace[TRACE_TEMP].enabled = false;
|
|
// setting.refer = -1; // do not reset reffer when switching modes
|
|
setting.mute = true;
|
|
#ifdef __SPUR__
|
|
setting.spur_removal = 0;
|
|
setting.mirror_masking = 0;
|
|
#endif
|
|
switch(m) {
|
|
case M_LOW:
|
|
minFreq = 0;
|
|
maxFreq = 4000000000;
|
|
set_sweep_frequency(ST_START, (uint32_t) 0);
|
|
set_sweep_frequency(ST_STOP, (uint32_t) DEFAULT_MAX_FREQ);
|
|
setting.attenuate = 0.0; // <---------------- WARNING -----------------
|
|
setting.auto_attenuation = false; // <---------------- WARNING -----------------
|
|
setting.sweep_time_us = 0;
|
|
break;
|
|
#ifdef __ULTRA__
|
|
case M_ULTRA:
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
setting.attenuate = 0;
|
|
setting.sweep_time_us = 0;
|
|
break;
|
|
#endif
|
|
case M_GENLOW:
|
|
setting.drive=8;
|
|
set_sweep_frequency(ST_CENTER, 10000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.sweep_time_us = 10*ONE_SECOND_TIME;
|
|
break;
|
|
case M_HIGH:
|
|
#ifdef __ULTRA_SA__
|
|
minFreq = 00000000;
|
|
maxFreq = 2000000000;
|
|
#else
|
|
minFreq = HIGH_MIN_FREQ_MHZ*(config.setting_frequency_10mhz/10);
|
|
maxFreq = HIGH_MAX_FREQ_MHZ*(config.setting_frequency_10mhz/10);
|
|
#endif
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
setting.sweep_time_us = 0;
|
|
break;
|
|
case M_GENHIGH:
|
|
setting.drive=8;
|
|
set_sweep_frequency(ST_CENTER, 300000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.sweep_time_us = 10*ONE_SECOND_TIME;
|
|
break;
|
|
}
|
|
for (int i = 0; i< MARKERS_MAX; i++) {
|
|
markers[i].enabled = M_DISABLED;
|
|
markers[i].mtype = M_NORMAL;
|
|
}
|
|
markers[0].mtype = M_REFERENCE | M_TRACKING;
|
|
markers[0].enabled = M_ENABLED;
|
|
|
|
dirty = true;
|
|
}
|
|
|
|
//static uint32_t extra_vbw_step_time = 0;
|
|
//static uint32_t etra_repeat_time = 0;
|
|
//static uint32_t minimum_zero_span_sweep_time = 0;
|
|
//static uint32_t minimum_sweep_time = 0;
|
|
|
|
|
|
uint32_t calc_min_sweep_time_us(void) // Estimate minimum sweep time in uS, needed to calculate the initial delays for the RSSI before first sweep
|
|
{
|
|
uint32_t t;
|
|
if (MODE_OUTPUT(setting.mode))
|
|
t = 200*sweep_points; // 200 microseconds is the delay set in perform when sweeping in output mode
|
|
else {
|
|
uint32_t bare_sweep_time=0;
|
|
#ifdef __SI4432__
|
|
bare_sweep_time = (SI4432_step_delay + MEASURE_TIME) * (sweep_points); // Single RSSI delay and measurement time in uS while scanning
|
|
#endif
|
|
if (FREQ_IS_CW()) {
|
|
bare_sweep_time = MINIMUM_SWEEP_TIME; // minimum sweep time in fast CW mode
|
|
if (setting.repeat != 1 || setting.sweep_time_us >= 100*ONE_MS_TIME || setting.spur_removal != 0) // if no fast CW sweep possible
|
|
bare_sweep_time = 15000; // minimum CW sweep time when not in fast CW mode
|
|
}
|
|
t = vbwSteps * (setting.spur_removal ? 2 : 1) * bare_sweep_time ; // factor in vbwSteps and spur impact
|
|
t += (setting.repeat - 1)* REPEAT_TIME * (sweep_points); // Add time required for repeats
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
void set_refer_output(int v)
|
|
{
|
|
setting.refer = v;
|
|
#ifdef __SI4432__
|
|
SI4432_SetReference(setting.refer);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
Si4463_set_refer(setting.refer);
|
|
#endif
|
|
// dirty = true;
|
|
}
|
|
|
|
void set_decay(int d)
|
|
{
|
|
if (d < 0 || d > 200)
|
|
return;
|
|
setting.decay = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_noise(int d)
|
|
{
|
|
if (d < 2 || d > 50)
|
|
return;
|
|
setting.noise = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_gridlines(int d)
|
|
{
|
|
if (d < 3 || d > 20)
|
|
return;
|
|
config.gridlines = d;
|
|
config_save();
|
|
dirty = true;
|
|
update_grid();
|
|
}
|
|
|
|
//int setting_frequency_10mhz = 10000000;
|
|
|
|
void set_10mhz(uint32_t f)
|
|
{
|
|
if (f < 9000000 || f > 11000000)
|
|
return;
|
|
config.setting_frequency_10mhz = f;
|
|
config_save();
|
|
dirty = true;
|
|
update_grid();
|
|
}
|
|
|
|
|
|
void set_measurement(int m)
|
|
{
|
|
setting.measurement = m;
|
|
if (m == M_LINEARITY) {
|
|
trace[TRACE_STORED].enabled = true;
|
|
for (int j = 0; j < setting._sweep_points; j++)
|
|
stored_t[j] = -150;
|
|
setting.linearity_step = 0;
|
|
setting.attenuate = 29.0;
|
|
setting.auto_attenuation = false;
|
|
}
|
|
dirty = true;
|
|
}
|
|
void set_drive(int d)
|
|
{
|
|
setting.drive = d;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_level_sweep(float l)
|
|
{
|
|
setting.level_sweep = l;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_sweep_time_us(uint32_t t) // Set the sweep time as the user wants it to be.
|
|
{
|
|
// if (t < MINIMUM_SWEEP_TIME) // Sweep time of zero means sweep as fast as possible
|
|
// t = MINIMUM_SWEEP_TIME;
|
|
if (t > MAXIMUM_SWEEP_TIME)
|
|
t = MAXIMUM_SWEEP_TIME;
|
|
setting.sweep_time_us = t;
|
|
if (MODE_OUTPUT(setting.mode))
|
|
setting.actual_sweep_time_us = t; // To ensure time displayed is correct before first sweep is completed
|
|
#if 0
|
|
uint32_t ta = calc_min_sweep_time_us(); // Can not be faster than minimum sweep time
|
|
if (ta < t)
|
|
ta = t;
|
|
setting.actual_sweep_time_us = ta;
|
|
if (FREQ_IS_CW())
|
|
update_grid(); // Really only needed in zero span mode
|
|
redraw_request |= REDRAW_FREQUENCY;
|
|
#endif
|
|
dirty = true;
|
|
}
|
|
|
|
void set_tracking_output(int t)
|
|
{
|
|
setting.tracking_output = t;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_tracking_output(void)
|
|
{
|
|
setting.tracking_output = !setting.tracking_output;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_mirror_masking(void)
|
|
{
|
|
setting.mirror_masking = !setting.mirror_masking;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_mute(void)
|
|
{
|
|
setting.mute = !setting.mute;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_hambands(void)
|
|
{
|
|
config.hambands = !config.hambands;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_below_IF(void)
|
|
{
|
|
if (S_IS_AUTO(setting.below_IF ))
|
|
setting.below_IF = false;
|
|
else if (setting.below_IF)
|
|
setting.below_IF = S_AUTO_OFF;
|
|
else
|
|
setting.below_IF = true;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_modulation(int m)
|
|
{
|
|
setting.modulation = m;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_modulation_frequency(int f)
|
|
{
|
|
if (100 <= f && f <= 6000) {
|
|
setting.modulation_frequency = f;
|
|
dirty = true;
|
|
}
|
|
}
|
|
|
|
void set_repeat(int r)
|
|
{
|
|
if (r > 0 && r <= 100) {
|
|
setting.repeat = r;
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
}
|
|
|
|
void set_IF(int f)
|
|
{
|
|
if (f == 0)
|
|
setting.auto_IF = true;
|
|
setting.frequency_IF = f;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_IF2(int f)
|
|
{
|
|
|
|
config.frequency_IF2 = f;
|
|
dirty = true;
|
|
config_save();
|
|
}
|
|
|
|
void set_R(int f)
|
|
{
|
|
ADF4351_R_counter(f % 10);
|
|
ADF4351_spur_mode(f/10);
|
|
dirty = true;
|
|
}
|
|
|
|
void set_modulo(uint32_t f)
|
|
{
|
|
ADF4350_modulo = f;
|
|
//ADF4351_spur_mode(f);
|
|
dirty = true;
|
|
}
|
|
|
|
#define POWER_STEP 0 // Should be 5 dB but appearently it is lower
|
|
#define POWER_OFFSET 15
|
|
#define SWITCH_ATTENUATION 30
|
|
#define RECEIVE_SWITCH_ATTENUATION 21
|
|
|
|
|
|
void set_auto_attenuation(void)
|
|
{
|
|
setting.auto_attenuation = true;
|
|
if (setting.mode == M_LOW) {
|
|
setting.attenuate = 30.0;
|
|
} else {
|
|
setting.attenuate = 0;
|
|
}
|
|
setting.atten_step = false;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_auto_reflevel(int v)
|
|
{
|
|
setting.auto_reflevel = v;
|
|
}
|
|
|
|
float get_attenuation(void)
|
|
{
|
|
if (setting.mode == M_GENLOW) {
|
|
if (setting.atten_step)
|
|
return ( -(POWER_OFFSET + setting.attenuate - (setting.atten_step-1)*POWER_STEP + SWITCH_ATTENUATION));
|
|
else
|
|
return ( -POWER_OFFSET - setting.attenuate + (setting.drive & 7) * 3);
|
|
} else if (setting.atten_step) {
|
|
if (setting.mode == M_LOW)
|
|
return setting.attenuate + RECEIVE_SWITCH_ATTENUATION;
|
|
else
|
|
return setting.attenuate + SWITCH_ATTENUATION;
|
|
}
|
|
return(setting.attenuate);
|
|
}
|
|
|
|
static pureRSSI_t get_signal_path_loss(void){
|
|
#ifdef __ULTRA__
|
|
if (setting.mode == M_ULTRA)
|
|
return float_TO_PURE_RSSI(-15); // Loss in dB, -9.5 for v0.1, -12.5 for v0.2
|
|
#endif
|
|
if (setting.mode == M_LOW)
|
|
return float_TO_PURE_RSSI(-5.5); // Loss in dB, -9.5 for v0.1, -12.5 for v0.2
|
|
return float_TO_PURE_RSSI(+7); // Loss in dB (+ is gain)
|
|
}
|
|
|
|
static const int drive_dBm [16] = {-38,-35,-33,-30,-27,-24,-21,-19,-7,-4,-2, 1, 4, 7, 10, 13};
|
|
|
|
void set_level(float v) // Set the drive level of the LO
|
|
{
|
|
if (setting.mode == M_GENHIGH) {
|
|
int d = 0;
|
|
while (drive_dBm[d] < v - 1 && d < 16)
|
|
d++;
|
|
if (d == 8 && v < -12) // Round towards closest level
|
|
d = 7;
|
|
set_drive(d);
|
|
} else {
|
|
setting.level = v;
|
|
set_attenuation((int)v);
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
void set_attenuation(float a) // Is used both in output mode and input mode
|
|
{
|
|
if (setting.mode == M_GENLOW) {
|
|
a = a + POWER_OFFSET;
|
|
if (a > 6) { // +9dB
|
|
setting.drive = 11; // Maximum save drive for SAW filters.
|
|
a = a - 9;
|
|
} else if (a > 3) { // +6dB
|
|
setting.drive = 10;
|
|
a = a - 6;
|
|
} else if (a > 0) { // +3dB
|
|
setting.drive = 9;
|
|
a = a - 3;
|
|
} else
|
|
setting.drive = 8; // defined as 0dB level
|
|
if (a > 0)
|
|
a = 0;
|
|
if( a > - SWITCH_ATTENUATION) {
|
|
setting.atten_step = 0;
|
|
} else {
|
|
a = a + SWITCH_ATTENUATION;
|
|
setting.atten_step = 1;
|
|
}
|
|
a = -a;
|
|
} else {
|
|
if (setting.mode == M_LOW && a > 31) {
|
|
setting.atten_step = 1;
|
|
a = a - RECEIVE_SWITCH_ATTENUATION;
|
|
} else if (setting.mode == M_HIGH && a > 0) {
|
|
setting.atten_step = 1;
|
|
a = a - SWITCH_ATTENUATION;
|
|
} else
|
|
setting.atten_step = 0;
|
|
setting.auto_attenuation = false;
|
|
dirty = true;
|
|
}
|
|
if (a<0.0)
|
|
a = 0;
|
|
if (a> 31)
|
|
a=31.0;
|
|
if (setting.mode == M_HIGH) // No attenuator in high mode
|
|
a = 0;
|
|
if (setting.attenuate == a)
|
|
return;
|
|
setting.attenuate = a;
|
|
dirty = true;
|
|
}
|
|
|
|
void set_storage(void)
|
|
{
|
|
for (int i=0; i<POINTS_COUNT;i++)
|
|
stored_t[i] = actual_t[i];
|
|
setting.show_stored = true;
|
|
trace[TRACE_STORED].enabled = true;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_clear_storage(void)
|
|
{
|
|
setting.show_stored = false;
|
|
setting.subtract_stored = false;
|
|
trace[TRACE_STORED].enabled = false;
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_subtract_storage(void)
|
|
{
|
|
if (!setting.subtract_stored) {
|
|
if (!setting.show_stored)
|
|
set_storage();
|
|
setting.subtract_stored = true;
|
|
setting.normalize_level = 0.0;
|
|
// setting.auto_attenuation = false;
|
|
} else {
|
|
setting.subtract_stored = false;
|
|
}
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
|
|
void toggle_normalize(void)
|
|
{
|
|
if (!setting.subtract_stored) {
|
|
for (int i=0; i<POINTS_COUNT;i++)
|
|
stored_t[i] = actual_t[i];
|
|
setting.subtract_stored = true;
|
|
setting.auto_attenuation = false; // Otherwise noise level may move leading to strange measurements
|
|
setting.normalize_level = 0.0;
|
|
} else {
|
|
setting.subtract_stored = false;
|
|
}
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
|
|
extern float peakLevel;
|
|
void set_actual_power(float o) // Set peak level to known value
|
|
{
|
|
float new_offset = o - peakLevel + get_level_offset(); // calculate offset based on difference between measured peak level and known peak level
|
|
if (o == 100) new_offset = 0;
|
|
if (setting.mode == M_HIGH) {
|
|
config.high_level_offset = new_offset;
|
|
} else if (setting.mode == M_LOW) {
|
|
config.low_level_offset = new_offset;
|
|
#ifdef __ULTRA__
|
|
} else if (setting.mode == M_ULTRA) {
|
|
config.low_level_offset = new_offset;
|
|
#endif
|
|
}
|
|
dirty = true;
|
|
config_save();
|
|
// dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
float get_level_offset(void)
|
|
{
|
|
if (setting.mode == M_HIGH) {
|
|
if (config.high_level_offset == 100) // Offset of 100 means not calibrated
|
|
return 0;
|
|
return(config.high_level_offset);
|
|
}
|
|
if (setting.mode == M_LOW) {
|
|
if (config.low_level_offset == 100)
|
|
return 0;
|
|
return(config.low_level_offset);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
int level_is_calibrated(void)
|
|
{
|
|
if (setting.mode == M_HIGH && config.high_level_offset != 100)
|
|
return 1;
|
|
if (setting.mode == M_LOW && config.low_level_offset != 100)
|
|
return 1;
|
|
return(0);
|
|
}
|
|
|
|
void set_RBW(uint32_t rbw_x10)
|
|
{
|
|
setting.rbw_x10 = rbw_x10;
|
|
update_rbw();
|
|
dirty = true;
|
|
}
|
|
|
|
#ifdef __SPUR__
|
|
void set_spur(int v)
|
|
{
|
|
if (setting.mode!=M_LOW)
|
|
return;
|
|
setting.spur_removal = v;
|
|
// if (setting.spur_removal && actual_rbw > 360) // moved to update_rbw
|
|
// set_RBW(300);
|
|
dirty = true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __ULTRA__
|
|
void set_harmonic(int h)
|
|
{
|
|
setting.harmonic = h;
|
|
minFreq = 684000000.0;
|
|
if ((uint32_t)(setting.harmonic * 240000000)+434000000 > minFreq)
|
|
minFreq = setting.harmonic * 240000000.0+434000000.0;
|
|
maxFreq = 4360000000;
|
|
if (setting.harmonic != 0 && (960000000.0 * setting.harmonic + 434000000.0 )< 4360000000.0)
|
|
maxFreq = (960000000.0 * setting.harmonic + 434000000.0 );
|
|
set_sweep_frequency(ST_START, minFreq);
|
|
set_sweep_frequency(ST_STOP, maxFreq);
|
|
}
|
|
#endif
|
|
|
|
void set_step_delay(int d) // override RSSI measurement delay or set to one of three auto modes
|
|
{
|
|
|
|
if ((3 <= d && d < 100) || d > 30000) // values 0 (normal scan), 1 (precise scan) and 2(fast scan) have special meaning and are auto calculated
|
|
return;
|
|
if (d <3) {
|
|
setting.step_delay_mode = d;
|
|
setting.step_delay = 0;
|
|
setting.offset_delay = 0;
|
|
} else {
|
|
setting.step_delay_mode = SD_MANUAL;
|
|
setting.step_delay = d;
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
void set_offset_delay(int d) // override RSSI measurement delay or set to one of three auto modes
|
|
{
|
|
setting.offset_delay = d;
|
|
dirty = true;
|
|
}
|
|
|
|
|
|
void set_average(int v)
|
|
{
|
|
setting.average = v;
|
|
trace[TRACE_TEMP].enabled = (v != 0);
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void toggle_LNA(void)
|
|
{
|
|
if (S_IS_AUTO(setting.lna ))
|
|
setting.lna = false;
|
|
else if (setting.lna)
|
|
setting.lna = S_AUTO_OFF;
|
|
else
|
|
setting.lna = true;
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_tracking(void)
|
|
{
|
|
setting.tracking = !setting.tracking;
|
|
if (setting.tracking) {
|
|
set_refer_output(2);
|
|
set_sweep_frequency(ST_CENTER, 10000000);
|
|
set_sweep_frequency(ST_SPAN, 5000000);
|
|
} else {
|
|
set_refer_output(-1);
|
|
}
|
|
dirty = true;
|
|
}
|
|
|
|
void toggle_AGC(void)
|
|
{
|
|
if (S_IS_AUTO(setting.agc ))
|
|
setting.agc = false;
|
|
else if (setting.agc)
|
|
setting.agc = S_AUTO_ON;
|
|
else
|
|
setting.agc = true;
|
|
dirty = true;
|
|
}
|
|
|
|
static unsigned char SI4432_old_v[2];
|
|
|
|
void auto_set_AGC_LNA(int auto_set, int agc) // Adapt the AGC setting if needed
|
|
{
|
|
#ifdef __SI4432__
|
|
unsigned char v;
|
|
if (auto_set)
|
|
v = 0x60; // Enable AGC and disable LNA
|
|
else
|
|
v = 0x40+agc; // Disable AGC and enable LNA
|
|
if (SI4432_old_v[MODE_SELECT(setting.mode)] != v) {
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
SI4432_Write_Byte(SI4432_AGC_OVERRIDE, v);
|
|
SI4432_old_v[MODE_SELECT(setting.mode)] = v;
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
unsigned char v;
|
|
if (auto_set)
|
|
v = 0x00; // Enable AGC and disable LNA
|
|
else
|
|
v = 0x88+agc; // Disable AGC and enable LNA
|
|
if (SI4432_old_v[0] != v) {
|
|
SI446x_set_AGC_LNA(v);
|
|
SI4432_old_v[0] = v;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef __SI4432__
|
|
void set_AGC_LNA(void) {
|
|
unsigned char v = 0x40;
|
|
if (S_STATE(setting.agc)) v |= 0x20;
|
|
if (S_STATE(setting.lna)) v |= 0x10;
|
|
SI4432_Write_Byte(SI4432_AGC_OVERRIDE, v);
|
|
SI4432_old_v[MODE_SELECT(setting.mode)] = v;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SI4463__
|
|
void set_AGC_LNA(void) {
|
|
uint8_t v = 0;
|
|
if (!S_STATE(setting.agc))
|
|
v |= 0x80 + 0x20; // Inverse!!!!
|
|
if (S_STATE(setting.lna))
|
|
v |= 0x08; // Inverse!!!!
