You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tinySA/ui.c

7065 lines
212 KiB

/* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* Copyright (c) 2020-2022, Erik Kaashoek
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "chprintf.h"
#include "nanovna.h"
#include <string.h>
#include <stdlib.h>
#include <math.h>
#pragma GCC push_options
#pragma GCC optimize ("Os")
uistat_t uistat = {
current_trace: 0,
lever_mode: LM_MARKER,
marker_delta: FALSE,
marker_noise: FALSE,
marker_tracking : FALSE,
auto_center_marker : FALSE,
text : "",
};
#define NO_EVENT 0
#define EVT_BUTTON_SINGLE_CLICK 0x01
#define EVT_BUTTON_DOUBLE_CLICK 0x02
#define EVT_BUTTON_DOWN_LONG 0x04
#define EVT_UP 0x10
#define EVT_DOWN 0x20
#define EVT_REPEAT 0x40
#define BUTTON_DOWN_LONG_TICKS MS2ST(500) // 500ms
#define BUTTON_DOUBLE_TICKS MS2ST(250) // 250ms
#define BUTTON_REPEAT_TICKS MS2ST( 40) // 40ms
#define BUTTON_DEBOUNCE_TICKS MS2ST( 2) // 2ms
/* lever switch assignment */
#define BIT_UP1 3
#define BIT_PUSH 2
#define BIT_DOWN1 1
#define READ_PORT() palReadPort(GPIOA)
#define BUTTON_MASK 0b1110
static uint16_t last_button = 0b0000;
static uint32_t last_button_down_ticks;
static uint32_t last_button_repeat_ticks;
#define MENU_USE_AUTOHEIGHT
#ifdef MENU_USE_AUTOHEIGHT
static uint16_t menu_button_height = MENU_BUTTON_HEIGHT_N(MENU_BUTTON_MIN);
#endif
volatile uint8_t operation_requested = OP_NONE;
int8_t previous_marker = MARKER_INVALID;
enum {
UI_NORMAL, UI_MENU, UI_KEYPAD,
#ifdef __SD_FILE_BROWSER__
UI_BROWSER,
#endif
UI_END
};
#define NUMINPUT_LEN 12
#ifdef FF_USE_LFN
#define TXTINPUT_LEN (FF_MAX_LFN - 4)
#else
#define TXTINPUT_LEN (8)
#endif
#if NUMINPUT_LEN + 2 > TXTINPUT_LEN + 1
static char kp_buf[NUMINPUT_LEN+2]; // !!!!!! WARNING size must be + 2 from NUMINPUT_LEN or TXTINPUT_LEN + 1
#else
static char kp_buf[TXTINPUT_LEN+1]; // !!!!!! WARNING size must be + 2 from NUMINPUT_LEN or TXTINPUT_LEN + 1
#endif
static uint8_t ui_mode = UI_NORMAL;
static uint8_t keypad_mode;
static int8_t kp_index = 0;
static char *kp_help_text = NULL;
static uint8_t menu_current_level = 0;
static int selection = 0;
static const uint8_t slider_bitmap[]=
{
_BMP8(0b11111110),
_BMP8(0b11111110),
_BMP8(0b01111100),
_BMP8(0b00111000),
_BMP8(0b00010000)
};
// Button definition (used in MT_ADV_CALLBACK for custom)
#define BUTTON_ICON_NONE -1
#define BUTTON_ICON_NOCHECK 0
#define BUTTON_ICON_CHECK 1
#define BUTTON_ICON_CHECK_AUTO 2
#define BUTTON_ICON_CHECK_MANUAL 3
#define BUTTON_ICON_GROUP 4
#define BUTTON_ICON_GROUP_CHECKED 5
#define CHECK_ICON(S) ((S) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK)
#define GROUP_ICON(S) ((S) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP)
#define AUTO_ICON(S) (S>=2?BUTTON_ICON_CHECK_AUTO:S) // Depends on order of ICONs!!!!!