|
|
SI446x_set_AGC_LNA(v);
|
|
SI4432_old_v[0] = v;
|
|
}
|
|
#endif
|
|
|
|
void set_unit(int u)
|
|
{
|
|
if (setting.unit == u)
|
|
return;
|
|
float r = to_dBm(setting.reflevel); // Get neutral unit
|
|
float s = to_dBm(setting.scale);
|
|
// float t = setting.trigger; // Is always in dBm
|
|
// float m = r - NGRIDSY*s;
|
|
|
|
setting.unit = u; // Switch unit
|
|
|
|
r = value(r); // Convert to target unit
|
|
s = value(s);
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (r < REFLEVEL_MIN)
|
|
r = REFLEVEL_MIN; // Minimum value to ensure display
|
|
if (r >REFLEVEL_MAX)
|
|
r = REFLEVEL_MAX; // Maximum value
|
|
set_scale(r/NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
if (S_IS_AUTO(setting.agc))
|
|
setting.agc = S_AUTO_ON;
|
|
if (S_IS_AUTO(setting.lna))
|
|
setting.lna = S_AUTO_OFF;
|
|
} else {
|
|
r = 10 * round((r*1.2)/10.0);
|
|
set_reflevel(r);
|
|
set_scale(10);
|
|
if (S_IS_AUTO(setting.agc))
|
|
setting.agc = S_AUTO_ON;
|
|
if (S_IS_AUTO(setting.lna))
|
|
setting.lna = S_AUTO_OFF;
|
|
}
|
|
plot_into_index(measured);
|
|
redraw_request|=REDRAW_AREA;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
float const unit_scale_value[]={1,0.001,0.000001,0.000000001,0.000000000001};
|
|
const char * const unit_scale_text[]= {"","m", "\035", "n", "p"};
|
|
|
|
void user_set_reflevel(float level)
|
|
{
|
|
set_auto_reflevel(false);
|
|
if (UNIT_IS_LINEAR(setting.unit) && level < setting.scale*NGRIDY) {
|
|
set_scale(level/NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
} else
|
|
set_reflevel(level);
|
|
redraw_request|=REDRAW_AREA;
|
|
}
|
|
|
|
void set_reflevel(float level)
|
|
{
|
|
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (level < REFLEVEL_MIN)
|
|
level = REFLEVEL_MIN;
|
|
if (level > REFLEVEL_MAX)
|
|
level = REFLEVEL_MAX;
|
|
}
|
|
|
|
setting.unit_scale_index = 0;
|
|
setting.unit_scale = 1.0;
|
|
while (UNIT_IS_LINEAR(setting.unit) && setting.unit_scale_index < sizeof(unit_scale_value)/sizeof(float) - 1) {
|
|
if (level > unit_scale_value[setting.unit_scale_index])
|
|
break;
|
|
setting.unit_scale_index++;
|
|
}
|
|
setting.unit_scale = unit_scale_value[setting.unit_scale_index];
|
|
setting.reflevel = level;
|
|
set_trace_refpos(level);
|
|
// dirty = true;
|
|
}
|
|
|
|
void round_reflevel_to_scale(void) {
|
|
int multi = floor((setting.reflevel + setting.scale/2)/setting.scale);
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (multi < NGRIDY) {
|
|
setting.reflevel = setting.scale*10; // Never negative bottom
|
|
}
|
|
} else {
|
|
|
|
}
|
|
setting.reflevel = multi*setting.scale;
|
|
set_trace_refpos(setting.reflevel);
|
|
}
|
|
|
|
void user_set_scale(float s)
|
|
{
|
|
if (UNIT_IS_LINEAR(setting.unit))
|
|
set_auto_reflevel(false);
|
|
set_scale(s);
|
|
if (UNIT_IS_LINEAR(setting.unit) && setting.reflevel < setting.scale*NGRIDY)
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
force_set_markmap();
|
|
}
|
|
|
|
void set_scale(float t) {
|
|
if (UNIT_IS_LINEAR(setting.unit)) {
|
|
if (t < REFLEVEL_MIN/10.0)
|
|
t = REFLEVEL_MIN/10.0;
|
|
if (t > REFLEVEL_MAX/10.0)
|
|
t = REFLEVEL_MAX/10.0;
|
|
} else {
|
|
if (t > 20.0)
|
|
t = 20.0;
|
|
else if (t < 1)
|
|
t = 1.0;
|
|
}
|
|
|
|
float m = 1;
|
|
// t = t * 1.2;
|
|
while (t > 10) { m *= 10; t/=10; }
|
|
while (t < 1.0) { m /= 10; t*=10; }
|
|
if (t>5.0001)
|
|
t = 10.0;
|
|
else if (t>2.0001)
|
|
t = 5.0;
|
|
else if (t > 1.0001)
|
|
t = 2.0;
|
|
else
|
|
t = 1.0;
|
|
t = t*m;
|
|
setting.scale = t;
|
|
set_trace_scale(t);
|
|
round_reflevel_to_scale();
|
|
}
|
|
|
|
|
|
void set_offset(float offset)
|
|
{
|
|
setting.offset = offset;
|
|
force_set_markmap();
|
|
dirty = true; // No HW update required, only status panel refresh but need to ensure the cached value is updated in the calculation of the RSSI
|
|
}
|
|
|
|
void set_trigger_level(float trigger_level)
|
|
{
|
|
setting.trigger_level = trigger_level;
|
|
redraw_request |= REDRAW_TRIGGER | REDRAW_CAL_STATUS | REDRAW_AREA;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
void set_trigger(int trigger)
|
|
{
|
|
if (trigger == T_UP || trigger == T_DOWN){
|
|
setting.trigger_direction = trigger;
|
|
} else if (trigger == T_DONE) {
|
|
pause_sweep(); // Trigger once so pause after this sweep has completed!!!!!!!
|
|
redraw_request |= REDRAW_CAL_STATUS; // Show status change setting.trigger = trigger;
|
|
setting.trigger = trigger;
|
|
} else {
|
|
sweep_mode = SWEEP_ENABLE;
|
|
setting.trigger = trigger;
|
|
}
|
|
redraw_request|=REDRAW_TRIGGER | REDRAW_CAL_STATUS;
|
|
//dirty = true; // No HW update required, only status panel refresh
|
|
}
|
|
|
|
|
|
//int GetRefpos(void) {
|
|
// return (NGRIDY - get_trace_refpos(2)) * get_trace_scale(2);
|
|
//}
|
|
|
|
//int GetScale(void) {
|
|
// return get_trace_refpos(2);
|
|
//}
|
|
void set_mode(int m)
|
|
{
|
|
#ifdef __ULTRA__
|
|
if (m == 6)
|
|
m = M_ULTRA;
|
|
#endif
|
|
dirty = true;
|
|
if (setting.mode == m)
|
|
return;
|
|
reset_settings(m);
|
|
// dirty = true;
|
|
}
|
|
|
|
void set_fast_speedup(int s)
|
|
{
|
|
setting.fast_speedup = s;
|
|
dirty = true;
|
|
}
|
|
|
|
void calculate_step_delay(void)
|
|
{
|
|
if (setting.step_delay_mode == SD_MANUAL || setting.step_delay != 0) { // The latter part required for selftest 3
|
|
SI4432_step_delay = setting.step_delay;
|
|
if (setting.offset_delay != 0) // Override if set
|
|
SI4432_offset_delay = setting.offset_delay;
|
|
} else {
|
|
SI4432_offset_delay = 0;
|
|
if (setting.frequency_step == 0) { // zero span mode, not dependent on selected RBW
|
|
SI4432_step_delay = 0;
|
|
} else {
|
|
#ifdef __SI4432__
|
|
#if 1 // Table for double offset delay
|
|
if (actual_rbw_x10 >= 1910) { SI4432_step_delay = 300; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 1420) { SI4432_step_delay = 350; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 750) { SI4432_step_delay = 450; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 560) { SI4432_step_delay = 650; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 370) { SI4432_step_delay = 700; SI4432_offset_delay = 200; }
|
|
else if (actual_rbw_x10 >= 180) { SI4432_step_delay = 1100; SI4432_offset_delay = 300; }
|
|
else if (actual_rbw_x10 >= 90) { SI4432_step_delay = 1700; SI4432_offset_delay = 400; }
|
|
else if (actual_rbw_x10 >= 50) { SI4432_step_delay = 3300; SI4432_offset_delay = 800; }
|
|
else { SI4432_step_delay = 6400; SI4432_offset_delay =1600; }
|
|
#else
|
|
if (actual_rbw_x10 >= 1910) { SI4432_step_delay = 280; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 1420) { SI4432_step_delay = 350; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 750) { SI4432_step_delay = 450; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 560) { SI4432_step_delay = 650; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 370) { SI4432_step_delay = 700; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 180) { SI4432_step_delay = 1100; SI4432_offset_delay = 200; }
|
|
else if (actual_rbw_x10 >= 90) { SI4432_step_delay = 1700; SI4432_offset_delay = 400; }
|
|
else if (actual_rbw_x10 >= 50) { SI4432_step_delay = 3300; SI4432_offset_delay = 400; }
|
|
else { SI4432_step_delay = 6400; SI4432_offset_delay =1600; }
|
|
#endif
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (actual_rbw_x10 >= 8500) { SI4432_step_delay = 300; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 3000) { SI4432_step_delay = 300; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 1000) { SI4432_step_delay = 300; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 300) { SI4432_step_delay = 1000; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 100) { SI4432_step_delay = 1400; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 30) { SI4432_step_delay = 2500; SI4432_offset_delay = 100; }
|
|
else if (actual_rbw_x10 >= 10) { SI4432_step_delay = 7000; SI4432_offset_delay = 100; }
|
|
else { SI4432_step_delay = 15000; SI4432_offset_delay =1600; }
|
|
#endif
|
|
if (setting.step_delay_mode == SD_PRECISE) // In precise mode wait twice as long for RSSI to stabalize
|
|
SI4432_step_delay *= 2;
|
|
if (setting.fast_speedup >0)
|
|
SI4432_offset_delay = SI4432_step_delay / setting.fast_speedup;
|
|
}
|
|
if (setting.offset_delay != 0) // Override if set
|
|
SI4432_offset_delay = setting.offset_delay;
|
|
}
|
|
}
|
|
|
|
void apply_settings(void) // Ensure all settings in the setting structure are translated to the right HW setup
|
|
{
|
|
set_switches(setting.mode);
|
|
#ifdef __PE4302__
|
|
if (setting.mode == M_HIGH)
|
|
PE4302_Write_Byte(40); // Ensure defined input impedance of low port when using high input mode (power calibration)
|
|
else
|
|
PE4302_Write_Byte((int)(setting.attenuate * 2));
|
|
#endif
|
|
if (setting.mode == M_LOW) {
|
|
|
|
}
|
|
#ifdef __SI4432__
|
|
SI4432_SetReference(setting.refer);
|
|
#endif
|
|
update_rbw();
|
|
calculate_step_delay();
|
|
}
|
|
|
|
//------------------------------------------
|
|
#if 0
|
|
#define CORRECTION_POINTS 10
|
|
|
|
static const uint32_t correction_frequency[CORRECTION_POINTS] =
|
|
{ 100000, 200000, 400000, 1000000, 2000000, 50000000, 100000000, 200000000, 300000000, 350000000 };
|
|
|
|
static const float correction_value[CORRECTION_POINTS] =
|
|
{ +4.0, +2.0, +1.5, +0.5, 0.0, 0.0, +1.0, +1.0, +2.5, +5.0 };
|
|
#endif
|
|
|
|
/*
|
|
* To avoid float calculations the correction values are maximum +/-16 and accuracy of 0.5 so they fit easily in 8 bits
|
|
* The frequency steps between correction factors is assumed to be maximum 500MHz or 0x2000000 and minimum 100kHz or > 0x10000
|
|
* The divider 1/m is pre-calculated into delta_div as 2^scale_factor * correction_step/frequency_step
|
|
*/
|
|
|
|
#define SCALE_FACTOR 14 // min scaled correction = 2^15, max scaled correction = 256 * 2^15
|
|
// min scaled f = 6, max scaled f = 1024
|
|
|
|
static int32_t scaled_correction_multi[CORRECTION_POINTS];
|
|
static int32_t scaled_correction_value[CORRECTION_POINTS];
|
|
|
|
void calculate_correction(void)
|
|
{
|
|
scaled_correction_value[0] = config.correction_value[0] * (1 << (SCALE_FACTOR));
|
|
for (int i = 1; i < CORRECTION_POINTS; i++) {
|
|
scaled_correction_value[i] = config.correction_value[i] * (1 << (SCALE_FACTOR));
|
|
int32_t m = scaled_correction_value[i] - scaled_correction_value[i-1];
|
|
int32_t d = (config.correction_frequency[i] - config.correction_frequency[i-1]) >> SCALE_FACTOR;
|
|
scaled_correction_multi[i] = (int32_t) ( m / d );
|
|
}
|
|
}
|
|
|
|
pureRSSI_t get_frequency_correction(uint32_t f) // Frequency dependent RSSI correction to compensate for imperfect LPF
|
|
{
|
|
if (!(setting.mode == M_LOW || setting.mode == M_GENLOW))
|
|
return(0.0);
|
|
int i = 0;
|
|
while (f > config.correction_frequency[i] && i < CORRECTION_POINTS)
|
|
i++;
|
|
if (i >= CORRECTION_POINTS)
|
|
return(scaled_correction_value[CORRECTION_POINTS-1] >> (SCALE_FACTOR - 5) );
|
|
if (i == 0)
|
|
return(scaled_correction_value[0] >> (SCALE_FACTOR - 5) );
|
|
f = f - config.correction_frequency[i-1];
|
|
#if 0
|
|
uint32_t m = (config.correction_frequency[i] - config.correction_frequency[i-1]) >> SCALE_FACTOR ;
|
|
float multi = (config.correction_value[i] - config.correction_value[i-1]) * (1 << (SCALE_FACTOR -1)) / (float)m;
|
|
float cv = config.correction_value[i-1] + ((f >> SCALE_FACTOR) * multi) / (float)(1 << (SCALE_FACTOR -1)) ;
|
|
#else
|
|
int32_t scaled_f = f >> SCALE_FACTOR;
|
|
pureRSSI_t cv = (scaled_correction_value[i-1] + (scaled_f * scaled_correction_multi[i])) >> (SCALE_FACTOR - 5) ;
|
|
#endif
|
|
return(cv);
|
|
}
|
|
|
|
|
|
float peakLevel;
|
|
float min_level;
|
|
uint32_t peakFreq;
|
|
int peakIndex;
|
|
float temppeakLevel;
|
|
int temppeakIndex;
|
|
static unsigned long old_freq[5] = { 0, 0, 0, 0,0};
|
|
static unsigned long real_old_freq[5] = { 0, 0, 0, 0,0};
|
|
// volatile int t;
|
|
|
|
//static uint32_t extra_vbw_step_time = 0;
|
|
//static uint32_t etra_repeat_time = 0;
|
|
//static uint32_t minimum_zero_span_sweep_time = 0;
|
|
//static uint32_t minimum_sweep_time = 0;
|
|
|
|
void setupSA(void)
|
|
{
|
|
#ifdef __SI4432__
|
|
SI4432_Init();
|
|
#endif
|
|
for (int i = 0; i < sizeof(old_freq)/sizeof(unsigned long) ; i++) {
|
|
old_freq[i] = 0;
|
|
real_old_freq[i] = 0;
|
|
}
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Transmit(0);
|
|
#endif
|
|
#ifdef __PE4302__
|
|
PE4302_init();
|
|
PE4302_Write_Byte(0);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx(); // Must be before ADF4351_setup!!!!
|
|
#endif
|
|
|
|
ADF4351_Setup();
|
|
#if 0 // Measure fast scan time
|
|
setting.sweep_time_us = 0;
|
|
setting.additional_step_delay_us = 0;
|
|
START_PROFILE // measure 90 points to get overhead
|
|
SI4432_Fill(0,200);
|
|
int t1 = DELTA_TIME;
|
|
RESTART_PROFILE // measure 290 points to get real added time for 200 points
|
|
SI4432_Fill(0,0);
|
|
int t2 = DELTA_TIME;
|
|
int t = (t2 - t1) * 100 * (sweep_points) / 200; // And calculate real time excluding overhead for all points
|
|
#endif
|
|
}
|
|
|
|
#define __WIDE_OFFSET__
|
|
#ifdef __WIDE_OFFSET__
|
|
#define OFFSET_LOWER_BOUND -80000
|
|
#else
|
|
#define OFFSET_LOWER_BOUND 0
|
|
#endif
|
|
|
|
static uint32_t old_frequency_step;
|
|
|
|
void set_freq(int V, unsigned long freq) // translate the requested frequency into a setting of the SI4432
|
|
{
|
|
if (old_freq[V] == freq && setting.frequency_step == old_frequency_step) // Do not change HW if not needed
|
|
return;
|
|
#ifdef __SI4432__
|
|
if (V <= 1) {
|
|
SI4432_Sel = V;
|
|
if (freq < 240000000 || freq > 960000000) { // Impossible frequency, simply ignore, should never happen.
|
|
real_old_freq[V] = freq + 1; // No idea why this is done........
|
|
return;
|
|
}
|
|
#if 1
|
|
if (V == 1 && setting.step_delay_mode == SD_FAST) { // If in extra fast scanning mode and NOT SI4432_RX !!!!!!
|
|
int delta = freq - real_old_freq[V];
|
|
|
|
if (real_old_freq[V] >= 480000000) // 480MHz, high band
|
|
delta = delta >> 1;
|
|
if (delta > OFFSET_LOWER_BOUND && delta < 79999) { // and requested frequency can be reached by using the offset registers
|
|
#if 0
|
|
if (real_old_freq[V] >= 480000000)
|
|
shell_printf("%d: Offs %q HW %d\r\n", SI4432_Sel, (uint32_t)(real_old_freq[V]+delta*2), real_old_freq[V]);
|
|
else
|
|
shell_printf("%d: Offs %q HW %d\r\n", SI4432_Sel, (uint32_t)(real_old_freq[V]+delta*1), real_old_freq[V]);
|
|
#endif
|
|
delta = delta * 4 / 625; // = 156.25; // Calculate and set the offset register i.s.o programming a new frequency
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, (uint8_t)(delta & 0xff), (uint8_t)((delta >> 8) & 0x03));
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, (uint8_t)((delta >> 8) & 0x03));
|
|
SI4432_offset_changed = true; // Signal offset changed so RSSI retrieval is delayed for frequency settling
|
|
old_freq[V] = freq;
|
|
} else {
|
|
#ifdef __WIDE_OFFSET__
|
|
uint32_t target_f; // Impossible to use offset so set SI4432 to new frequency
|
|
if (freq < real_old_freq[V]) { // sweeping down
|
|
if (freq - 80000 >= 480000000) {
|
|
target_f = freq - 160000;
|
|
} else {
|
|
target_f = freq - 80000;
|
|
}
|
|
SI4432_Set_Frequency(target_f);
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0xff, 0x01); // set offset to most positive
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0x01);
|
|
real_old_freq[V] = target_f;
|
|
} else { // sweeping up
|
|
if (freq + 80000 >= 480000000) {
|
|
target_f = freq + 160000;
|
|
} else {
|
|
target_f = freq + 80000;
|
|
}
|
|
SI4432_Set_Frequency(target_f);
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0, 0x02); // set offset to most negative
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0x02);
|
|
real_old_freq[V] = target_f;
|
|
}
|
|
#else
|
|
SI4432_Set_Frequency(freq); // Impossible to use offset so set SI4432 to new frequency
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, 0, 0); // set offset to zero
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0);
|
|
real_old_freq[V] = freq;
|
|
#endif
|
|
}
|
|
} else {
|
|
#endif
|
|
SI4432_Set_Frequency(freq); // Not in fast mode
|
|
real_old_freq[V] = freq;
|
|
}
|
|
} else
|
|
#endif
|
|
if (V==ADF4351_LO){
|
|
#if 0
|
|
if (setting.step_delay_mode == SD_FAST) { // If in fast scanning mode and NOT SI4432_RX !!!!!!
|
|
int delta = - (freq - real_old_freq[V]); // delta grows with increasing freq
|
|
if (setting.frequency_step < 100000 && 0 < delta && delta < 100000) {
|
|
SI4463_start_rx(delta / setting.frequency_step); // with increasing delta, set smaller offset
|
|
freq = 0;
|
|
} else {
|
|
SI4463_start_rx(0 / setting.frequency_step); // Start at maximum positive offset
|
|
}
|
|
}
|
|
#endif
|
|
if (freq) {
|
|
real_old_freq[V] = ADF4351_set_frequency(V-ADF4351_LO,freq,setting.drive-12);
|
|
}
|
|
} else if (V==ADF4351_LO2){
|
|
real_old_freq[V] = ADF4351_set_frequency(V-ADF4351_LO,freq,setting.drive-12);
|
|
} else
|
|
if (V==SI4463_RX) {
|
|
if (setting.frequency_step<930000) // maximum step size is 937.49kHz
|
|
SI4463_set_freq(freq,setting.frequency_step);
|
|
else
|
|
SI4463_set_freq(freq,100);
|
|
old_frequency_step = setting.frequency_step;
|
|
}
|
|
#ifdef __ULTRA_SA__
|
|
else {
|
|
ADF4351_set_frequency(V-ADF4351_LO,freq,(setting.drive-4)/3);
|
|
}
|
|
#endif
|
|
old_freq[V] = freq;
|
|
}
|
|
|
|
#ifdef __SI4432__
|
|
void set_switch_transmit(void) {
|
|
SI4432_Write_Byte(SI4432_GPIO0_CONF, 0x1f);// Set switch to transmit
|
|
SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1d);
|
|
}
|
|
|
|
void set_switch_receive(void) {
|
|
SI4432_Write_Byte(SI4432_GPIO0_CONF, 0x1d);// Set switch to receive
|
|
SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1f);
|
|
}
|
|
|
|
void set_switch_off(void) {
|
|
SI4432_Write_Byte(SI4432_GPIO0_CONF, 0x1d);// Set both switch off
|
|
SI4432_Write_Byte(SI4432_GPIO1_CONF, 0x1f);
|
|
}
|
|
|
|
#endif
|
|
|
|
void set_switches(int m)
|
|
{
|
|
#ifdef __SI4432__
|
|
SI4432_Init();
|
|
old_freq[0] = 0;
|
|
old_freq[1] = 0;
|
|
real_old_freq[0] = 0;
|
|
real_old_freq[1] = 0;
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Write_Byte(SI4432_FREQ_OFFSET1, 0); // Back to nominal offset
|
|
SI4432_Write_Byte(SI4432_FREQ_OFFSET2, 0);
|
|
#endif
|
|
switch(m) {
|
|
case M_LOW: // Mixed into 0
|
|
#ifdef __ULTRA__
|
|
case M_ULTRA:
|
|
#endif
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
if (setting.atten_step) { // use switch as attenuator
|
|
set_switch_transmit();
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx(); // Must be before ADF4351_setup!!!!
|
|
#endif
|
|
set_AGC_LNA();
|
|
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.tracking_output)
|
|
set_switch_transmit();
|
|
else
|
|
set_switch_off();
|
|
// SI4432_Receive(); For noise testing only
|
|
SI4432_Transmit(setting.drive);
|
|
// SI4432_SetReference(setting.refer);
|
|
#endif
|
|
break;
|
|
case M_HIGH: // Direct into 1
|
|
mute:
|
|
#ifdef __SI4432__
|
|
// SI4432_SetReference(-1); // Stop reference output
|
|
SI4432_Sel = SI4432_RX ; // both as receiver to avoid spurs
|
|
set_switch_receive();
|
|
SI4432_Receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
SI4432_Receive();
|
|
if (setting.atten_step) {// use switch as attenuator
|
|
set_switch_transmit();
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
SI4463_init_rx();
|
|
#endif
|
|
set_AGC_LNA();
|
|
|
|
break;
|
|
case M_GENLOW: // Mixed output from 0
|
|
if (setting.mute)
|
|
goto mute;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
if (setting.atten_step) { // use switch as attenuator
|
|
set_switch_off();
|
|
} else {
|
|
set_switch_transmit();
|
|
}
|
|
SI4432_Transmit(setting.drive);
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.modulation == MO_EXTERNAL) {
|
|
set_switch_transmit(); // High input for external LO scuh as tracking output of other tinySA
|
|
SI4432_Receive();
|
|
} else {
|
|
set_switch_off();
|
|
SI4432_Transmit(12); // Fix LO drive a 10dBm
|
|
}
|
|
#endif
|
|
#ifdef __SI4468__
|
|
SI4463_init_tx();
|
|
#endif
|
|
break;
|
|
case M_GENHIGH: // Direct output from 1
|
|
if (setting.mute)
|
|
goto mute;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Receive();
|
|
set_switch_receive();
|
|
|
|
SI4432_Sel = SI4432_LO ;
|
|
if (setting.drive < 8) {
|
|
set_switch_off(); // use switch as attenuator
|
|
} else {
|
|
set_switch_transmit();
|
|
}
|
|
SI4432_Transmit(setting.drive);
|
|
#endif
|
|
#ifdef __SI4468__
|
|
SI4463_init_tx();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void update_rbw(void) // calculate the actual_rbw and the vbwSteps (# steps in between needed if frequency step is largen than maximum rbw)
|
|
{
|
|
if (setting.frequency_step > 0 && MODE_INPUT(setting.mode)) {
|
|
setting.vbw_x10 = (setting.frequency_step)/100;
|
|
} else {
|
|
setting.vbw_x10 = 3000; // trick to get right default rbw in zero span mode
|
|
}
|
|
uint32_t temp_actual_rbw_x10 = setting.rbw_x10; // requested rbw , 32 bit !!!!!!
|
|
if (temp_actual_rbw_x10 == 0) { // if auto rbw
|
|
if (setting.step_delay_mode==SD_FAST) { // if in fast scanning
|
|
if (setting.fast_speedup > 2)
|
|
temp_actual_rbw_x10 = 6*setting.vbw_x10; // rbw is six times the frequency step to ensure no gaps in coverage as there are some weird jumps
|
|
else
|
|
temp_actual_rbw_x10 = 4*setting.vbw_x10; // rbw is four times the frequency step to ensure no gaps in coverage as there are some weird jumps
|
|
} else
|
|
temp_actual_rbw_x10 = 2*setting.vbw_x10; // rbw is twice the frequency step to ensure no gaps in coverage
|
|
}
|
|
#ifdef __SI4432__
|
|
if (temp_actual_rbw_x10 < 26)
|
|
temp_actual_rbw_x10 = 26;
|
|
if (temp_actual_rbw_x10 > 6000)
|
|
temp_actual_rbw_x10 = 6000;
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (temp_actual_rbw_x10 < 1)
|
|
temp_actual_rbw_x10 = 1;
|
|
if (temp_actual_rbw_x10 > 8500)
|
|
temp_actual_rbw_x10 = 8500;
|
|
#endif
|
|
actual_rbw_x10 = temp_actual_rbw_x10; // Now it fits in 16 bit
|
|
|
|
#ifdef __SI4432__
|
|
if (setting.spur_removal && actual_rbw_x10 > 3000)
|
|
actual_rbw_x10 = 2500; // if spur suppression reduce max rbw to fit within BPF
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
actual_rbw_x10 = SI4432_SET_RBW(actual_rbw_x10); // see what rbw the SI4432 can realize
|
|
#endif
|
|
#ifdef __SI4463__
|
|
// if (setting.spur_removal && actual_rbw_x10 > 3000) // Will depend on BPF width <------------------ TODO -------------------------
|
|
// actual_rbw_x10 = 3000; // if spur suppression reduce max rbw to fit within BPF
|
|
actual_rbw_x10 = SI4463_SET_RBW(actual_rbw_x10); // see what rbw the SI4432 can realize
|
|
#endif
|
|
if (setting.frequency_step > 0 && MODE_INPUT(setting.mode)) { // When doing frequency scanning in input mode
|
|
vbwSteps = ((int)(2 * (setting.vbw_x10 + (actual_rbw_x10/2)) / actual_rbw_x10)); // calculate # steps in between each frequency step due to rbw being less than frequency step
|
|
if (setting.step_delay_mode==SD_PRECISE) // if in Precise scanning
|
|
vbwSteps *= 2; // use twice as many steps
|
|
if (vbwSteps < 1) // at least one step
|
|
vbwSteps = 1;
|
|
} else { // in all other modes
|
|
setting.vbw_x10 = actual_rbw_x10;
|
|
vbwSteps = 1; // only one vbwSteps
|
|
}
|
|
}
|
|
|
|
int binary_search_frequency(int f) // Search which index in the frequency tabled matches with frequency f using actual_rbw
|
|
{
|
|
int L = 0;
|
|
int R = (sizeof frequencies)/sizeof(int) - 1;
|
|
int fmin = f - actual_rbw_x10 * 100;
|
|
int fplus = f + actual_rbw_x10 * 100;
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
if ((int)frequencies[m] < fmin)
|
|
L = m + 1;
|
|
else if ((int)frequencies[m] > fplus)
|
|
R = m - 1;
|
|
else
|
|
return m; // index is m
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void interpolate_maximum(int m)
|
|
{
|
|
const int idx = markers[m].index;
|
|
markers[m].frequency = frequencies[idx];
|
|
if (idx > 0 && idx < sweep_points-1)
|
|
{
|
|
const float y1 = actual_t[idx - 1];
|
|
const float y2 = actual_t[idx + 0];
|
|
const float y3 = actual_t[idx + 1];
|
|
const float d = 0.5f * (y1 - y3) / ((y1 - (2 * y2) + y3) + 1e-12f);
|
|
//const float bin = (float)idx + d;
|
|
const int32_t delta_Hz = abs((int64_t)frequencies[idx + 0] - frequencies[idx + 1]);
|
|
markers[m].frequency += (int32_t)(delta_Hz * d);
|
|
}
|
|
}
|
|
|
|
#define MAX_MAX 4
|
|
int
|
|
search_maximum(int m, int center, int span)
|
|
{
|
|
center = binary_search_frequency(center);
|
|
if (center < 0)
|
|
return false;
|
|
int from = center - span/2;
|
|
int found = false;
|
|
int to = center + span/2;
|
|
int cur_max = 0; // Always at least one maximum
|
|
int max_index[4];
|
|
if (from<0)
|
|
from = 0;
|
|
if (to > setting._sweep_points-1)
|
|
to = setting._sweep_points-1;
|
|
temppeakIndex = 0;
|
|
temppeakLevel = actual_t[from];
|
|
max_index[cur_max] = from;
|
|
int downslope = true;
|
|
|
|
for (int i = from; i <= to; i++) {
|
|
if (downslope) {
|
|
if (temppeakLevel > actual_t[i]) { // Follow down
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
} else if (temppeakLevel + setting.noise < actual_t[i]) { // Local minimum found
|
|
temppeakIndex = i; // This is now the latest maximum
|
|
temppeakLevel = actual_t[i];
|
|
downslope = false;
|
|
}
|
|
} else {
|
|
if (temppeakLevel < actual_t[i]) { // Follow up
|
|
temppeakIndex = i;
|
|
temppeakLevel = actual_t[i];
|
|
} else if (temppeakLevel - setting.noise > actual_t[i]) { // Local max found
|
|
|
|
found = true;
|
|
int j = 0; // Insertion index
|
|
while (j<cur_max && actual_t[max_index[j]] >= temppeakLevel) // Find where to insert
|
|
j++;
|
|
if (j < MAX_MAX) { // Larger then one of the previous found
|
|
int k = MAX_MAX-1;
|
|
while (k > j) { // Shift to make room for max
|
|
max_index[k] = max_index[k-1];
|
|
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
|
|
k--;
|
|
}
|
|
max_index[j] = temppeakIndex;
|
|
// maxlevel_index[j] = actual_t[temppeakIndex]; // Only for debugging
|
|
if (cur_max < MAX_MAX) {
|
|
cur_max++;
|
|
}
|
|
//STOP_PROFILE
|
|
}
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
|
|
downslope = true;
|
|
}
|
|
}
|
|
}
|
|
markers[m].index = max_index[0];
|
|
interpolate_maximum(m);
|
|
// markers[m].frequency = frequencies[markers[m].index];
|
|
return found;
|
|
}
|
|
|
|
//static int spur_old_stepdelay = 0;
|
|
static const unsigned int spur_IF = DEFAULT_IF; // The IF frequency for which the spur table is value
|
|
static const unsigned int spur_alternate_IF = DEFAULT_SPUR_IF; // if the frequency is found in the spur table use this IF frequency
|
|
static const int spur_table[] = // Frequencies to avoid
|
|
{
|
|
117716000,
|
|
746083000,
|
|
// 1956000000,
|
|
#if 0
|
|
// 580000, // 433.8 MHz table
|
|
// 880000, //?
|
|
960000,
|
|
// 1487000, //?
|
|
1600000,
|
|
// 1837000, // Real signal
|
|
// 2755000, // Real signal
|
|
// 2760000,
|
|
2960000,
|
|
4933000,
|
|
4960000,
|
|
6960000,
|
|
// 6980000,
|
|
8267000,
|
|
8960000,
|
|
// 10000000,
|
|
10960000,
|
|
11600000,
|
|
12960000,
|
|
14960000,
|
|
16960000,
|
|
18960000,
|
|
21600000,
|
|
// 22960000,
|
|
24960000,
|
|
28960000,
|
|
// 29800000,
|
|
31600000,
|
|
34960000,
|
|
33930000,
|
|
// 38105000,
|
|
40960000,
|
|
41600000,
|
|
49650000,
|
|
#endif
|
|
#ifdef IF_AT_4339
|
|
780000, // 433.9MHz table
|
|
830000,
|
|
880000,
|
|
949000,
|
|
1390000,
|
|
1468000,
|
|
1830000,
|
|
1900000,
|
|
2770000,
|
|
2840000,
|
|
2880000,
|
|
4710000,
|
|
4780000,
|
|
4800000,
|
|
4880000,
|
|
6510000,
|
|
6750000,
|
|
6790000,
|
|
6860000,
|
|
7340000,
|
|
8100000,
|
|
8200000,
|
|
8880000,
|
|
// 9970000, 10MHz!!!!!!
|
|
10870000,
|
|
11420000,
|
|
14880000,
|
|
16820000,
|
|
#endif
|
|
};
|
|
|
|
int binary_search(int f)
|
|
{
|
|
int L = 0;
|
|
int R = (sizeof spur_table)/sizeof(int) - 1;
|
|
int fmin = f - actual_rbw_x10 * (100 / 2);
|
|
int fplus = f + actual_rbw_x10 * (100 / 2);
|
|
while (L <= R) {
|
|
int m = (L + R) / 2;
|
|
if (spur_table[m] < fmin)
|
|
L = m + 1;
|
|
else if (spur_table[m] > fplus)
|
|
R = m - 1;
|
|
else
|
|
return true; // index is m
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
int avoid_spur(int f) // find if this frequency should be avoided
|
|
{
|
|
// int window = ((int)actual_rbw ) * 1000*2;
|
|
// if (window < 50000)
|
|
// window = 50000;
|
|
if (setting.mode != M_LOW || !setting.auto_IF)
|
|
return(false);
|
|
return binary_search(f);
|
|
}
|
|
|
|
static int modulation_counter = 0;
|
|
|
|
#define MODULATION_STEPS 8
|
|
static const int am_modulation[MODULATION_STEPS] = { 5, 1, 0, 1, 5, 9, 11, 9 }; // AM modulation
|
|
//
|
|
// Offset is 156.25Hz when below 600MHz and 312.5 when above.
|
|
//
|
|
#define LND 16 // Total NFM deviation is LND * 4 * 156.25 = 5kHz when below 600MHz or 600MHz - 434MHz
|
|
#define HND 8
|
|
#define LWD 96 // Total WFM deviation is LWD * 4 * 156.25 = 30kHz when below 600MHz
|
|
#define HWD 48
|
|
static const int fm_modulation[4][MODULATION_STEPS] = // Avoid sign changes in NFM
|
|
{
|
|
{ 2*LND,(int)( 3.5*LND ), 4*LND, (int)(3.5*LND), 2*LND, (int)(0.5*LND), 0, (int)(0.5*LND)},
|
|
{ 0*LWD,(int)( 1.5*LWD ), 2*LWD, (int)(1.5*LWD), 0*LWD, (int)(-1.5*LWD), (int)-2*LWD, (int)(-1.5*LWD)},
|
|
{ 2*HND,(int)( 3.5*HND ), 4*HND, (int)(3.5*HND), 2*HND, (int)(0.5*HND), 0, (int)(0.5*HND)},
|
|
{ 0*HWD,(int)( 1.5*HWD ), 2*HWD, (int)(1.5*HWD), 0*HWD, (int)(-1.5*HWD), (int)-2*HWD, (int)(-1.5*HWD)},
|
|
}; // narrow FM modulation avoid sign changes
|
|
|
|
static const int fm_modulation_offset[4] = { LND*625/2, 0, LND*625/2, 0};
|
|
|
|
|
|
deviceRSSI_t age[POINTS_COUNT]; // Array used for 1: calculating the age of any max and 2: buffer for fast sweep RSSI values;
|
|
|
|
static float old_a = -150; // cached value to reduce writes to level registers
|
|
static pureRSSI_t correct_RSSI;
|
|
static pureRSSI_t correct_RSSI_freq;
|
|
systime_t start_of_sweep_timestamp;
|
|
static systime_t sweep_elapsed = 0; // Time since first start of sweeping, used only for auto attenuate
|
|
static uint8_t signal_is_AM = false;
|
|
static uint8_t check_for_AM = false;
|
|
|
|
static void calculate_static_correction(void) // Calculate the static part of the RSSI correction
|
|
{
|
|
correct_RSSI =
|
|
#ifdef __SI4432__
|
|
getSI4432_RSSI_correction()
|
|
#endif
|
|
- get_signal_path_loss()
|
|
+ float_TO_PURE_RSSI(
|
|
+ get_level_offset()
|
|
+ get_attenuation()
|
|
- setting.offset);
|
|
}
|
|
|
|
|
|
pureRSSI_t perform(bool break_on_operation, int i, uint32_t f, int tracking) // Measure the RSSI for one frequency, used from sweep and other measurement routines. Must do all HW setup
|
|
{
|
|
int modulation_delay = 0;
|
|
int modulation_index = 0;
|
|
if (i == 0 && dirty ) { // if first point in scan and dirty
|
|
#ifdef __ADF4351__
|
|
ADF4351_force_refresh();
|
|
#endif
|
|
calculate_correction(); // pre-calculate correction factor dividers to avoid float division
|
|
apply_settings(); // Initialize HW
|
|
scandirty = true; // This is the first pass with new settings
|
|
dirty = false;
|
|
sweep_elapsed = chVTGetSystemTimeX(); // for measuring accumulated time
|
|
if (setting.spur_removal == -1) setting.spur_removal = 1; // ensure spur processing starts in right phase
|
|
// Set for actual time pre calculated value (update after sweep)
|
|
setting.actual_sweep_time_us = calc_min_sweep_time_us();
|
|
// Change actual sweep time as user input if it greater minimum
|
|
// And set start delays for 1 run
|
|
// manually set delay, for better sync
|
|
if (setting.sweep_time_us < 2.5 * ONE_MS_TIME){
|
|
setting.additional_step_delay_us = 0;
|
|
setting.sweep_time_us = 0; // set minimum
|
|
}
|
|
else if (setting.sweep_time_us <= 3 * ONE_MS_TIME){
|
|
setting.additional_step_delay_us = 1;
|
|
setting.sweep_time_us = 3000;
|
|
}
|
|
else if (setting.sweep_time_us > setting.actual_sweep_time_us){
|
|
setting.additional_step_delay_us = (setting.sweep_time_us - setting.actual_sweep_time_us)/(sweep_points);
|
|
setting.actual_sweep_time_us = setting.sweep_time_us;
|
|
}
|
|
else{ // not add additional correction, apply recommend time
|
|
setting.additional_step_delay_us = 0;
|
|
// setting.sweep_time_us = setting.actual_sweep_time_us;
|
|
}
|
|
if (MODE_INPUT(setting.mode)) {
|
|
calculate_static_correction();
|
|
}
|
|
// if (MODE_OUTPUT(setting.mode) && setting.additional_step_delay_us < 500) // Minimum wait time to prevent LO from lockup during output frequency sweep
|
|
// setting.additional_step_delay_us = 500;
|
|
// Update grid and status after
|
|
if (break_on_operation && MODE_INPUT(setting.mode)) { // during normal operation
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
if (FREQ_IS_CW()) { // if zero span mode
|
|
update_grid(); // and update grid and frequency
|
|
}
|
|
}
|
|
}
|
|
|
|
if (setting.mode == M_GENLOW && ( setting.frequency_step != 0 || setting.level_sweep != 0.0 || i == 0)) {// if in low output mode and level sweep or frequency weep is active or at start of sweep
|
|
float ls=setting.level_sweep; // calculate and set the output level
|
|
if (ls > 0)
|
|
ls += 0.5;
|
|
else
|
|
ls -= 0.5;
|
|
float a = ((int)((setting.level + ((float)i / sweep_points) * ls)*2.0)) / 2.0;
|
|
a += PURE_TO_float(get_frequency_correction(f));
|
|
if (a != old_a) {
|
|
old_a = a;
|
|
#ifdef __SI4432__
|
|
int d = 0; // Start at lowest drive level;
|
|
a = a + POWER_OFFSET;
|
|
if (a > 0) {
|
|
d++;
|
|
a = a - 3;
|
|
}
|
|
if (a > 0) {
|
|
d++;
|
|
a = a - 3;
|
|
}
|
|
if (a > 0) {
|
|
d++;
|
|
a = a - 3;
|
|
}
|
|
SI4432_Sel = SI4432_RX ;
|
|
SI4432_Drive(d);
|
|
if (a > 0)
|
|
a = 0;
|
|
|
|
if( a > - SWITCH_ATTENUATION) {
|
|
set_switch_transmit();
|
|
} else {
|
|
a = a + SWITCH_ATTENUATION;
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
if (a < -31)
|
|
a = -31;
|
|
a = -a;
|
|
#ifdef __PE4302__
|
|
PE4302_Write_Byte((int)(a * 2) );
|
|
#endif
|
|
}
|
|
}
|
|
if (setting.mode == M_LOW && S_IS_AUTO(setting.agc) && !check_for_AM && UNIT_IS_LOG(setting.unit)) { // If in low input mode with auto AGC and log unit
|
|
#ifdef __SI4432__
|
|
if (f < 1500000)
|
|
auto_set_AGC_LNA(false, f*9/1500000);
|
|
else
|
|
auto_set_AGC_LNA(true, 0);
|
|
#endif
|
|
}
|
|
// Calculate the RSSI correction for later use
|
|
if (MODE_INPUT(setting.mode)){ // only cases where the value can change on 0 point of sweep
|
|
if (i == 0 || setting.frequency_step != 0)
|
|
correct_RSSI_freq = get_frequency_correction(f);
|
|
}
|
|
int *current_fm_modulation = 0;
|
|
if (MODE_OUTPUT(setting.mode)) {
|
|
if (setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL && setting.modulation_frequency != 0) {
|
|
modulation_delay = (1000000/ MODULATION_STEPS ) / setting.modulation_frequency; // 5 steps so 1MHz/5
|
|
modulation_counter = 0;
|
|
if (setting.modulation == MO_AM) // -14 default
|
|
modulation_delay += config.cor_am;
|
|
else { // must be FM
|
|
if (setting.modulation == MO_WFM) { // -17 default
|
|
modulation_delay += config.cor_wfm;
|
|
modulation_index = 1;
|
|
} else { // must be NFM
|
|
modulation_delay += config.cor_nfm; // -17 default
|
|
// modulation_index = 0; // default value
|
|
}
|
|
if ((setting.mode == M_GENLOW && f > 480000000 - DEFAULT_IF) ||
|
|
(setting.mode == M_GENHIGH && f > 480000000) )
|
|
modulation_index += 2;
|
|
current_fm_modulation = (int *)fm_modulation[modulation_index];
|
|
f -= fm_modulation_offset[modulation_index]; // Shift output frequency
|
|
}
|
|
}
|
|
}
|
|
modulation_again:
|
|
// ----------------------------------------------------- modulation for output modes ---------------------------------------
|
|
if (MODE_OUTPUT(setting.mode)){
|
|
if (setting.modulation == MO_AM) { // AM modulation
|
|
int p = setting.attenuate * 2 + am_modulation[modulation_counter];
|
|
if (p>63) p = 63;
|
|
else if (p< 0) p = 0;
|
|
#ifdef __PE4302__
|
|
PE4302_Write_Byte(p);
|
|
#endif
|
|
}
|
|
else if (current_fm_modulation) { // setting.modulation == MO_NFM || setting.modulation == MO_WFM //FM modulation
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_LO ;
|
|
int offset = current_fm_modulation[modulation_counter];
|
|
SI4432_Write_2_Byte(SI4432_FREQ_OFFSET1, (offset & 0xff ), ((offset >> 8) & 0x03 )); // Use frequency hopping channel for FM modulation
|
|
// SI4432_Write_Byte(SI4432_FREQ_OFFSET2, ); // Use frequency hopping channel for FM modulation
|
|
#endif
|
|
}
|
|
modulation_counter++;
|
|
if (modulation_counter == MODULATION_STEPS) // 3dB modulation depth
|
|
modulation_counter = 0;
|
|
if (setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL) {
|
|
my_microsecond_delay(modulation_delay);
|
|
}
|
|
}
|
|
|
|
// -------------------------------- Acquisition loop for one requested frequency covering spur avoidance and vbwsteps ------------------------
|
|
pureRSSI_t RSSI = float_TO_PURE_RSSI(-150);
|
|
//#define __DEBUG_SPUR__
|
|
#ifdef __DEBUG_SPUR__ // For debugging the spur avoidance control
|
|
stored_t[i] = -90.0; // Display when to do spur shift in the stored trace
|
|
#endif
|
|
int t = 0;
|
|
do {
|
|
uint32_t lf = f;
|
|
if (vbwSteps > 1) { // Calculate sub steps
|
|
int offs_div10 = (t - (vbwSteps >> 1)) * 500 / 10; // steps of half the rbw
|
|
if ((vbwSteps & 1) == 0) // Uneven steps, center
|
|
offs_div10+= 250 / 10; // Even, shift half step
|
|
int offs = offs_div10 * actual_rbw_x10;
|
|
if (setting.step_delay_mode == SD_PRECISE)
|
|
offs>>=1; // steps of a quarter rbw
|
|
lf += offs;
|
|
}
|
|
|
|
// --------------- Set all the LO's ------------------------
|
|
if (/* MODE_INPUT(setting.mode) && */ i > 0 && FREQ_IS_CW()) // In input mode in zero span mode after first setting of the LO's
|
|
goto skip_LO_setting; // No more LO changes required, save some time and jump over the code
|
|
|
|
int32_t local_IF;
|
|
|
|
again: // Spur reduction jumps to here for second measurement
|
|
|
|
if (MODE_HIGH(setting.mode))
|
|
local_IF = 0;
|
|
else {
|
|
if (setting.auto_IF)
|
|
local_IF = setting.spur_removal ? DEFAULT_IF : spur_IF;
|
|
else
|
|
local_IF = setting.frequency_IF;
|
|
}
|
|
if (setting.mode == M_LOW && tracking) { // VERY SPECIAL CASE!!!!! Measure BPF
|
|
#ifdef __SI4432__
|
|
set_freq (SI4432_RX , local_IF + lf - reffer_freq[setting.refer]); // Offset so fundamental of reffer is visible
|
|
#endif
|
|
#ifdef __SI4463__
|
|
set_freq (SI4463_RX , local_IF + lf - reffer_freq[setting.refer]); // Offset so fundamental of reffer is visible
|
|
#endif
|
|
} else if (MODE_LOW(setting.mode)) {
|
|
if (setting.mode == M_LOW && !in_selftest && avoid_spur(lf)) { // check if alternate IF is needed to avoid spur.