#define BUTTON_BORDER_NONE 0x00
#define BUTTON_BORDER_WIDTH_MASK 0x07
#define BUTTON_BORDER_NO_FILL 0x08
// Define mask for draw border (if 1 use light color, if 0 dark)
#define BUTTON_BORDER_TYPE_MASK 0xF0
#define BUTTON_BORDER_TOP 0x10
#define BUTTON_BORDER_BOTTOM 0x20
#define BUTTON_BORDER_LEFT 0x40
#define BUTTON_BORDER_RIGHT 0x80
#define BUTTON_BORDER_FLAT 0x00
#define BUTTON_BORDER_RISE (BUTTON_BORDER_TOP|BUTTON_BORDER_RIGHT)
#define BUTTON_BORDER_FALLING (BUTTON_BORDER_BOTTOM|BUTTON_BORDER_LEFT)
// Touch screen
#define EVT_TOUCH_NONE 0
#define EVT_TOUCH_DOWN 1
#define EVT_TOUCH_PRESSED 2
#define EVT_TOUCH_RELEASED 3
#define TOUCH_INTERRUPT_ENABLED 1
static uint8_t touch_status_flag = 0;
static int8_t last_touch_status = EVT_TOUCH_NONE;
static int16_t last_touch_x;
static int16_t last_touch_y;
#define KP_CONTINUE 0
#define KP_DONE 1
#define KP_CANCEL 2
static void ui_mode_keypad(int _keypad_mode);
// static void draw_menu(void);
static void leave_ui_mode(void);
static void erase_menu_buttons(void);
static void ui_process_keypad(void);
static void choose_active_marker(void);
static void menu_move_back(bool leave_ui);
static void draw_button(uint16_t x, uint16_t y, uint16_t w, uint16_t h, ui_button_t *b);
//static const menuitem_t menu_marker_type[];
#ifdef __USE_SD_CARD__
static void save_csv(uint8_t mask);
#endif
bool isFullScreenMode(void) {
#ifdef __SD_FILE_BROWSER__
return ui_mode == UI_BROWSER;
#else
return false;
#endif
}
static int btn_check(void)
{
systime_t ticks;
// Debounce input
while(TRUE){
ticks = chVTGetSystemTimeX();
if(ticks - last_button_down_ticks > BUTTON_DEBOUNCE_TICKS)
break;
chThdSleepMilliseconds(10);
}
int status = 0;
uint16_t cur_button = READ_PORT() & BUTTON_MASK;
// Detect only changed and pressed buttons
uint16_t button_set = (last_button ^ cur_button) & cur_button;
last_button_down_ticks = ticks;
last_button = cur_button;
if (button_set & (1<<BIT_PUSH))
status |= EVT_BUTTON_SINGLE_CLICK;
if (button_set & (1<<BIT_UP1))
status |= EVT_UP;
if (button_set & (1<<BIT_DOWN1))
status |= EVT_DOWN;
return status;
}
static int btn_wait_release(void)
{
while (TRUE) {
systime_t ticks = chVTGetSystemTimeX();
systime_t dt = ticks - last_button_down_ticks;
// Debounce input
// if (dt < BUTTON_DEBOUNCE_TICKS){
// chThdSleepMilliseconds(10);
// continue;
// }
chThdSleepMilliseconds(1);
uint16_t cur_button = READ_PORT() & BUTTON_MASK;
uint16_t changed = last_button ^ cur_button;
if (dt >= BUTTON_DOWN_LONG_TICKS && (cur_button & (1<<BIT_PUSH)))
return EVT_BUTTON_DOWN_LONG;
else if (changed & (1<<BIT_PUSH)) { // release
last_button = cur_button;
last_button_down_ticks = ticks;
return EVT_BUTTON_SINGLE_CLICK;
}
if (changed) {
// finished
last_button = cur_button;
last_button_down_ticks = ticks;
return 0;
}
if (dt > BUTTON_DOWN_LONG_TICKS &&
ticks > last_button_repeat_ticks) {
int status = 0;
if (cur_button & (1<<BIT_DOWN1))
status |= EVT_DOWN | EVT_REPEAT;
if (cur_button & (1<<BIT_UP1))
status |= EVT_UP | EVT_REPEAT;
last_button_repeat_ticks = ticks + BUTTON_REPEAT_TICKS;
return status;
}
}
}
#define SOFTWARE_TOUCH
//*******************************************************************************
// Software Touch module
//*******************************************************************************
#ifdef SOFTWARE_TOUCH
// ADC read count for measure X and Y (2^N count)
#define TOUCH_X_N 3
#define TOUCH_Y_N 3
static int
touch_measure_y(void)
{
// drive low to high on X line (At this state after touch_prepare_sense)
// palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_OUTPUT_PUSHPULL); //
// palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_OUTPUT_PUSHPULL); //
// drive low to high on X line (coordinates from top to bottom)
palClearPad(GPIOB, GPIOB_XN);
// palSetPad(GPIOA, GPIOA_XP);
// open Y line (At this state after touch_prepare_sense)
// palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_INPUT_ANALOG); // <- ADC_TOUCH_Y channel
// chThdSleepMilliseconds(20);
uint32_t v = 0, cnt = 1<<TOUCH_Y_N;
do{v+=adc_single_read(ADC_TOUCH_Y);}while(--cnt);