|
|
local_IF = spur_alternate_IF;
|
|
#ifdef __DEBUG_SPUR__ // For debugging the spur avoidance control
|
|
stored_t[i] = -60.0; // Display when to do spur shift in the stored trace
|
|
#endif
|
|
#ifdef __SPUR__
|
|
} else if (setting.mode== M_LOW && setting.spur_removal){ // If in low input mode and spur reduction is on
|
|
#ifndef __SI4463__
|
|
#if 0 // <------------------------- DISABLED !!!!!!!!!!!!!!!
|
|
if (S_IS_AUTO(setting.below_IF) && (lf < local_IF / 2 || lf > local_IF) ) // if below 150MHz and auto_below_IF <-------------------TODO ---------------------
|
|
{ // else low/above IF
|
|
if (setting.spur_removal == 1)
|
|
setting.below_IF = S_AUTO_ON; // use below IF in first pass
|
|
else
|
|
setting.below_IF = S_AUTO_OFF; // and above IF in second pass
|
|
}
|
|
else
|
|
#endif
|
|
#endif
|
|
{
|
|
#ifdef __SI4432__
|
|
int32_t spur_offset = actual_rbw_x10 * 100; // Can not use below IF so calculate IF shift that hopefully will kill the spur.
|
|
if (setting.spur_removal == -1) // If second spur pass
|
|
spur_offset = - spur_offset; // IF shift in the other direction
|
|
local_IF = local_IF + spur_offset; // apply IF spur shift
|
|
#endif
|
|
#ifdef __SI4463__
|
|
if (setting.spur_removal == -1) // If second spur pass
|
|
local_IF = local_IF + 1000000; // apply IF spur shift
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
if (setting.mode == M_GENLOW && setting.modulation == MO_EXTERNAL) // VERY SPECIAL CASE !!!!!! LO input via high port
|
|
local_IF += lf;
|
|
|
|
// --------------------- IF know, set the RX SI4432 frequency ------------------------
|
|
|
|
#ifdef __SI4432__
|
|
if (setting.mode == M_LOW || setting.mode == M_GENLOW )
|
|
{
|
|
set_freq (SI4432_RX , local_IF);
|
|
}
|
|
#endif
|
|
#ifdef __SI4463__
|
|
// if ((setting.mode == M_LOW || setting.mode == M_GENLOW ) && i == 0)
|
|
// {
|
|
// set_freq (SI4463_RX , local_IF);
|
|
// }
|
|
#endif
|
|
#ifdef __ULTRA__
|
|
} else if (setting.mode == M_ULTRA) { // No above/below IF mode in Ultra
|
|
local_IF = setting.frequency_IF + (int)(actual_rbw < 350.0 ? setting.spur_removal*300000 : 0 );
|
|
#ifdef __SI4432__
|
|
set_freq (SI4432_RX , local_IF);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
set_freq (SI4463_RX , local_IF);
|
|
#endif
|
|
// local_IF = setting.frequency_IF + (int)(actual_rbw < 300.0?setting.spur_removal * 1000 * actual_rbw:0);
|
|
#endif
|
|
} else // This must be high mode
|
|
local_IF= 0;
|
|
#ifdef __ULTRA__
|
|
if (setting.mode == M_ULTRA) { // Set LO to correct harmonic in Ultra mode
|
|
// if (lf > 3406000000 )
|
|
// setFreq (1, local_IF/5 + lf/5);
|
|
// else
|
|
if (setting.spur_removal != 1) { // Left of tables
|
|
if (lf > 3250000000 )
|
|
set_freq (SI4432_LO , lf/5 - local_IF/5);
|
|
if (lf > 1250000000 )
|
|
set_freq (SI4432_LO, lf/3 - local_IF/3);
|
|
else
|
|
set_freq (SI4432_LO, lf - local_IF);
|
|
|
|
} else { // Right of tables
|
|
if (lf >= 2350000000)
|
|
set_freq (SI4432_LO, lf/5 + local_IF/5);
|
|
else
|
|
set_freq (SI4432_LO, lf/3 + local_IF/3);
|
|
}
|
|
} else
|
|
#endif
|
|
{ // Else set LO ('s)
|
|
#ifdef __ULTRA_SA__
|
|
//#define IF_1 2550000000
|
|
#define IF_2 config.frequency_IF2 // First IF in Ultra SA mode
|
|
|
|
set_freq (2, config.frequency_IF2 + lf); // Scanning LO up to IF2
|
|
set_freq (3, config.frequency_IF2 - DEFAULT_IF); // Down from IF2 to fixed second IF in Ultra SA mode
|
|
set_freq (SI4432_LO, DEFAULT_IF); // Second IF fixed in Ultra SA mode
|
|
#else
|
|
#ifdef __SI4432__
|
|
if (setting.mode == M_LOW && !setting.tracking && S_STATE(setting.below_IF)) // if in low input mode and below IF
|
|
set_freq (SI4432_LO, local_IF-lf); // set LO SI4432 to below IF frequency
|
|
else
|
|
set_freq (SI4432_LO, local_IF+lf); // otherwise to above IF
|
|
#endif
|
|
#ifdef __ADF4351__
|
|
// START_PROFILE;
|
|
if (MODE_LOW(setting.mode)) {
|
|
if (config.frequency_IF2 != 0) {
|
|
set_freq (ADF4351_LO2, config.frequency_IF2 - local_IF); // Down from IF2 to fixed second IF in Ultra SA mode
|
|
local_IF = config.frequency_IF2;
|
|
}
|
|
|
|
#if 0
|
|
if (lf < 500000000 && 0) {
|
|
uint32_t tf = ((lf + actual_rbw_x10*200) / 26000000) * 26000000;
|
|
if (tf >= lf && tf < lf + actual_rbw_x10*200)
|
|
ADF4351_R_counter(6);
|
|
else
|
|
ADF4351_R_counter(1);
|
|
}
|
|
#endif
|
|
|
|
uint32_t target_f;
|
|
if (!setting.tracking && S_STATE(setting.below_IF)) { // if in low input mode and below IF
|
|
if (lf > local_IF + 138000000)
|
|
target_f = lf - local_IF; // set LO SI4432 to below IF frequency
|
|
else
|
|
target_f = local_IF-lf; // set LO SI4432 to below IF frequency
|
|
} else
|
|
target_f = local_IF+lf; // otherwise to above IF
|
|
set_freq(ADF4351_LO, target_f);
|
|
#if 1 // Compensate frequency ADF4350 error with SI4468
|
|
int32_t error_f = 0;
|
|
if (real_old_freq[ADF4351_LO] > target_f) {
|
|
error_f = real_old_freq[ADF4351_LO] - target_f;
|
|
if (error_f > actual_rbw_x10 * 100)
|
|
local_IF += error_f;
|
|
}
|
|
if (target_f > real_old_freq[ADF4351_LO]) {
|
|
error_f = - (target_f - real_old_freq[ADF4351_LO]);
|
|
if ( error_f < - actual_rbw_x10 * 100)
|
|
local_IF += error_f;
|
|
}
|
|
#endif
|
|
if (!tracking)
|
|
set_freq (SI4463_RX, local_IF); // compensate ADF error with SI446x when not in tracking mode
|
|
} else if (setting.mode == M_HIGH || setting.mode == M_GENHIGH) {
|
|
set_freq (SI4463_RX, lf); // sweep RX, local_IF = 0 in high mode
|
|
}
|
|
// STOP_PROFILE;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
if (MODE_OUTPUT(setting.mode)) {
|
|
#ifdef __SI4432__
|
|
my_microsecond_delay(200); // To prevent lockup of SI4432
|
|
#endif
|
|
}
|
|
|
|
|
|
// ------------------------- end of processing when in output mode ------------------------------------------------
|
|
|
|
skip_LO_setting:
|
|
if (i == 0 && t == 0) // if first point in scan (here is get 1 point data)
|
|
start_of_sweep_timestamp = chVTGetSystemTimeX(); // initialize start sweep time
|
|
|
|
if (MODE_OUTPUT(setting.mode)) { // No substepping and no RSSI in output mode
|
|
if (break_on_operation && operation_requested) // break subscanning if requested
|
|
return(0); // abort
|
|
if (MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE && setting.modulation != MO_EXTERNAL) { // if in output mode with modulation
|
|
i = 1; // Everything set so skip LO setting
|
|
goto modulation_again; // Keep repeating sweep loop till user aborts by input
|
|
}
|
|
return(0);
|
|
}
|
|
// ---------------- Prepare RSSI ----------------------
|
|
|
|
// jump here if in zero span mode and all HW frequency setup is done.
|
|
|
|
#ifdef __SI4432__
|
|
#ifdef __FAST_SWEEP__
|
|
if (i == 0 && setting.frequency_step == 0 && setting.trigger == T_AUTO && setting.spur_removal == 0 && SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME) {
|
|
// if ultra fast scanning is needed prefill the SI4432 RSSI read buffer
|
|
SI4432_Fill(MODE_SELECT(setting.mode), 0);
|
|
}
|
|
#endif
|
|
#endif
|
|
pureRSSI_t pureRSSI;
|
|
// if ( i < 3)
|
|
// shell_printf("%d %.3f %.3f %.1f\r\n", i, local_IF/1000000.0, lf/1000000.0, subRSSI);
|
|
|
|
// ************** trigger mode if need
|
|
// trigger on measure 4 point
|
|
#define T_POINTS 4
|
|
#define T_LEVEL_UNDEF (1<<(16-T_POINTS)) // should drop after 4 shifts left
|
|
#define T_LEVEL_BELOW 1
|
|
#define T_LEVEL_ABOVE 0
|
|
// Trigger mask, should have width T_POINTS bit
|
|
#define T_DOWN_MASK (0b0011) // 2 from up 2 to bottom
|
|
#define T_UP_MASK (0b1100) // 2 from bottom 2 to up
|
|
#define T_LEVEL_CLEAN ~(1<<T_POINTS) // cleanup old trigger data
|
|
|
|
if (i == 0 && setting.frequency_step == 0 && setting.trigger != T_AUTO) { // if in zero span mode and wait for trigger to happen and NOT in trigger mode
|
|
register uint16_t t_mode;
|
|
pureRSSI_t trigger_lvl;
|
|
uint16_t data_level = T_LEVEL_UNDEF;
|
|
// Calculate trigger level
|
|
trigger_lvl = float_TO_PURE_RSSI(setting.trigger_level) - correct_RSSI - correct_RSSI_freq;
|
|
|
|
if (setting.trigger_direction == T_UP)
|
|
t_mode = T_UP_MASK;
|
|
else
|
|
t_mode = T_DOWN_MASK;
|
|
uint32_t additional_delay = 0;// reduce noise
|
|
if (setting.sweep_time_us >= 100*ONE_MS_TIME) additional_delay = 20;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = MODE_SELECT(setting.mode);
|
|
#endif
|
|
do{ // wait for trigger to happen
|
|
#ifdef __SI4432__
|
|
pureRSSI = DEVICE_TO_PURE_RSSI((deviceRSSI_t)SI4432_Read_Byte(SI4432_REG_RSSI));
|
|
#endif
|
|
#ifdef __SI4463__
|
|
pureRSSI = DEVICE_TO_PURE_RSSI((deviceRSSI_t)Si446x_RSSI());
|
|
#endif
|
|
if (break_on_operation && operation_requested) // allow aborting a wait for trigger
|
|
return 0; // abort
|
|
|
|
// Store data level bitfield (remember only last 2 states)
|
|
// T_LEVEL_UNDEF mode bit drop after 2 shifts
|
|
data_level = ((data_level<<1) | (pureRSSI < trigger_lvl ? T_LEVEL_BELOW : T_LEVEL_ABOVE))&(T_LEVEL_CLEAN);
|
|
if (data_level == t_mode) // wait trigger
|
|
break;
|
|
if (additional_delay)
|
|
my_microsecond_delay(additional_delay);
|
|
}while(1);
|
|
#ifdef __FAST_SWEEP__
|
|
#ifdef __SI4432__
|
|
if (setting.spur_removal == 0 && SI4432_step_delay == 0 && setting.repeat == 1 && setting.sweep_time_us < 100*ONE_MS_TIME) {
|
|
SI4432_Fill(MODE_SELECT(setting.mode), 1); // fast mode possible to pre-fill RSSI buffer
|
|
}
|
|
#endif
|
|
#endif
|
|
if (setting.trigger == T_SINGLE) {
|
|
set_trigger(T_DONE);
|
|
}
|
|
start_of_sweep_timestamp = chVTGetSystemTimeX();
|
|
}
|
|
else {
|
|
#ifdef __SI4432__
|
|
pureRSSI = SI4432_RSSI(lf, MODE_SELECT(setting.mode)); // Get RSSI, either from pre-filled buffer
|
|
#endif
|
|
#ifdef __SI4463__
|
|
pureRSSI = Si446x_RSSI();
|
|
#endif
|
|
}
|
|
#ifdef __SPUR__
|
|
static pureRSSI_t spur_RSSI = -1; // Initialization only to avoid warning.
|
|
if (setting.spur_removal == 1) { // If first spur pass
|
|
spur_RSSI = pureRSSI; // remember measure RSSI
|
|
setting.spur_removal = -1;
|
|
goto again; // Skip all other processing
|
|
} else if (setting.spur_removal == -1) { // If second spur pass
|
|
pureRSSI = ( pureRSSI < spur_RSSI ? pureRSSI : spur_RSSI); // Take minimum of two
|
|
setting.spur_removal = 1; // and prepare for next call of perform.
|
|
}
|
|
#endif
|
|
|
|
if (RSSI < pureRSSI) // Take max during subscanning
|
|
RSSI = pureRSSI;
|
|
t++; // one subscan done
|
|
if (break_on_operation && operation_requested) // break subscanning if requested
|
|
break; // abort
|
|
} while (t < vbwSteps); // till all sub steps done
|
|
return RSSI + correct_RSSI + correct_RSSI_freq; // add correction
|
|
}
|
|
|
|
#define MAX_MAX 4
|
|
int16_t max_index[MAX_MAX];
|
|
int16_t cur_max = 0;
|
|
|
|
static int low_count = 0;
|
|
static int sweep_counter = 0; // Only used for HW refresh
|
|
|
|
// main loop for measurement
|
|
static bool sweep(bool break_on_operation)
|
|
{
|
|
float RSSI;
|
|
int16_t downslope;
|
|
uint32_t agc_peak_freq = 0;
|
|
float agc_peak_rssi = -150;
|
|
float agc_prev_rssi = -150;
|
|
int last_AGC_value = 0;
|
|
uint8_t last_AGC_direction_up = false;
|
|
int AGC_flip_count = 0;
|
|
|
|
// if (setting.mode== -1)
|
|
// return;
|
|
// START_PROFILE;
|
|
|
|
palClearPad(GPIOC, GPIOC_LED);
|
|
|
|
downslope = true; // Initialize the peak search algorithm
|
|
temppeakLevel = -150;
|
|
float temp_min_level = 100;
|
|
|
|
// spur_old_stepdelay = 0;
|
|
// shell_printf("\r\n");
|
|
|
|
modulation_counter = 0; // init modulation counter in case needed
|
|
int refreshing = false;
|
|
|
|
if (dirty) { // Calculate new scanning solution
|
|
sweep_counter = 0;
|
|
if (get_sweep_frequency(ST_SPAN) < 300000) // Check if AM signal
|
|
check_for_AM = true;
|
|
else {
|
|
signal_is_AM = false;
|
|
check_for_AM = false;
|
|
}
|
|
} else if ( MODE_INPUT(setting.mode) && setting.frequency_step > 0) {
|
|
sweep_counter++;
|
|
if (sweep_counter > 50 ) { // refresh HW after 50 sweeps
|
|
dirty = true;
|
|
refreshing = true;
|
|
sweep_counter = 0;
|
|
}
|
|
}
|
|
|
|
again: // Waiting for a trigger jumps back to here
|
|
setting.measure_sweep_time_us = 0; // start measure sweep time
|
|
// start_of_sweep_timestamp = chVTGetSystemTimeX(); // Will be set in perform
|
|
|
|
sweep_again: // stay in sweep loop when output mode and modulation on.
|
|
|
|
// ------------------------- start sweep loop -----------------------------------
|
|
for (int i = 0; i < sweep_points; i++) {
|
|
// --------------------- measure -------------------------
|
|
|
|
RSSI = PURE_TO_float(perform(break_on_operation, i, frequencies[i], setting.tracking)); // Measure RSSI for one of the frequencies
|
|
// if break back to top level to handle ui operation
|
|
if (refreshing)
|
|
scandirty = false;
|
|
if (break_on_operation && operation_requested) { // break loop if needed
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME && MODE_INPUT(setting.mode)) {
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1); // Erase progress bar
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ----------------------- in loop AGC ---------------------------------
|
|
|
|
#ifdef __SI4432__
|
|
if (!in_selftest && setting.mode == M_HIGH && S_IS_AUTO(setting.agc) && UNIT_IS_LOG(setting.unit)) {
|
|
#define AGC_RSSI_THRESHOLD (-55+get_attenuation())
|
|
|
|
if (RSSI > AGC_RSSI_THRESHOLD && RSSI > agc_prev_rssi) {
|
|
agc_peak_freq = frequencies[i];
|
|
agc_peak_rssi = agc_prev_rssi = RSSI;
|
|
}
|
|
if (RSSI < AGC_RSSI_THRESHOLD)
|
|
agc_prev_rssi = -150;
|
|
uint32_t delta_freq = frequencies[i] - agc_peak_freq;
|
|
if (agc_peak_freq != 0 && delta_freq < 2000000) {
|
|
int max_gain = (-25 - agc_peak_rssi ) / 4;
|
|
auto_set_AGC_LNA(false, 16 + delta_freq * max_gain / 2000000 ); // enable LNA and stepwise gain
|
|
}
|
|
else
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
#endif
|
|
|
|
// Delay between points if needed, (all delays can apply in SI4432 fill)
|
|
if (setting.measure_sweep_time_us == 0){ // If not already in buffer
|
|
if (setting.additional_step_delay_us && (MODE_INPUT(setting.mode) || setting.modulation == MO_NONE)) { // No delay when modulation is active
|
|
if (setting.additional_step_delay_us < 30*ONE_MS_TIME) // Maximum delay time using my_microsecond_delay
|
|
my_microsecond_delay(setting.additional_step_delay_us);
|
|
else
|
|
osalThreadSleepMilliseconds(setting.additional_step_delay_us / ONE_MS_TIME);
|
|
}
|
|
}
|
|
|
|
if (MODE_INPUT(setting.mode)) {
|
|
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME && (i & 0x07) == 0) { // if required
|
|
int pos = i * (WIDTH+1) / sweep_points;
|
|
ili9341_set_background(LCD_SWEEP_LINE_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, pos, 1); // update sweep progress bar
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX+pos, CHART_BOTTOM+1, WIDTH-pos, 1);
|
|
}
|
|
|
|
// ------------------------ do all RSSI calculations from CALC menu -------------------
|
|
|
|
if (setting.average != AV_OFF)
|
|
temp_t[i] = RSSI;
|
|
if (setting.subtract_stored) {
|
|
RSSI = RSSI - stored_t[i] + setting.normalize_level;
|
|
}
|
|
//#define __DEBUG_AGC__
|
|
#ifdef __DEBUG_AGC__ // For debugging the AGC control
|
|
stored_t[i] = (SI4432_Read_Byte(0x69) & 0x01f) * 3.0 - 90.0; // Display the AGC value in the stored trace
|
|
#endif
|
|
|
|
#ifdef __SI4432__
|
|
if (check_for_AM) {
|
|
int AGC_value = (SI4432_Read_Byte(0x69) & 0x01f) * 3.0 - 90.0;
|
|
if (AGC_value < last_AGC_value && last_AGC_direction_up ) {
|
|
AGC_flip_count++;
|
|
} else if (AGC_value > last_AGC_value && !last_AGC_direction_up ) {
|
|
AGC_flip_count++;
|
|
}
|
|
last_AGC_value = AGC_value;
|
|
}
|
|
#endif
|
|
if (scandirty || setting.average == AV_OFF) { // Level calculations
|
|
actual_t[i] = RSSI;
|
|
age[i] = 0;
|
|
} else {
|
|
switch(setting.average) {
|
|
case AV_MIN: if (actual_t[i] > RSSI) actual_t[i] = RSSI; break;
|
|
case AV_MAX_HOLD: if (actual_t[i] < RSSI) actual_t[i] = RSSI; break;
|
|
case AV_MAX_DECAY:
|
|
if (actual_t[i] < RSSI) {
|
|
actual_t[i] = RSSI;
|
|
age[i] = 0;
|
|
} else {
|
|
if (age[i] > setting.decay)
|
|
actual_t[i] -= 0.5;
|
|
else
|
|
age[i] += 1;
|
|
}
|
|
break;
|
|
case AV_4: actual_t[i] = (actual_t[i]*3 + RSSI) / 4.0; break;
|
|
case AV_16: actual_t[i] = (actual_t[i]*15 + RSSI) / 16.0; break;
|
|
}
|
|
}
|
|
|
|
if (temp_min_level > actual_t[i]) // Remember minimum
|
|
temp_min_level = actual_t[i];
|
|
|
|
// --------------------------- find peak and add to peak table if found ------------------------
|
|
|
|
|
|
// START_PROFILE
|
|
if (i == 0) { // Prepare peak finding
|
|
cur_max = 0; // Always at least one maximum
|
|
temppeakIndex = 0;
|
|
temppeakLevel = actual_t[i];
|
|
max_index[0] = 0;
|
|
downslope = true;
|
|
}
|
|
if (downslope) { // If in down slope peak finding
|
|
if (temppeakLevel > actual_t[i]) { // Follow down
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
} else if (temppeakLevel + setting.noise < actual_t[i] ) { // Local minimum found
|
|
temppeakIndex = i; // This is now the latest maximum
|
|
temppeakLevel = actual_t[i];
|
|
downslope = false;
|
|
}
|
|
} else { // up slope peak finding
|
|
if (temppeakLevel < actual_t[i]) { // Follow up
|
|
temppeakIndex = i;
|
|
temppeakLevel = actual_t[i];
|
|
} else if (actual_t[i] < temppeakLevel - setting.noise) { // Local max found
|
|
|
|
// maintain sorted peak table
|
|
int j = 0; // Insert max in sorted table
|
|
while (j<cur_max && actual_t[max_index[j]] >= temppeakLevel) // Find where to insert
|
|
j++;
|
|
if (j < MAX_MAX) { // Larger then one of the previous found
|
|
int k = MAX_MAX-1;
|
|
while (k > j) { // Shift to make room for max
|
|
max_index[k] = max_index[k-1];
|
|
// maxlevel_index[k] = maxlevel_index[k-1]; // Only for debugging
|
|
k--;
|
|
}
|
|
max_index[j] = temppeakIndex;
|
|
// maxlevel_index[j] = actual_t[temppeakIndex]; // Only for debugging
|
|
if (cur_max < MAX_MAX) {
|
|
cur_max++;
|
|
}
|
|
//STOP_PROFILE
|
|
}
|
|
// Insert done
|
|
temppeakIndex = i; // Latest minimum
|
|
temppeakLevel = actual_t[i];
|
|
|
|
downslope = true;
|
|
}
|
|
} // end of peak finding
|
|
} // end of input specific processing
|
|
} // ---------------------- end of sweep loop -----------------------------
|
|
|
|
if (MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE ) // if in output mode with modulation
|
|
goto sweep_again; // Keep repeating sweep loop till user aborts by input
|
|
|
|
// --------------- check if maximum is above trigger level -----------------
|
|
|
|
if (setting.trigger != T_AUTO && setting.frequency_step > 0) { // Trigger active
|
|
if (actual_t[max_index[0]] < setting.trigger_level) {
|
|
goto again; // not yet, sweep again
|
|
} else {
|
|
if (setting.trigger == T_SINGLE) {
|
|
set_trigger(T_DONE);
|
|
}
|
|
}
|
|
// scandirty = true; // To show trigger happened
|
|
}
|
|
if (setting.actual_sweep_time_us > ONE_SECOND_TIME && MODE_INPUT(setting.mode)) {
|
|
// ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1, 0); // Erase progress bar before updating actual_sweep_time
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1);
|
|
}
|
|
// ---------------------- process measured actual sweep time -----------------
|
|
// For CW mode value calculated in SI4432_Fill
|
|
if (setting.measure_sweep_time_us == 0)
|
|
setting.measure_sweep_time_us = (chVTGetSystemTimeX() - start_of_sweep_timestamp) * 100;
|
|
|
|
// Update actual time on change on status panel
|
|
uint32_t delta = abs((int)(setting.actual_sweep_time_us - setting.measure_sweep_time_us));
|
|
if ((delta<<3) > setting.actual_sweep_time_us){ // update if delta > 1/8
|
|
redraw_request|=REDRAW_CAL_STATUS;
|
|
}
|
|
setting.actual_sweep_time_us = setting.measure_sweep_time_us;
|
|
// Not possible reduce sweep time, it minimum!
|
|
if (setting.sweep_time_us < setting.actual_sweep_time_us && setting.additional_step_delay_us == 0){
|
|
// Warning!! not correct set sweep time here, you get error!!
|
|
// value update to real and after + recalculated additional delay
|
|
// setting.sweep_time_us = setting.actual_sweep_time_us;
|
|
// redraw_request |= REDRAW_CAL_STATUS;
|
|
// if (FREQ_IS_CW()) // if zero span mode
|
|
// update_grid();
|
|
}
|
|
else{
|
|
uint32_t dt = 0;
|
|
static uint32_t last_dt = 0;
|
|
// selected time less then actual, need reduce delay
|
|
if (setting.sweep_time_us < setting.actual_sweep_time_us){
|
|
dt = (setting.actual_sweep_time_us - setting.sweep_time_us)/(sweep_points);
|
|
if (setting.additional_step_delay_us > dt)
|
|
setting.additional_step_delay_us-=dt;
|
|
else
|
|
setting.additional_step_delay_us = 0;
|
|
}// selected time greater then actual, need increase delay
|
|
else if (setting.sweep_time_us > setting.actual_sweep_time_us){
|
|
dt = (setting.sweep_time_us - setting.actual_sweep_time_us)/(sweep_points);
|
|
setting.additional_step_delay_us+=dt;
|
|
}
|
|
// Update info on correction on next step, after apply . Always show when changed
|
|
if (last_dt /* && dt == 0 */){
|
|
redraw_request|=REDRAW_CAL_STATUS;
|
|
if (FREQ_IS_CW()) // if zero span mode
|
|
update_grid(); // and update grid and frequency
|
|
}
|
|
last_dt = dt;
|
|
}
|
|
|
|
// ---------------------- sweep finished, do all postprocessing ---------------------
|
|
|
|
if (scandirty) {
|
|
scandirty = false;
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
}
|
|
|
|
if (MODE_OUTPUT(setting.mode) ) // Sweep time is calculated, we can sweep again in output mode
|
|
goto again; // Keep repeating sweep loop till user aborts by input
|
|
|
|
#define __MIRROR_MASKING__
|
|
#ifdef __MIRROR_MASKING__
|
|
#ifdef __SI4432__
|
|
if (setting.mode == M_HIGH && setting.mirror_masking) {
|
|
int mirror_offset = 2 * 937000 / setting.frequency_step;
|
|
// int mask_start = 0;
|
|
// int mask_end = 0;
|
|
if (mirror_offset > 3) {
|
|
for (int i = 1; i < sweep_points - mirror_offset; i++) {
|
|
int m = i+mirror_offset;
|
|
if (actual_t[i] > -80 && actual_t[m] < actual_t[i] - 25 && ( actual_t[m] > actual_t[m-1] || actual_t[m+1] > actual_t[m-1] ) /* && (i < mask_start || mask_start == 0) */ ) {
|
|
// if (mask_start == 0)
|
|
// mask_start = m;
|
|
actual_t[m] = actual_t[m-1];
|
|
actual_t[m+1] = actual_t[m-1];
|
|
}
|
|
// else {
|
|
// if (i == mask_start)
|
|
// i += mirror_offset;
|
|
// mask_start =0;
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
// -------------------------- auto attenuate ----------------------------------
|
|
#define AUTO_TARGET_LEVEL -25
|
|
#define AUTO_TARGET_WINDOW 2
|
|
|
|
if (!in_selftest && setting.mode == M_LOW && setting.auto_attenuation && max_index[0] > 0) { // calculate and apply auto attenuate
|
|
setting.atten_step = false; // No step attenuate in low mode auto attenuate
|
|
int changed = false;
|
|
int delta = 0;
|
|
int actual_max_level = (max_index[0] == 0 ? -100 :(int) (actual_t[max_index[0]] - get_attenuation()) ); // If no max found reduce attenuation
|
|
if (actual_max_level < AUTO_TARGET_LEVEL && setting.attenuate > 0) {
|
|
delta = - (AUTO_TARGET_LEVEL - actual_max_level);
|
|
} else if (actual_max_level > AUTO_TARGET_LEVEL && setting.attenuate < 30) {
|
|
delta = actual_max_level - AUTO_TARGET_LEVEL;
|
|
}
|
|
if ((chVTGetSystemTimeX() - sweep_elapsed > 10000 && delta != 0) || delta > 5 ) {
|
|
setting.attenuate += delta;
|
|
if (setting.attenuate < 0)
|
|
setting.attenuate= 0;
|
|
if (setting.attenuate > 30)
|
|
setting.attenuate = 30;
|
|
changed = true;
|
|
sweep_elapsed = chVTGetSystemTimeX();
|
|
}
|
|
|
|
// Try update settings
|
|
if (changed){
|
|
#ifdef __PE4302__
|
|
PE4302_Write_Byte((int) get_attenuation() * 2);
|
|
#endif
|
|
redraw_request |= REDRAW_CAL_STATUS;
|
|
#ifdef __SI4432__
|
|
SI4432_Sel = SI4432_RX ;
|
|
#if 0 // this should never happen
|
|
if (setting.atten_step) {
|
|
set_switch_transmit(); // This should never happen
|
|
} else {
|
|
set_switch_receive();
|
|
}
|
|
#endif
|
|
#endif
|
|
calculate_static_correction(); // Update correction
|
|
// dirty = true; // Needed to recalculate the correction factor
|
|
}
|
|
}
|
|
|
|
// ---------------------------------- auto AGC ----------------------------------
|
|
|
|
|
|
if (!in_selftest && MODE_INPUT(setting.mode)) {
|
|
#ifdef __SI4432__
|
|
if (S_IS_AUTO(setting.agc)) {
|
|
float actual_max_level = actual_t[max_index[0]] - get_attenuation();
|
|
if (UNIT_IS_LINEAR(setting.unit)) { // Auto AGC in linear mode
|
|
if (actual_max_level > - 45)
|
|
auto_set_AGC_LNA(false, 0); // Strong signal, no AGC and no LNA
|
|
else
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
if (check_for_AM) {
|
|
if (signal_is_AM) {
|
|
if (actual_max_level < - 40 )
|
|
signal_is_AM = false;
|
|
} else {
|
|
if (AGC_flip_count > 20 && actual_max_level >= - 40)
|
|
signal_is_AM = true;
|
|
}
|
|
if (signal_is_AM) { // if log mode and AM signal
|
|
auto_set_AGC_LNA(false, 16); // LNA on and no AGC
|
|
} else {
|
|
auto_set_AGC_LNA(TRUE, 0);
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
signal_is_AM = false;
|
|
}
|
|
|
|
|
|
// -------------------------- auto reflevel ---------------------------------
|
|
if (max_index[0] > 0)
|
|
temppeakLevel = actual_t[max_index[0]];
|
|
|
|
if (!in_selftest && MODE_INPUT(setting.mode) && setting.auto_reflevel) { // Auto reflevel
|
|
|
|
float r = value(temppeakLevel);
|
|
float s_max = r / setting.scale; // Peak level normalized to /div
|
|
|
|
if (UNIT_IS_LINEAR(setting.unit)) { // Linear scales can not have negative values
|
|
if (setting.reflevel > REFLEVEL_MIN) {
|
|
if (s_max < 2)
|
|
low_count = 5;
|
|
else if (s_max < 4)
|
|
low_count++;
|
|
else
|
|
low_count = 0;
|
|
}
|
|
if ((low_count > 4) || (setting.reflevel < REFLEVEL_MAX && s_max > NGRIDY) ) { // ensure minimum and maximum reflevel
|
|
if (r < REFLEVEL_MIN)
|
|
r = REFLEVEL_MIN;
|
|
if (r > REFLEVEL_MAX)
|
|
r = REFLEVEL_MAX;
|
|
if (r != setting.reflevel) {
|
|
//if (setting.scale * NGRIDY > r)
|
|
set_scale(r / NGRIDY);
|
|
set_reflevel(setting.scale*NGRIDY);
|
|
// dirty = false; // Prevent reset of SI4432
|
|
}
|
|
}
|
|
} else {
|
|
#define MAX_FIT (NGRIDY-1.2)
|
|
float s_min = value(temp_min_level)/setting.scale;
|
|
float s_ref = setting.reflevel/setting.scale;
|
|
if (s_max < s_ref - NGRIDY || s_min > s_ref) { //Completely outside
|
|
if (s_max - s_min < NGRIDY - 2)
|
|
set_reflevel(setting.scale*(floor(s_min+8.8+ 1)));
|
|
else
|
|
set_reflevel(setting.scale*(floor(s_max)+1));
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
}else if (s_max > s_ref - 0.5 || s_min > s_ref - 8.8 ) { // maximum to high or minimum to high
|
|
set_reflevel(setting.reflevel + setting.scale);
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
} else if (s_min < s_ref - 10.1 && s_max < s_ref - 1.5) { // minimum too low and maximum can move up
|
|
set_reflevel(setting.reflevel - setting.scale);
|
|
// dirty = true; // Must be above if(scandirty!!!!!)
|
|
}
|
|
// dirty = false; // Prevent reset of SI4432
|
|
}
|
|
}
|
|
|
|
// --------------------- set tracking markers from maximum table -----------------
|
|
|
|
if (MODE_INPUT(setting.mode)) { // Assign maxima found to tracking markers
|
|
int i = 0;
|
|
int m = 0;
|
|
while (i < cur_max) { // For all maxima found
|
|
while (m < MARKERS_MAX) {
|
|
if (markers[m].enabled && markers[m].mtype & M_TRACKING) { // Available marker found
|
|
markers[m].index = max_index[i];
|
|
interpolate_maximum(m);
|
|
// markers[m].frequency = frequencies[markers[m].index];
|
|
#if 0
|
|
float v = actual_t[markers[m].index] - 10.0; // -10dB points
|
|
int index = markers[m].index;
|
|
uint32_t f = markers[m].frequency;
|
|
uint32_t s = actual_rbw_x10 * 200; // twice the selected RBW
|
|
int left = index, right = index;
|
|
while (t > 0 && actual_t[t+1] > v && markers[t].frequency > f - s) // Find left point
|
|
t--;
|
|
if (t > 0) {
|
|
left = t;
|
|
}
|
|
t = setting._sweep_points-1;;
|
|
while (t > setting._sweep_points-1 && actual_t[t+1] > v) // find right -3dB point
|
|
t++;
|
|
if (t > index) {
|
|
right = t;
|
|
markers[2].frequency = frequencies[t];
|
|
}
|
|
|
|
#endif
|
|
|
|
interpolate_maximum(m);
|
|
m++;
|
|
break; // Next maximum
|
|
}
|
|
m++; // Try next marker
|
|
}
|
|
i++;
|
|
}
|
|
while (m < MARKERS_MAX) { // Insufficient maxima found
|
|
if (markers[m].enabled && markers[m].mtype & M_TRACKING) { // More available markers found
|
|
markers[m].index = 0; // Enabled but no max so set to left most frequency
|
|
markers[m].frequency = frequencies[0];
|
|
}
|
|
m++; // Try next marker
|
|
}
|
|
|
|
// ----------------------- now follow all the special marker calculations for the measurement modes ----------------------------
|
|
|
|
|
|
#ifdef __MEASURE__
|
|
if (setting.measurement == M_IMD && markers[0].index > 10) { // ----- IMD measurement
|
|
markers[1].enabled = search_maximum(1, frequencies[markers[0].index]*2, 8);
|
|
markers[2].enabled = search_maximum(2, frequencies[markers[0].index]*3, 12);
|
|
markers[3].enabled = search_maximum(3, frequencies[markers[0].index]*4, 16);
|
|
} else if (setting.measurement == M_OIP3 && markers[0].index > 10 && markers[1].index > 10) { // ----------IOP measurement
|
|
int l = markers[0].index;
|
|
int r = markers[1].index;
|
|
if (r < l) {
|
|
l = markers[1].index;
|
|
r = markers[0].index;
|
|
markers[0].index = l;
|
|
markers[1].index = r;
|
|
}
|
|
uint32_t lf = frequencies[l];
|
|
uint32_t rf = frequencies[r];
|
|
markers[0].frequency = lf;
|
|
markers[1].frequency = rf;
|
|
|
|
markers[2].enabled = search_maximum(2, lf - (rf - lf), 12);
|
|
markers[3].enabled = search_maximum(3, rf + (rf - lf), 12);
|
|
} else if (setting.measurement == M_PHASE_NOISE && markers[0].index > 10) { // ------------Phase noise measurement
|
|
markers[1].index = markers[0].index + (setting.mode == M_LOW ? 290/4 : -290/4); // Position phase noise marker at requested offset
|
|
markers[1].frequency = frequencies[markers[1].index];
|
|
} else if (setting.measurement == M_STOP_BAND && markers[0].index > 10) { // -------------Stop band measurement
|
|
markers[1].index = marker_search_left_min(markers[0].index);
|
|
if (markers[1].index < 0) markers[1].index = 0;
|
|
markers[1].frequency = frequencies[markers[1].index];
|
|
markers[2].index = marker_search_right_min(markers[0].index);
|
|
if (markers[2].index < 0) markers[1].index = setting._sweep_points - 1;
|
|
markers[2].frequency = frequencies[markers[2].index];
|
|
} else if ((setting.measurement == M_PASS_BAND || setting.measurement == M_FM) && markers[0].index > 10) { // ----------------Pass band measurement
|
|
int t = 0;
|
|
float v = actual_t[markers[0].index] - 3.0;
|
|
while (t < markers[0].index && actual_t[t+1] < v) // Find left -3dB point
|
|
t++;
|
|
if (t< markers[0].index) {
|
|
markers[1].index = t;
|
|
markers[1].frequency = frequencies[t];
|
|
}
|
|
t = setting._sweep_points-1;;
|
|
while (t > markers[0].index && actual_t[t-1] < v) // find right -3dB point
|
|
t--;
|
|
if (t > markers[0].index) {
|
|
markers[2].index = t;
|
|
markers[2].frequency = frequencies[t];
|
|
}
|
|
} else if (setting.measurement == M_AM) { // ----------------AM measurement
|
|
if (S_IS_AUTO(setting.agc )) {
|
|
if (actual_t[max_index[0]] - get_attenuation() > -20 ) {
|
|
setting.agc = S_AUTO_OFF;
|
|
setting.lna = S_AUTO_OFF;
|
|
} else if (actual_t[max_index[0]] - get_attenuation() < -45 ) {
|
|
setting.agc = S_AUTO_ON;
|
|
setting.lna = S_AUTO_ON;
|
|
} else {
|
|
setting.agc = S_AUTO_OFF;
|
|
setting.lna = S_AUTO_ON;
|
|
}
|
|
set_AGC_LNA();
|
|
}
|
|
}
|
|
|
|
#endif
|
|
peakIndex = max_index[0];
|
|
peakLevel = actual_t[peakIndex];
|
|
peakFreq = frequencies[peakIndex];
|
|
min_level = temp_min_level;
|
|
}
|
|
// } while (MODE_OUTPUT(setting.mode) && setting.modulation != MO_NONE); // Never exit sweep loop while in output mode with modulation
|
|
#if 0 // Read ADC
|
|
extern int fix_fft(short fr[], short fi[], short m, short inverse);
|
|
extern int16_t adc_buf_read(uint32_t chsel, uint16_t *result, uint32_t count);
|
|
trace[TRACE_STORED].enabled = true;
|
|
adc_buf_read(ADC_CHSELR_CHSEL4, spi_buffer, 290);
|
|
#if 1 // Perform FFT on input
|
|
int32_t zero = 0;
|
|
for (int i=0;i<256;i++) {
|
|
zero += spi_buffer[i];
|
|
}
|
|
zero = zero >> 8;
|
|
int16_t *rfft = (int16_t *)&spi_buffer[0];
|
|
int16_t *ifft = (int16_t *)&spi_buffer[512];
|
|
for (int i=0;i<256;i++) {
|
|
rfft[i] = spi_buffer[i] - zero;
|
|
ifft[i] = rfft[i]; // Imaginary part equal to real part
|
|
rfft[511 - i] = rfft[i]; // Mirror real
|
|
ifft[511 - i] = -rfft[i]; // Conjugate mirror for imaginary part
|
|
}
|
|
fix_fft(rfft,ifft, 9,false);
|
|
#endif
|
|
for (int i=0;i<256;i++) { // Concert to
|
|
#if 1 // Linear
|
|
stored_t[i] = (((int16_t *)spi_buffer)[i]/44.0) - 80.0;
|
|
#else
|
|
float r = rfft[i]; // Log
|
|
if (r < 0)
|
|
r = -r;
|
|
float im = ifft[i];
|
|
if (im < 0)
|
|
im = -im;
|
|
if (r == 0)
|
|
r = 1;
|
|
if (im==0)
|
|
im = 1;
|
|
stored_t[i] = (log10(r) * 2.0 + log10(im) * 2.0)/2.0 - 80.0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
//---------------- in Linearity measurement the attenuation has to be adapted ------------------
|
|
|
|
|
|
if (setting.measurement == M_LINEARITY && setting.linearity_step < sweep_points) {
|
|
setting.attenuate = 29.0 - setting.linearity_step * 30.0 / (sweep_points);
|
|
dirty = true;
|
|
stored_t[setting.linearity_step] = peakLevel;
|
|
setting.linearity_step++;
|
|
}
|
|
|
|
// redraw_marker(peak_marker, FALSE);
|
|
// STOP_PROFILE;
|
|
|
|
palSetPad(GPIOC, GPIOC_LED);
|
|
return true;
|
|
}
|
|
|
|
//------------------------------- SEARCH ---------------------------------------------
|
|
|
|
int
|
|
marker_search_left_max(int from)
|
|
{
|
|
int i;
|
|
int found = -1;
|
|
if (uistat.current_trace == -1)
|
|
return -1;
|
|
|
|
float value = actual_t[from];
|
|
for (i = from - 1; i >= 0; i--) {
|
|
float new_value = actual_t[i];
|
|
if (new_value < value) {
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value > value + setting.noise )
|
|
break;
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
float new_value = actual_t[i];
|
|
if (new_value > value) {
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value < value - setting.noise )
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
int
|
|
marker_search_right_max(int from)
|
|
{
|
|
int i;
|
|
int found = -1;
|
|
|
|
if (uistat.current_trace == -1)
|
|
return -1;
|
|
float value = actual_t[from];
|
|
for (i = from + 1; i < sweep_points; i++) {
|
|
float new_value = actual_t[i];
|
|
if (new_value < value) { // follow down
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value > value + setting.noise) // larger then lowest value + noise
|
|
break; // past the minimum
|
|
}
|
|
for (; i < sweep_points; i++) {
|
|
float new_value = actual_t[i];
|
|
if (new_value > value) { // follow up
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value < value - setting.noise)
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
int marker_search_max(void)
|
|
{
|
|
int i = 0;
|
|
int found = 0;
|
|
|
|
float value = actual_t[i];
|
|
for (; i < sweep_points; i++) {
|
|
int new_value = actual_t[i];
|
|
if (new_value > value) { // follow up
|
|
value = new_value;
|
|
found = i;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
#define MINMAX_DELTA 10
|
|
|
|
|
|
int
|
|
marker_search_left_min(int from)
|
|
{
|
|
int i;
|
|
int found = from;
|
|
if (uistat.current_trace == -1)
|
|
return -1;
|
|
|
|
float value = actual_t[from];
|
|
for (i = from - 1; i >= 0; i--) {
|
|
float new_value = actual_t[i];
|
|
if (new_value > value) {
|
|
value = new_value; // follow up
|
|
// found = i;
|
|
} else if (new_value < value - MINMAX_DELTA )
|
|
break; // past the maximum
|
|
}
|
|
|
|
for (; i >= 0; i--) {
|
|
float new_value = actual_t[i];
|
|
if (new_value < value) {
|
|
value = new_value; // follow down
|
|
found = i;
|
|
} else if (new_value > value + MINMAX_DELTA )
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
int
|
|
marker_search_right_min(int from)
|
|
{
|
|
int i;
|
|
int found = from;
|
|
|
|
if (uistat.current_trace == -1)
|
|
return -1;
|
|
float value = actual_t[from];
|
|
for (i = from + 1; i < sweep_points; i++) {
|
|
float new_value = actual_t[i];
|
|
if (new_value > value) { // follow up
|
|
value = new_value;
|
|
// found = i;
|
|
} else if (new_value < value - MINMAX_DELTA) // less then largest value - noise
|
|
break; // past the maximum
|
|
}
|
|
for (; i < sweep_points; i++) {
|
|
float new_value = actual_t[i];
|
|
if (new_value < value) { // follow down
|
|
value = new_value;
|
|
found = i;
|
|
} else if (new_value > value + MINMAX_DELTA) // larger then smallest value + noise
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------- CAL STATUS ---------------------------------------------
|
|
const char * const averageText[] = { "OFF", "MIN", "MAX", "MAXD", " A 4", "A 16"};
|
|
const char * const dBText[] = { "1dB/", "2dB/", "5dB/", "10dB/", "20dB/"};
|
|
const int refMHz[] = { 30, 15, 10, 4, 3, 2, 1 };
|
|
|
|
float my_round(float v)
|
|
{
|
|
float m = 1;
|
|
int sign = 1;
|
|
if (v < 0) {
|
|
sign = -1;
|
|
v = -v;
|
|
}
|
|
while (v < 100) {
|
|
v = v * 10;
|
|
m = m / 10;
|
|
}
|
|
while (v > 1000) {
|
|
v = v / 10;
|
|
m = m * 10;
|
|
}
|
|
v = (int)(v+0.5);
|
|
v = v * m;
|
|
if (sign == -1) {
|
|
v = -v;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
const char * const unit_string[] = { "dBm", "dBmV", "dB"S_MICRO"V", "V", "W", "dBc", "dBc", "dBc", "Vc", "Wc" }; // unit + 5 is delta unit
|
|
|
|
static const float scale_value[]={50000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002, 0.001,0.0005,0.0002, 0.0001};
|
|
static const char * const scale_vtext[]= {"50000", "20000", "10000", "5000", "2000", "1000", "500", "200", "100", "50", "20","10","5","2","1","0.5","0.2","0.1","0.05","0.02","0.01", "0.005","0.002","0.001", "0.0005","0.0002","0.0001"};
|
|
|
|
|
|
|
|
void draw_cal_status(void)
|
|
{
|
|
#define BLEN 7
|
|
char buf[BLEN+1];
|
|
buf[6]=0;
|
|
#define YSTEP 8
|
|
int x = 0;
|
|
int y = OFFSETY;
|
|
unsigned int color;
|
|
int rounding = false;
|
|
if (!UNIT_IS_LINEAR(setting.unit))
|
|
rounding = true;
|
|
const char * const unit = unit_string[setting.unit];
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
ili9341_fill(0, 0, OFFSETX, CHART_BOTTOM);
|
|
if (MODE_OUTPUT(setting.mode)) { // No cal status during output
|
|
return;
|
|
}
|
|
|
|
// if (current_menu_is_form() && !in_selftest)
|
|
// return;
|
|
|
|
ili9341_set_background(LCD_BG_COLOR);
|
|
|
|
float yMax = setting.reflevel;
|
|
// Top level
|
|
if (rounding)
|
|
plot_printf(buf, BLEN, "%+4d", (int)yMax);
|
|
else
|
|
plot_printf(buf, BLEN, "%+4.3F", (yMax/setting.unit_scale));
|
|
|
|
if (level_is_calibrated())
|
|
color = setting.auto_reflevel ? LCD_FG_COLOR : LCD_BRIGHT_COLOR_GREEN;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
ili9341_set_foreground(color);
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
// Unit
|
|
#if 0
|
|
color = LCD_FG_COLOR;
|
|
ili9341_set_foreground(color);
|
|
if (setting.auto_reflevel){
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("AUTO", x, y);
|
|
}
|
|
#endif
|
|
y += YSTEP + YSTEP/2 ;
|
|
plot_printf(buf, BLEN, "%s%s",unit_scale_text[setting.unit_scale_index], unit);
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
// Scale
|
|
color = LCD_FG_COLOR;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2;
|
|
#if 1
|
|
unsigned int i = 0;
|
|
while (i < sizeof(scale_value)/sizeof(float)) {
|
|
float t = (setting.scale/setting.unit_scale) / scale_value[i];;
|
|
if (t > 0.9 && t < 1.1){
|
|
plot_printf(buf, BLEN, "%s%s/",scale_vtext[i],unit_scale_text[setting.unit_scale_index]);
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
#else
|
|
plot_printf(buf, BLEN, "%.2F/",setting.scale);
|
|
#endif
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
if (is_paused()) {
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("PAUSED", x, y);
|
|
}
|
|
if (setting.trigger == T_SINGLE || setting.trigger == T_NORMAL ) {
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("ARMED", x, y);
|
|
}
|
|
|
|
if (signal_is_AM) {
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("AM", x, y);
|
|
}
|
|
|
|
// if (setting.mode == M_LOW) {
|
|
// Attenuation
|
|
if (setting.auto_attenuation)
|
|
color = LCD_FG_COLOR;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Atten:", x, y);
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%.2FdB", get_attenuation());
|
|
ili9341_drawstring(buf, x, y);
|
|
// }
|
|
|
|
// Average
|
|
if (setting.average>0) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Calc:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%s",averageText[setting.average]);
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
// Spur
|
|
#ifdef __SPUR__
|
|
if (setting.spur_removal) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Spur:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "ON");
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
if (setting.mirror_masking) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Mask:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "ON");
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
#endif
|
|
|
|
if (setting.subtract_stored) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Norm.", x, y);
|
|
}
|
|
|
|
// RBW
|
|
if (setting.rbw_x10)
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else
|
|
color = LCD_FG_COLOR;
|
|
ili9341_set_foreground(color);
|
|
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("RBW:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%.1FkHz", actual_rbw_x10/10.0);
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
#if 0
|
|
// VBW
|
|
if (setting.frequency_step > 0) {
|
|
ili9341_set_foreground(LCD_FG_COLOR);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("VBW:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%dkHz",(int)setting.vbw_x10/10.0);
|
|
buf[6]=0;
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
#endif
|
|
// Sweep time
|
|
if (setting.step_delay != 0)
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else
|
|
color = LCD_FG_COLOR;
|
|
|
|
ili9341_set_foreground(color);
|
|
|
|
y += YSTEP + YSTEP/2 ;
|
|
|
|
buf[0] = ' ';
|
|
strcpy(&buf[1],"Scan:");
|
|
if (setting.step_delay_mode == SD_PRECISE)
|
|
buf[0] = 'P';
|
|
else if (setting.step_delay_mode == SD_FAST)
|
|
buf[0] = 'F';
|
|
else
|
|
strcpy(&buf[0],"Scan:");
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
#if 0 // Activate for sweep time debugging
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%5.3Fs", (float)setting.sweep_time_us/ONE_SECOND_TIME);
|
|
ili9341_drawstring(buf, x, y);
|
|
#endif
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%5.3Fs", (float)setting.actual_sweep_time_us/ONE_SECOND_TIME);
|
|
ili9341_drawstring(buf, x, y);
|
|
#if 0 // Activate for sweep time debugging
|
|
y += YSTEP;
|
|
update_rbw(); // To ensure the calc_min_sweep time shown takes the latest delay into account
|
|
calculate_step_delay();
|
|
uint32_t t = calc_min_sweep_time_us();
|
|
plot_printf(buf, BLEN, "%5.3Fs", (float)t/ONE_SECOND_TIME);
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%5.3Fs", (float)setting.additional_step_delay_us/ONE_SECOND_TIME);
|
|
ili9341_drawstring(buf, x, y);
|
|
#endif
|
|
|
|
// Cal output
|
|
if (setting.refer >= 0) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Ref:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%dMHz",reffer_freq[setting.refer]/1000000);
|
|
buf[6]=0;
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
|
|
// Offset
|
|
if (setting.offset != 0.0) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Amp:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%.1fdB",setting.offset);
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
|
|
// Repeat
|
|
if (setting.repeat != 1) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("Repeat:", x, y);
|
|
|
|
y += YSTEP;
|
|
plot_printf(buf, BLEN, "%d",setting.repeat);
|
|
buf[6]=0;
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
|
|
// Trigger
|
|
if (setting.trigger != T_AUTO) {
|
|
if (is_paused() || setting.trigger == T_NORMAL) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
} else {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
}
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring("TRIG:", x, y);
|
|
|
|
y += YSTEP;
|
|
if (rounding)
|
|
plot_printf(buf, BLEN, "%4f", value(setting.trigger_level));
|
|
else
|
|
plot_printf(buf, BLEN, "%.4F", value(setting.trigger_level));
|
|
// plot_printf(buf, BLEN, "%4f", value(setting.trigger_level)/setting.unit_scale);
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
|
|
// Mode
|
|
if (level_is_calibrated())
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
ili9341_set_foreground(color);
|
|
y += YSTEP + YSTEP/2 ;
|
|
ili9341_drawstring_7x13(MODE_LOW(setting.mode) ? "LOW" : "HIGH", x, y);
|
|
|
|
// Compact status string
|
|
// ili9341_set_background(LCD_FG_COLOR);
|
|
ili9341_set_foreground(LCD_FG_COLOR);
|
|
y += YSTEP + YSTEP/2 ;
|
|
strncpy(buf," ",BLEN-1);
|
|
if (setting.auto_attenuation)
|
|
buf[0] = 'a';
|
|
else
|
|
buf[0] = 'A';
|
|
if (setting.auto_IF)
|
|
buf[1] = 'f';
|
|
else
|
|
buf[1] = 'F';
|
|
if (setting.auto_reflevel)
|
|
buf[2] = 'r';
|
|
else
|
|
buf[2] = 'R';
|
|
if (S_IS_AUTO(setting.agc))
|
|
buf[3] = 'g';
|
|
else if (S_STATE(setting.agc))
|
|
buf[3] = 'G';
|
|
if (S_IS_AUTO(setting.lna))
|
|
buf[4] = 'n';
|
|
else if (S_STATE(setting.lna))
|
|
buf[4] = 'N';
|
|
if (S_IS_AUTO(setting.below_IF))
|
|
buf[5] = 'b';
|
|
else if (S_STATE(setting.below_IF))
|
|
buf[5] = 'B';
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
// Version
|
|
y += YSTEP + YSTEP/2 ;
|
|
strncpy(buf,&VERSION[8], BLEN-1);
|
|
ili9341_drawstring(buf, x, y);
|
|
|
|
// ili9341_set_background(LCD_BG_COLOR);
|
|
if (!get_waterfall()) { // Do not draw bottom level if in waterfall mode
|
|
// Bottom level
|
|
y = area_height - 8 + OFFSETY;
|
|
if (rounding)
|
|
plot_printf(buf, BLEN, "%4d", (int)(yMax - setting.scale * NGRIDY));
|
|
else
|
|
plot_printf(buf, BLEN, "%+4.3F", ((yMax - setting.scale * NGRIDY)/setting.unit_scale));
|
|
// buf[5]=0;
|
|
if (level_is_calibrated())
|
|
if (setting.auto_reflevel)
|
|
color = LCD_FG_COLOR;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
ili9341_set_foreground(color);
|
|
ili9341_drawstring(buf, x, y);
|
|
}
|
|
}
|
|
|
|
// -------------------- Self testing -------------------------------------------------
|
|
|
|
enum {
|
|
TC_SIGNAL, TC_BELOW, TC_ABOVE, TC_FLAT, TC_MEASURE, TC_SET, TC_END, TC_ATTEN,
|
|
};
|
|
|
|
enum {
|
|
TP_SILENT, TPH_SILENT, TP_10MHZ, TP_10MHZEXTRA, TP_10MHZ_SWITCH, TP_30MHZ, TPH_30MHZ, TPH_30MHZ_SWITCH
|
|
};
|
|
|
|
#define TEST_COUNT 21
|
|
|
|
#define W2P(w) (sweep_points * w / 100) // convert width in % to actual sweep points
|
|
|
|
static const struct {
|
|
int kind;
|
|
int setup;
|
|
float center; // In MHz
|
|
float span; // In MHz
|
|
float pass;
|
|
int width;
|
|
float stop;
|
|
} test_case [TEST_COUNT] =
|
|
{// Condition Preparation Center Span Pass Width(%)Stop
|
|
{TC_BELOW, TP_SILENT, 0.005, 0.01, 0, 0, 0}, // 1 Zero Hz leakage
|
|
{TC_BELOW, TP_SILENT, 0.015, 0.01, -30, 0, 0}, // 2 Phase noise of zero Hz
|
|
{TC_SIGNAL, TP_10MHZ, 20, 7, -39, 10, -90 }, // 3
|
|
{TC_SIGNAL, TP_10MHZ, 30, 7, -34, 10, -90 }, // 4
|
|
#define TEST_SILENCE 4
|
|
{TC_BELOW, TP_SILENT, 200, 100, -75, 0, 0}, // 5 Wide band noise floor low mode
|
|
{TC_BELOW, TPH_SILENT, 600, 720, -75, 0, 0}, // 6 Wide band noise floor high mode
|
|
{TC_SIGNAL, TP_10MHZEXTRA, 10, 8, -20, 27, -80 }, // 7 BPF loss and stop band
|
|
{TC_FLAT, TP_10MHZEXTRA, 10, 4, -18, 7, -60}, // 8 BPF pass band flatness
|
|
{TC_BELOW, TP_30MHZ, 430, 60, -75, 0, -75}, // 9 LPF cutoff
|
|
{TC_SIGNAL, TP_10MHZ_SWITCH,20, 7, -39, 10, -60 }, // 10 Switch isolation using high attenuation
|
|
{TC_ATTEN, TP_30MHZ, 30, 0, -25, 145, -60 }, // 11 Measure atten step accuracy
|
|
#define TEST_END 11
|
|
{TC_END, 0, 0, 0, 0, 0, 0},
|
|
#define TEST_POWER 12
|
|
{TC_MEASURE, TP_30MHZ, 30, 7, -25, 10, -55 }, // 12 Measure power level and noise
|
|
{TC_MEASURE, TP_30MHZ, 270, 4, -50, 10, -75 }, // 13 Measure powerlevel and noise
|
|
{TC_MEASURE, TPH_30MHZ, 270, 4, -40, 10, -65 }, // 14 Calibrate power high mode
|
|
{TC_END, 0, 0, 0, 0, 0, 0},
|
|
#define TEST_RBW 16
|
|
{TC_MEASURE, TP_30MHZ, 30, 1, -20, 10, -60 }, // 16 Measure RBW step time
|
|
{TC_END, 0, 0, 0, 0, 0, 0},
|
|
{TC_MEASURE, TPH_30MHZ, 300, 4, -48, 10, -65 }, // 14 Calibrate power high mode
|
|
{TC_MEASURE, TPH_30MHZ_SWITCH,300, 4, -40, 10, -65 }, // 14 Calibrate power high mode
|
|
#define TEST_ATTEN 20
|
|
{TC_ATTEN, TP_30MHZ, 30, 0, -25, 145, -60 } // 20 Measure atten step accuracy
|
|
};
|
|
|
|
|
|
|
|
enum {
|
|
TS_WAITING, TS_PASS, TS_FAIL, TS_CRITICAL
|
|
};
|
|
static const char *(test_text [4]) =
|
|
{
|
|
"Waiting", "Pass", "Fail", "Critical"
|
|
};
|
|
static const char *(test_fail_cause [TEST_COUNT]);
|
|
|
|
static int test_status[TEST_COUNT];
|
|
static int show_test_info = FALSE;
|
|
static volatile int test_wait = false;
|
|
static float test_value;
|
|
|
|
static void test_acquire(int i)
|
|
{
|
|
(void)i;
|
|
pause_sweep();
|
|
// SetAverage(4);
|
|
sweep(false);
|
|
// sweep(false);
|
|
// sweep(false);
|
|
// sweep(false);
|
|
plot_into_index(measured);
|
|
redraw_request |= REDRAW_CELLS | REDRAW_FREQUENCY;
|
|
}
|
|
|
|
void cell_drawstring(char *str, int x, int y);
|
|
|
|
static char self_test_status_buf[35];
|
|
void cell_draw_test_info(int x0, int y0)
|
|
{
|
|
#define INFO_SPACING 13
|
|
// char self_test_status_buf[35];
|
|
if (!show_test_info)
|
|
return;
|
|
int i = -2;
|
|
do {
|
|
i++;
|
|
int xpos = 25 - x0;
|
|
int ypos = 50+i*INFO_SPACING - y0;
|
|
unsigned int color = LCD_FG_COLOR;
|
|
if (i == -1) {
|
|
plot_printf(self_test_status_buf, sizeof self_test_status_buf, "Self test status:");
|
|
} else if (test_case[i].kind == TC_END) {
|
|
if (test_wait)
|
|
plot_printf(self_test_status_buf, sizeof self_test_status_buf, "Touch screen to continue");
|
|
else
|
|
self_test_status_buf[0] = 0;
|
|
} else {
|
|
plot_printf(self_test_status_buf, sizeof self_test_status_buf, "Test %d: %s%s", i+1, test_fail_cause[i], test_text[test_status[i]] );
|
|
if (test_status[i] == TS_PASS)
|
|
color = LCD_BRIGHT_COLOR_GREEN;
|
|
else if (test_status[i] == TS_CRITICAL)
|
|
color = LCD_TRACE_3_COLOR; // Yellow
|
|
else if (test_status[i] == TS_FAIL)
|
|
color = LCD_BRIGHT_COLOR_RED;
|
|
else
|
|
color = LCD_BRIGHT_COLOR_BLUE;
|
|
}
|
|
ili9341_set_foreground(color);
|
|
cell_drawstring(self_test_status_buf, xpos, ypos);
|
|
} while (test_case[i].kind != TC_END);
|
|
}
|
|
|
|
int validate_signal_within(int i, float margin)
|
|
{
|
|
test_fail_cause[i] = "Signal level ";
|
|
if (fabsf(peakLevel-test_case[i].pass) > 2*margin) {
|
|
return TS_FAIL;
|
|
}
|
|
if (fabsf(peakLevel-test_case[i].pass) > margin) {
|
|
return TS_CRITICAL;
|
|
}
|
|
test_fail_cause[i] = "Frequency ";
|
|
if (peakFreq < test_case[i].center * 1000000 - 600000 || test_case[i].center * 1000000 + 600000 < peakFreq )
|
|
return TS_FAIL;
|
|
test_fail_cause[i] = "";
|
|
return TS_PASS;
|
|
}
|
|
|
|
int validate_peak_below(int i, float margin) {
|
|
return(test_case[i].pass - peakLevel > margin);
|
|
}
|
|
|
|
int validate_below(int tc, int from, int to) {
|
|
int status = TS_PASS;
|
|
float threshold=stored_t[from];
|
|
float sum = 0;
|
|
int sum_count = 0;
|
|
for (int j = from; j < to; j++) {
|
|
sum += actual_t[j];
|
|
sum_count++;
|
|
if (actual_t[j] > threshold) {
|
|
status = TS_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
sum = sum / sum_count;
|
|
if (sum > threshold - 5)
|
|
status = TS_CRITICAL;
|
|
if (status != TS_PASS)
|
|
test_fail_cause[tc] = "Above ";
|
|
return(status);
|
|
}
|
|
|
|
int validate_flatness(int i) {
|
|
volatile int j;
|
|
test_fail_cause[i] = "Passband ";
|
|
for (j = peakIndex; j < setting._sweep_points; j++) {
|
|
if (actual_t[j] < peakLevel - 15) // Search right -3dB
|
|
break;
|
|
}
|
|
//shell_printf("\n\rRight width %d\n\r", j - peakIndex );
|
|
if (j - peakIndex < W2P(test_case[i].width))
|
|
return(TS_FAIL);
|
|
for (j = peakIndex; j > 0; j--) {
|
|
if (actual_t[j] < peakLevel - 15) // Search left -3dB
|
|
break;
|
|
}
|
|
//shell_printf("Left width %d\n\r", j - peakIndex );
|
|
if (peakIndex - j < W2P(test_case[i].width))
|
|
return(TS_FAIL);
|
|
test_fail_cause[i] = "";
|
|
return(TS_PASS);
|
|
}
|
|
|
|
|
|
const float atten_step[7] = { 0.0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 };
|
|
|
|
int validate_atten(int i) {
|
|
float reference_peak_level = 0.0;
|
|
test_fail_cause[i] = "Attenuator ";
|
|
// for (int j= 0; j < 64; j++ ) {
|
|
for (int j= 0; j < 7; j++ ) {
|
|
// set_attenuation(((float)j)/2.0);
|
|
set_attenuation(atten_step[j]);
|
|
float summed_peak_level = 0;
|
|
#define ATTEN_TEST_SWEEPS 5
|
|
for (int k=0; k<ATTEN_TEST_SWEEPS; k++) {
|
|
// setting.sweep_time_us = 1000000;
|
|
test_acquire(TEST_ATTEN); // Acquire test
|
|
// test_validate(TEST_ATTEN); // Validate test
|
|
float peaklevel = 0.0;
|
|
for (int k = 0 ; k < sweep_points; k++)
|
|
peaklevel += actual_t[k];
|
|
peaklevel /= sweep_points;
|
|
summed_peak_level += peakLevel;
|
|
}
|
|
summed_peak_level /= ATTEN_TEST_SWEEPS;
|
|
if (j == 0)
|
|
reference_peak_level = summed_peak_level;
|
|
else {
|
|
// shell_printf("Attenuation %.2fdB, measured level %.2fdBm, delta %.2fdB\n\r",((float)j)/2.0, summed_peak_level, summed_peak_level - reference_peak_level);
|
|
// shell_printf("Attenuation %.2fdB, measured level %.2fdBm, delta %.2fdB\n\r",atten_step[j], summed_peak_level, summed_peak_level - reference_peak_level);
|
|
#define ATTEN_TEST_CRITERIA 3.0
|
|
if (summed_peak_level - reference_peak_level <= -ATTEN_TEST_CRITERIA || summed_peak_level - reference_peak_level >= ATTEN_TEST_CRITERIA)
|
|
return(TS_FAIL);
|
|
}
|
|
}
|
|
test_fail_cause[i] = "";
|
|
return(TS_PASS);
|
|
}
|
|
|
|
int validate_above(int tc) {
|
|
int status = TS_PASS;
|
|
for (int j = 0; j < setting._sweep_points; j++) {
|
|
if (actual_t[j] < stored_t[j] + 5)
|
|
status = TS_CRITICAL;
|
|
else if (actual_t[j] < stored_t[j]) {
|
|
status = TS_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
if (status != TS_PASS)
|
|
test_fail_cause[tc] = "Below ";
|
|
return(status);
|
|
}
|
|
|
|
|
|
int test_validate(int i)
|
|
{
|
|
// draw_all(TRUE);
|
|
int current_test_status = TS_PASS;
|
|
switch (test_case[i].kind) {
|
|
case TC_SET:
|
|
if (test_case[i].pass == 0) {
|
|
if (test_value != 0)
|
|
set_actual_power(test_value);
|
|
} else
|
|
set_actual_power(test_case[i].pass);
|
|
goto common;
|
|
case TC_MEASURE:
|
|
case TC_SIGNAL: // Validate signal
|
|
common: current_test_status = validate_signal_within(i, 10.0);
|
|
if (current_test_status == TS_PASS) { // Validate noise floor
|
|
current_test_status = validate_below(i, 0, setting._sweep_points/2 - W2P(test_case[i].width));
|
|
if (current_test_status == TS_PASS) {
|
|
current_test_status = validate_below(i, setting._sweep_points/2 + W2P(test_case[i].width), setting._sweep_points);
|
|
}
|
|
if (current_test_status != TS_PASS)
|
|
test_fail_cause[i] = "Stopband ";
|
|
}
|
|
if (current_test_status == TS_PASS && test_case[i].kind == TC_MEASURE)
|
|
test_value = peakLevel;
|
|
else
|
|
test_value = 0; // Not valid
|
|
break;
|
|
case TC_ABOVE: // Validate signal above curve
|
|
current_test_status = validate_above(i);
|
|
break;
|
|
case TC_BELOW: // Validate signal below curve
|
|
current_test_status = validate_below(i, 0, setting._sweep_points);
|
|
break;
|
|
case TC_FLAT: // Validate passband flatness
|
|
current_test_status = validate_flatness(i);
|
|
break;
|
|
case TC_ATTEN:
|
|
current_test_status = validate_atten(i);
|
|
break;
|
|
}
|
|
|
|
// Report status
|
|
|
|
if (current_test_status != TS_PASS || test_case[i+1].kind == TC_END)
|
|
test_wait = true;
|
|
test_status[i] = current_test_status; // Must be set before draw_all() !!!!!!!!
|
|
// draw_frequencies();
|
|
// draw_cal_status();
|
|
draw_all(TRUE);
|
|
return current_test_status;
|
|
}
|
|
|
|
void test_prepare(int i)
|
|
{
|
|
setting.tracking = false; //Default test setup
|
|
setting.atten_step = false;
|
|
setting.frequency_IF = DEFAULT_IF; // Default frequency
|
|
setting.auto_IF = true;
|
|
setting.auto_attenuation = false;
|
|
switch(test_case[i].setup) { // Prepare test conditions
|
|
case TPH_SILENT: // No input signal
|
|
set_mode(M_HIGH);
|
|
goto common_silent;
|
|
case TP_SILENT: // No input signal
|
|
set_mode(M_LOW);
|
|
common_silent:
|
|
set_refer_output(-1);
|
|
for (int j = 0; j < setting._sweep_points; j++)
|
|
stored_t[j] = test_case[i].pass;
|
|
break;
|
|
case TP_10MHZ_SWITCH:
|
|
set_mode(M_LOW);
|
|
set_refer_output(2);
|
|
goto common;
|
|
case TP_10MHZEXTRA: // Swept receiver
|
|
set_mode(M_LOW);
|
|
setting.tracking = true; //Sweep BPF
|
|
setting.auto_IF = false;
|
|
setting.frequency_IF = DEFAULT_IF; // Center on SAW filters
|
|
set_refer_output(2);
|
|
goto common;
|
|
case TP_10MHZ: // 10MHz input
|
|
set_mode(M_LOW);
|
|
set_refer_output(2);
|
|
setting.step_delay_mode = SD_PRECISE;
|
|
// set_step_delay(1); // Precise scanning speed
|
|
#ifdef __SPUR__
|
|
setting.spur_removal = 1;
|
|
#endif
|
|
common:
|
|
|
|
for (int j = 0; j < setting._sweep_points/2 - W2P(test_case[i].width); j++)
|
|
stored_t[j] = test_case[i].stop;
|
|
for (int j = setting._sweep_points/2 + W2P(test_case[i].width); j < setting._sweep_points; j++)
|
|
stored_t[j] = test_case[i].stop;
|
|
for (int j = setting._sweep_points/2 - W2P(test_case[i].width); j < setting._sweep_points/2 + W2P(test_case[i].width); j++)
|
|
stored_t[j] = test_case[i].pass;
|
|
break;
|
|
case TP_30MHZ:
|
|
set_mode(M_LOW);
|
|
maxFreq = 520000000; // needed to measure the LPF rejection
|
|
set_refer_output(0);
|
|
dirty = true;
|
|
// set_step_delay(1); // Do not set !!!!!
|
|
#ifdef __SPUR__
|
|
setting.spur_removal = 1;
|
|
#endif
|
|
|
|
goto common;
|
|
case TPH_30MHZ_SWITCH:
|
|
case TPH_30MHZ:
|
|
set_mode(M_HIGH);
|
|
set_refer_output(0);
|
|
goto common;
|
|
}
|
|
switch(test_case[i].setup) { // Prepare test conditions
|
|
case TP_10MHZ_SWITCH:
|
|
set_attenuation(32); // This forces the switch to transmit so isolation can be tested
|
|
break;
|
|
case TPH_30MHZ_SWITCH:
|
|
set_attenuation(0);
|
|
setting.atten_step = true; // test high switch isolation
|
|
break;
|
|
default:
|
|
set_attenuation(0.0);
|
|
}
|
|
trace[TRACE_STORED].enabled = true;
|
|
set_reflevel(test_case[i].pass+10);
|
|
set_sweep_frequency(ST_CENTER, (uint32_t)(test_case[i].center * 1000000));
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(test_case[i].span * 1000000));
|
|
draw_cal_status();
|
|
}
|
|
|
|
extern void menu_autosettings_cb(int item);
|
|
|
|
|
|
int last_spur = 0;
|
|
int add_spur(int f)
|
|
{
|
|
for (int i = 0; i < last_spur; i++) {
|
|
if (temp_t[i] == f) {
|
|
stored_t[i] += 1;
|
|
return stored_t[i];
|
|
}
|
|
}
|
|
if (last_spur < POINTS_COUNT) {
|
|
temp_t[last_spur] = f;
|
|
stored_t[last_spur++] = 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
//static bool test_wait = false;
|
|
static int test_step = 0;
|
|
|
|
void self_test(int test)
|
|
{
|
|
// set_sweep_points(POINTS_COUNT);
|
|
if (test == 0) {
|
|
if (test_wait ) {
|
|
if (test_case[test_step].kind == TC_END || setting.test_argument != 0)
|
|
goto resume2;
|
|
else
|
|
goto resume;
|
|
}
|
|
reset_settings(M_LOW); // Make sure we are in a defined state
|
|
in_selftest = true;
|
|
menu_autosettings_cb(0);
|
|
for (int i=0; i < TEST_COUNT; i++) { // All test cases waiting
|
|
if (test_case[i].kind == TC_END)
|
|
break;
|
|
test_status[i] = TS_WAITING;
|
|
test_fail_cause[i] = "";
|
|
}
|
|
show_test_info = TRUE;
|
|
test_step=0;
|
|
if (setting.test_argument > 0)
|
|
test_step=setting.test_argument-1;
|
|
do {
|
|
test_prepare(test_step);
|
|
test_acquire(test_step); // Acquire test
|
|
test_status[test_step] = test_validate(test_step); // Validate test
|
|
if (test_step == 2) {
|
|
if (peakLevel < -60) {
|
|
test_step = TEST_END;
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Signal level too low", 30, 140);
|
|
ili9341_drawstring_7x13("Check cable between High and Low connectors", 30, 160);
|
|
goto resume2;
|
|
}
|
|
|
|
}
|
|
if (test_status[test_step] != TS_PASS) {
|
|
resume:
|
|
test_wait = true;
|
|
if (!check_touched())
|
|
return;
|
|
// wait_user();
|
|
}
|
|
test_step++;
|
|
} while (test_case[test_step].kind != TC_END && setting.test_argument == 0 );
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
ili9341_drawstring_7x13("Self test complete", 50, 200);
|
|
ili9341_drawstring_7x13("Touch screen to continue", 50, 215);
|
|
resume2:
|
|
test_wait = true;
|
|
if (!check_touched())
|
|
return;
|
|
|
|
ili9341_clear_screen();
|
|
reset_settings(M_LOW);
|
|
set_refer_output(-1);
|
|
#ifndef DOESNOTFIT
|
|
} else if (test == 1) {
|
|
float p2, p1, p;
|
|
in_selftest = true; // Spur search
|
|
reset_settings(M_LOW);
|
|
test_prepare(TEST_SILENCE);
|
|
setting.auto_IF = false;
|
|
setting.frequency_IF=DEFAULT_IF;
|
|
setting.frequency_step = 30000;
|
|
if (setting.test_argument > 0)
|
|
setting.frequency_step=setting.test_argument;
|
|
int f = 400000; // Start search at 400kHz
|
|
// int i = 0; // Index in spur table (temp_t)
|
|
set_RBW(setting.frequency_step/100);
|
|
last_spur = 0;
|
|
for (int j = 0; j < 4; j++) {
|
|
|
|
p2 = PURE_TO_float(perform(false, 0, f, false));
|
|
vbwSteps = 1;
|
|
f += setting.frequency_step;
|
|
p1 = PURE_TO_float(perform(false, 1, f, false));
|
|
f += setting.frequency_step;
|
|
shell_printf("\n\rStarting with %4.2f, %4.2f and IF at %d and step of %d\n\r", p2, p1, setting.frequency_IF, setting.frequency_step );
|
|
f = 400000;
|
|
while (f < DEFAULT_MAX_FREQ) {
|
|
p = PURE_TO_float(perform(false, 1, f, false));
|
|
#define SPUR_DELTA 15
|
|
if ( p2 < p1 - SPUR_DELTA && p < p1 - SPUR_DELTA) {
|
|
shell_printf("Spur of %4.2f at %d with count %d\n\r", p1,(f - setting.frequency_step)/1000, add_spur(f - setting.frequency_step));
|
|
}
|
|
p2 = p1;
|
|
p1 = p;
|
|
f += setting.frequency_step;
|
|
}
|
|
}
|
|
shell_printf("\n\rTable for IF at %d and step of %d\n\r", setting.frequency_IF, setting.frequency_step);
|
|
for (int j = 0; j < last_spur; j++) {
|
|
if ((int)stored_t[j] > 1)
|
|
shell_printf("%d, %d\n\r", ((int)temp_t[j])/1000, (int)stored_t[j]);
|
|
}
|
|
reset_settings(M_LOW);
|
|
} else if (test == 2) { // Attenuator test
|
|
in_selftest = true;
|
|
reset_settings(M_LOW);
|
|
float reference_peak_level = 0;
|
|
test_prepare(TEST_ATTEN);
|
|
test_acquire(TEST_ATTEN); // Acquire test
|
|
test_validate(TEST_ATTEN); // Validate test
|
|
#if 0
|
|
for (int j= 0; j < 64; j++ ) {
|
|
// test_prepare(TEST_ATTEN);
|
|
set_attenuation(((float)j)/2.0);
|
|
float summed_peak_level = 0;
|
|
// for (int k=0; k<10; k++) {
|
|
test_acquire(TEST_ATTEN); // Acquire test
|
|
test_validate(TEST_ATTEN); // Validate test
|
|
// summed_peak_level += peakLevel;
|
|
// }
|
|
float peaklevel = 0.0;
|
|
for (int k = 0 ; k < sweep_points; k++)
|
|
peaklevel += actual_t[k];
|
|
peaklevel /= sweep_points;
|
|
if (j == 0)
|
|
reference_peak_level = peakLevel;
|
|
shell_printf("Attenuation %.2fdB, measured level %.2fdBm, delta %.2fdB\n\r",((float)j)/2.0, peakLevel, peakLevel - reference_peak_level);
|
|
}
|
|
#endif
|
|
reset_settings(M_LOW);
|
|
} else if (test == 3) { // RBW step time search
|
|
in_selftest = true;
|
|
// reset_settings(M_LOW);
|
|
setting.auto_IF = false;
|
|
setting.frequency_IF=DEFAULT_IF;
|
|
ui_mode_normal();
|
|
test_prepare(TEST_RBW);
|
|
setting.step_delay = 8000;
|
|
for (int j= 0; j < SI4432_RBW_count; j++ ) {
|
|
if (setting.test_argument != 0)
|
|
j = setting.test_argument;
|
|
// do_again:
|
|
test_prepare(TEST_RBW);
|
|
setting.spur_removal = 0;
|
|
#if 1 // Disable for offset baseline scanning
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.repeat = 1;
|
|
#else
|
|
setting.step_delay_mode = SD_FAST;
|
|
setting.repeat = 20;
|
|
#endif
|
|
setting.step_delay = setting.step_delay * 5 / 4;
|
|
setting.offset_delay = setting.step_delay / 2;
|
|
#ifdef __SI4432__
|
|
setting.rbw_x10 = SI4432_force_RBW(j);
|
|
#endif
|
|
#ifdef __SI4463__
|
|
setting.rbw_x10 = SI4463_force_RBW(j);
|
|
#endif
|
|
shell_printf("RBW = %f, ",setting.rbw_x10/10.0);
|
|
#if 0
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(setting.rbw_x10 * 1000)); // Wide
|
|
#else
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(setting.rbw_x10 * 5000)); // Narrow
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(18000000));
|
|
#endif
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
// if (test_value == 0) {
|
|
// setting.step_delay = setting.step_delay * 4 / 5;
|
|
// goto do_again;
|
|
// }
|
|
|
|
float saved_peakLevel = peakLevel;
|
|
// if (peakLevel < -35) {
|
|
// shell_printf("Peak level too low, abort\n\r");
|
|
// return;
|
|
// }
|
|
shell_printf("Start level = %f, ",peakLevel);
|
|
#if 1 // Enable for step delay tuning
|
|
while (setting.step_delay > 10 && test_value != 0 && test_value > saved_peakLevel - 0.5) {
|
|
test_prepare(TEST_RBW);
|
|
setting.spur_removal = 0;
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.step_delay = setting.step_delay * 4 / 5;
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(setting.rbw_x10 * 5000));
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(18000000));
|
|
|
|
// setting.repeat = 10;
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
// shell_printf(" Step %f, %d",peakLevel, setting.step_delay);
|
|
}
|
|
|
|
setting.step_delay = setting.step_delay * 5 / 4; // back one level
|
|
#else
|
|
setting.step_delay = setting.step_delay * 4 / 5;
|
|
|
|
#endif
|
|
setting.offset_delay = 1600;
|
|
#if 0 // Enable for offset tuning stepping
|
|
test_value = saved_peakLevel;
|
|
if ((uint32_t)(setting.rbw_x10 * 1000) / (sweep_points) < 8000) { // fast mode possible
|
|
while (setting.offset_delay > 0 && test_value != 0 && test_value > saved_peakLevel - 1.5) {
|
|
test_prepare(TEST_RBW);
|
|
setting.step_delay_mode = SD_FAST;
|
|
setting.offset_delay /= 2;
|
|
setting.spur_removal = 0;
|
|
if (setting.rbw_x10 < 1000)
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(setting.rbw_x10 * 5000)); // 50 times RBW
|
|
else
|
|
set_sweep_frequency(ST_SPAN, (uint32_t)(18000000)); // Limit to 18MHz
|
|
// setting.repeat = 10;
|
|
test_acquire(TEST_RBW); // Acquire test
|
|
test_validate(TEST_RBW); // Validate test
|
|
// shell_printf(" Step %f, %d",peakLevel, setting.step_delay);
|
|
}
|
|
}
|
|
#endif
|
|
shell_printf("End level = %f, step time = %d, fast delay = %d\n\r",peakLevel, setting.step_delay, setting.offset_delay*2);
|
|
if (setting.test_argument != 0)
|
|
break;
|
|
}
|
|
reset_settings(M_LOW);
|
|
setting.step_delay_mode = SD_NORMAL;
|
|
setting.step_delay = 0;
|
|
} else if (test == 5) {
|
|
// reset_settings(M_LOW); // Make sure we are in a defined state
|
|
in_selftest = true;
|
|
switch (setting.test_argument) {
|
|
case 0:
|
|
touch_draw_test();
|
|
area_width = AREA_WIDTH_NORMAL;
|
|
area_height = AREA_HEIGHT_NORMAL;
|
|
break;
|
|
case 1:
|
|
reset_settings(M_LOW);
|
|
set_sweep_frequency(ST_START, 0);
|
|
set_sweep_frequency(ST_STOP, 50000000);
|
|
break;
|
|
case 2:
|
|
reset_settings(M_LOW);
|
|
set_sweep_frequency(ST_START, 300000000);
|
|
set_sweep_frequency(ST_STOP, DEFAULT_MAX_FREQ);
|
|
break;
|
|
case 3:
|
|
reset_settings(M_HIGH);
|
|
set_sweep_frequency(ST_START, 300000000);
|
|
set_sweep_frequency(ST_STOP, DEFAULT_MAX_FREQ);
|
|
break;
|
|
case 4:
|
|
reset_settings(M_GENLOW);
|
|
set_sweep_frequency(ST_CENTER, 20000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
setting.mute = false;
|
|
break;
|
|
case 5:
|
|
reset_settings(M_GENHIGH);
|
|
set_sweep_frequency(ST_CENTER, 320000000);
|
|
set_sweep_frequency(ST_SPAN, 0);
|
|
break;
|
|
}
|
|
in_selftest = false;
|
|
#endif
|
|
}
|
|
show_test_info = FALSE;
|
|
in_selftest = false;
|
|
test_wait = false;
|
|
sweep_mode = SWEEP_ENABLE;
|
|
}
|
|
|
|
void reset_calibration(void)
|
|
{
|
|
config.high_level_offset = 100;
|
|
config.low_level_offset = 100;
|
|
}
|
|
|
|
#define CALIBRATE_RBWS 1
|
|
const int power_rbw [5] = { 100, 300, 30, 10, 3 };
|
|
|
|
void calibrate(void)
|
|
{
|
|
#ifdef __CALIBRATE__
|
|
int local_test_status;
|
|
int old_sweep_points = setting._sweep_points;
|
|
in_selftest = true;
|
|
reset_calibration();
|
|
reset_settings(M_LOW);
|
|
for (int j= 0; j < CALIBRATE_RBWS; j++ ) {
|
|
// set_RBW(power_rbw[j]);
|
|
// set_sweep_points(21);
|
|
test_prepare(TEST_POWER);
|
|
setting.step_delay_mode = SD_PRECISE;
|
|
setting.agc = S_OFF;
|
|
setting.lna = S_OFF;
|
|
test_acquire(TEST_POWER); // Acquire test
|
|
local_test_status = test_validate(TEST_POWER); // Validate test
|
|
if (peakLevel < -50) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Signal level too low", 30, 140);
|
|
ili9341_drawstring_7x13("Check cable between High and Low connectors", 30, 160);
|
|
goto quit;
|
|
}
|
|
// chThdSleepMilliseconds(1000);
|
|
if (local_test_status != TS_PASS) {
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
|
|
ili9341_drawstring_7x13("Calibration failed", 30, 140);
|
|
goto quit;
|
|
} else {
|
|
set_actual_power(-25.0); // Should be -23.5dBm (V0.2) OR 25 (V0.3)
|
|
chThdSleepMilliseconds(1000);
|
|
}
|
|
}
|
|
#if 0 // No high input calibration as CAL OUTPUT is unreliable
|
|
|
|
set_RBW(100);
|
|
test_prepare(TEST_POWER+1);
|
|
test_acquire(TEST_POWER+1); // Acquire test
|
|
float last_peak_level = peakLevel;
|
|
local_test_status = test_validate(TEST_POWER+1); // Validate test
|
|
chThdSleepMilliseconds(1000);
|
|
|
|
config.high_level_offset = 0; /// Preliminary setting
|
|
|
|
for (int j = 0; j < CALIBRATE_RBWS; j++) {
|
|
set_RBW(power_rbw[j]);
|
|
test_prepare(TEST_POWER+2);
|
|
test_acquire(TEST_POWER+2); // Acquire test
|
|
local_test_status = test_validate(TEST_POWER+2); // Validate test
|
|
// if (local_test_status != TS_PASS) { // Do not validate due to variations in SI4432
|
|
// ili9341_set_foreground(BRIGHT_COLOR_RED);
|
|
// ili9341_drawstring_7x13("Calibration failed", 30, 120);
|
|
// goto quit;
|
|
// } else
|
|
set_actual_power(last_peak_level);
|
|
chThdSleepMilliseconds(1000);
|
|
}
|
|
|
|
#endif
|
|
|
|
config_save();
|
|
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
|
|
ili9341_drawstring_7x13("Calibration complete", 30, 140);
|
|
quit:
|
|
ili9341_drawstring_7x13("Touch screen to continue", 30, 200);
|
|
wait_user();
|
|
ili9341_clear_screen();
|
|
set_sweep_points(old_sweep_points);
|
|
|
|
in_selftest = false;
|
|
sweep_mode = SWEEP_ENABLE;
|
|
set_refer_output(-1);
|
|
reset_settings(M_LOW);
|
|
#endif
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
|
|
#if 0 // fixed point FFT
|
|
|
|
/* fix_fft.c - Fixed-point in-place Fast Fourier Transform */
|
|
/*
|
|
All data are fixed-point short integers, in which -32768
|
|
to +32768 represent -1.0 to +1.0 respectively. Integer
|
|
arithmetic is used for speed, instead of the more natural
|
|
floating-point.
|
|
|
|
For the forward FFT (time -> freq), fixed scaling is
|
|
performed to prevent arithmetic overflow, and to map a 0dB
|
|
sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
|
|
coefficients. The return value is always 0.
|
|
|
|
For the inverse FFT (freq -> time), fixed scaling cannot be
|
|
done, as two 0dB coefficients would sum to a peak amplitude
|
|
of 64K, overflowing the 32k range of the fixed-point integers.
|
|
Thus, the fix_fft() routine performs variable scaling, and
|
|
returns a value which is the number of bits LEFT by which
|
|
the output must be shifted to get the actual amplitude
|
|
(i.e. if fix_fft() returns 3, each value of fr[] and fi[]
|
|
must be multiplied by 8 (2**3) for proper scaling.
|
|
Clearly, this cannot be done within fixed-point short
|
|
integers. In practice, if the result is to be used as a
|
|
filter, the scale_shift can usually be ignored, as the
|
|
result will be approximately correctly normalized as is.
|
|
|
|
Written by: Tom Roberts 11/8/89
|
|
Made portable: Malcolm Slaney 12/15/94 malcolm@interval.com
|
|
Enhanced: Dimitrios P. Bouras 14 Jun 2006 dbouras@ieee.org
|
|
*/
|
|
|
|
#define N_WAVE 1024 /* full length of Sinewave[] */
|
|
#define LOG2_N_WAVE 10 /* log2(N_WAVE) */
|
|
|
|
/*
|
|
Henceforth "short" implies 16-bit word. If this is not
|
|
the case in your architecture, please replace "short"
|
|
with a type definition which *is* a 16-bit word.
|
|
*/
|
|
|
|
/*
|
|
Since we only use 3/4 of N_WAVE, we define only
|
|
this many samples, in order to conserve data space.
|
|
*/
|
|
short Sinewave[N_WAVE-N_WAVE/4] = {
|
|
0, 201, 402, 603, 804, 1005, 1206, 1406,
|
|
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
|
|
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
|
|
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
|
|
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
|
|
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
|
|
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
|
|
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
|
|
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
|
|
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
|
|
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
|
|
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
|
|
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
|
|
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
|
|
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
|
|
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
|
|
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
|
|
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
|
|
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
|
|
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
|
|
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
|
|
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
|
|
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
|
|
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
|
|
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
|
|
30851, 30918, 30984, 31049, 31113, 31175, 31236, 31297,
|
|
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
|
|
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
|
|
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
|
|
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
|
|
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
|
|
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
|
|
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
|
|
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
|
|
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
|
|
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
|
|
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
|
|
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
|
|
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
|
|
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
|
|
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
|
|
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
|
|
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
|
|
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
|
|
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
|
|
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
|
|
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
|
|
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
|
|
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
|
|
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
|
|
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
|
|
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
|
|
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
|
|
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
|
|
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
|
|
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
|
|
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
|
|
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
|
|
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
|
|
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
|
|
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
|
|
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
|
|
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
|
|
1607, 1406, 1206, 1005, 804, 603, 402, 201,
|
|
0, -201, -402, -603, -804, -1005, -1206, -1406,
|
|
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
|
|
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
|
|
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
|
|
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
|
|
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
|
|
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
|
|
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
|
|
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
|
|
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
|
|
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
|
|
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
|
|
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
|
|
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
|
|
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
|
|
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
|
|
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
|
|
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
|
|
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
|
|
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
|
|
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
|
|
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
|
|
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
|
|
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
|
|
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
|
|
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
|
|
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
|
|
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
|
|
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
|
|
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
|
|
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
|
|
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
|
|
};
|
|
|
|
/*
|
|
FIX_MPY() - fixed-point multiplication & scaling.
|
|
Substitute inline assembly for hardware-specific
|
|
optimization suited to a particluar DSP processor.
|
|
Scaling ensures that result remains 16-bit.
|
|
*/
|
|
inline short FIX_MPY(short a, short b)
|
|
{
|
|
/* shift right one less bit (i.e. 15-1) */
|
|
int c = ((int)a * (int)b) >> 14;
|
|
/* last bit shifted out = rounding-bit */
|
|
b = c & 0x01;
|
|
/* last shift + rounding bit */
|
|
a = (c >> 1) + b;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
fix_fft() - perform forward/inverse fast Fourier transform.
|
|
fr[n],fi[n] are real and imaginary arrays, both INPUT AND
|
|
RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to
|
|
0 for forward transform (FFT), or 1 for iFFT.
|
|
*/
|
|
int fix_fft(short fr[], short fi[], short m, short inverse)
|
|
{
|
|
int mr, nn, i, j, l, k, istep, n, scale, shift;
|
|
short qr, qi, tr, ti, wr, wi;
|
|
|
|
n = 1 << m;
|
|
|
|
/* max FFT size = N_WAVE */
|
|
if (n > N_WAVE)
|
|
return -1;
|
|
|
|
mr = 0;
|
|
nn = n - 1;
|
|
scale = 0;
|
|
|
|
/* decimation in time - re-order data */
|
|
for (m=1; m<=nn; ++m) {
|
|
l = n;
|
|
do {
|
|
l >>= 1;
|
|
} while (mr+l > nn);
|
|
mr = (mr & (l-1)) + l;
|
|
|
|
if (mr <= m)
|
|
continue;
|
|
tr = fr[m];
|
|
fr[m] = fr[mr];
|
|
fr[mr] = tr;
|
|
ti = fi[m];
|
|
fi[m] = fi[mr];
|
|
fi[mr] = ti;
|
|
}
|
|
|
|
l = 1;
|
|
k = LOG2_N_WAVE-1;
|
|
while (l < n) {
|
|
if (inverse) {
|
|
/* variable scaling, depending upon data */
|
|
shift = 0;
|
|
for (i=0; i<n; ++i) {
|
|
j = fr[i];
|
|
if (j < 0)
|
|
j = -j;
|
|
m = fi[i];
|
|
if (m < 0)
|
|
m = -m;
|
|
if (j > 16383 || m > 16383) {
|
|
shift = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (shift)
|
|
++scale;
|
|
} else {
|
|
/*
|
|
fixed scaling, for proper normalization --
|
|
there will be log2(n) passes, so this results
|
|
in an overall factor of 1/n, distributed to
|
|
maximize arithmetic accuracy.
|
|
*/
|
|
shift = 1;
|
|
}
|
|
/*
|
|
it may not be obvious, but the shift will be
|
|
performed on each data point exactly once,
|
|
during this pass.
|
|
*/
|
|
istep = l << 1;
|
|
for (m=0; m<l; ++m) {
|
|
j = m << k;
|
|
/* 0 <= j < N_WAVE/2 */
|
|
wr = Sinewave[j+N_WAVE/4];
|
|
wi = -Sinewave[j];
|
|
if (inverse)
|
|
wi = -wi;
|
|
if (shift) {
|
|
wr >>= 1;
|
|
wi >>= 1;
|
|
}
|
|
for (i=m; i<n; i+=istep) {
|
|
j = i + l;
|
|
tr = FIX_MPY(wr,fr[j]) - FIX_MPY(wi,fi[j]);
|
|
ti = FIX_MPY(wr,fi[j]) + FIX_MPY(wi,fr[j]);
|
|
qr = fr[i];
|
|
qi = fi[i];
|
|
if (shift) {
|
|
qr >>= 1;
|
|
qi >>= 1;
|
|
}
|
|
fr[j] = qr - tr;
|
|
fi[j] = qi - ti;
|
|
fr[i] = qr + tr;
|
|
fi[i] = qi + ti;
|
|
}
|
|
}
|
|
--k;
|
|
l = istep;
|
|
}
|
|
return scale;
|
|
}
|
|
|
|
/*
|
|
fix_fftr() - forward/inverse FFT on array of real numbers.
|
|
Real FFT/iFFT using half-size complex FFT by distributing
|
|
even/odd samples into real/imaginary arrays respectively.
|
|
In order to save data space (i.e. to avoid two arrays, one
|
|
for real, one for imaginary samples), we proceed in the
|
|
following two steps: a) samples are rearranged in the real
|
|
array so that all even samples are in places 0-(N/2-1) and
|
|
all imaginary samples in places (N/2)-(N-1), and b) fix_fft
|
|
is called with fr and fi pointing to index 0 and index N/2
|
|
respectively in the original array. The above guarantees
|
|
that fix_fft "sees" consecutive real samples as alternating
|
|
real and imaginary samples in the complex array.
|
|
*/
|
|
int fix_fftr(short f[], int m, int inverse)
|
|
{
|
|
int i, N = 1<<(m-1), scale = 0;
|
|
short tt, *fr=f, *fi=&f[N];
|
|
|
|
if (inverse)
|
|
scale = fix_fft(fi, fr, m-1, inverse);
|
|
for (i=1; i<N; i+=2) {
|
|
tt = f[N+i-1];
|
|
f[N+i-1] = f[i];
|
|
f[i] = tt;
|
|
}
|
|
if (! inverse)
|
|
scale = fix_fft(fi, fr, m-1, inverse);
|
|
return scale;
|
|
}
|
|
#endif
|