return v>>TOUCH_Y_N;
}
static int
touch_measure_x(void)
{
// drive high to low on Y line (coordinates from left to right)
palSetPad(GPIOB, GPIOB_YN);
palClearPad(GPIOA, GPIOA_YP);
// Set Y line as output
palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_OUTPUT_PUSHPULL);
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_OUTPUT_PUSHPULL);
// Set X line as input
palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_INPUT_ANALOG); // <- ADC_TOUCH_X channel
uint32_t v = 0, cnt = 1<<TOUCH_X_N;
do{v+=adc_single_read(ADC_TOUCH_X);}while(--cnt);
return v>>TOUCH_X_N;
}
// Manually measure touch event
static inline int
touch_status(void)
{
return adc_single_read(ADC_TOUCH_Y) > TOUCH_THRESHOLD;
}
static void
touch_prepare_sense(void)
{
// Set Y line as input
palSetPadMode(GPIOB, GPIOB_YN, PAL_MODE_INPUT); // Hi-z mode
palSetPadMode(GPIOA, GPIOA_YP, PAL_MODE_INPUT_PULLDOWN); // Use pull
// drive high on X line (for touch sense on Y)
palSetPad(GPIOB, GPIOB_XN);
palSetPad(GPIOA, GPIOA_XP);
// force high X line
palSetPadMode(GPIOB, GPIOB_XN, PAL_MODE_OUTPUT_PUSHPULL);
palSetPadMode(GPIOA, GPIOA_XP, PAL_MODE_OUTPUT_PUSHPULL);
// chThdSleepMilliseconds(10); // Wait 10ms for denounce touch
}
static void
touch_start_watchdog(void)
{
if (touch_status_flag&TOUCH_INTERRUPT_ENABLED) return;
touch_status_flag^=TOUCH_INTERRUPT_ENABLED;
adc_start_analog_watchdog();
#ifdef __REMOTE_DESKTOP__
remote_mouse_down = 0;
#endif
}
static void
touch_stop_watchdog(void)
{
if (!(touch_status_flag&TOUCH_INTERRUPT_ENABLED)) return;
touch_status_flag^=TOUCH_INTERRUPT_ENABLED;
adc_stop_analog_watchdog();
}
// Touch panel timer check (check press frequency 20Hz)
static const GPTConfig gpt3cfg = {
20, // 200Hz timer clock. 200/10 = 20Hz touch check
NULL, // Timer callback.
0x0020, // CR2:MMS=02 to output TRGO
0
};
//
// Touch init function init timer 3 trigger adc for check touch interrupt, and run measure
//
static void touch_init(void){
// Prepare pin for measure touch event
touch_prepare_sense();
// Start touch interrupt, used timer_3 ADC check threshold:
gptStart(&GPTD3, &gpt3cfg); // Init timer 3
gptStartContinuous(&GPTD3, 10); // Start timer 3 vs timer 10 interval
touch_start_watchdog(); // Start ADC watchdog (measure by timer 3 interval and trigger interrupt if touch pressed)
}
// Main software touch function, should:
// set last_touch_x and last_touch_x
// return touch status
static int
touch_check(void)
{
touch_stop_watchdog();
int stat = touch_status();
if (stat) {
int y = touch_measure_y();
int x = touch_measure_x();
touch_prepare_sense();
if (touch_status())
{
last_touch_x = x;
last_touch_y = y;
}
#ifdef __REMOTE_DESKTOP__
remote_mouse_down = 0;
} else {
stat = remote_mouse_down == 1;
#endif
}
if (stat != last_touch_status) {
last_touch_status = stat;
return stat ? EVT_TOUCH_PRESSED : EVT_TOUCH_RELEASED;
}
return stat ? EVT_TOUCH_DOWN : EVT_TOUCH_NONE;
}
//*******************************************************************************
// End Software Touch module
//*******************************************************************************
#endif // end SOFTWARE_TOUCH
void touch_set(int16_t x, int16_t y) {
last_touch_x = x;
last_touch_y = y;
}
void
touch_wait_release(void)
{
while (touch_check() != EVT_TOUCH_NONE)
chThdSleepMilliseconds(20);
}
#if 0
static inline void
touch_wait_pressed(void)
{
while (touch_check() != EVT_TOUCH_PRESSED)
;
}
#endif
static inline void
touch_wait_released(void)
{
while (touch_check() != EVT_TOUCH_RELEASED)
;
}
void
touch_cal_exec(void)
{
int x1, x2, y1, y2;
int old_flip = config.flip;
config.flip = 0;
ili9341_set_foreground(LCD_FG_COLOR);
ili9341_set_background(LCD_BG_COLOR);
ili9341_clear_screen();
ili9341_line(0, 0, 0, 32);
ili9341_line(0, 0, 32, 0);
ili9341_line(0, 0, 32, 32);
ili9341_drawstring("TOUCH UPPER LEFT", 40, 40);
touch_wait_released();
// touch_wait_release();
x1 = last_touch_x;
y1 = last_touch_y;
ili9341_clear_screen();
ili9341_line(LCD_WIDTH-1, LCD_HEIGHT-1, LCD_WIDTH-1, LCD_HEIGHT-32);
ili9341_line(LCD_WIDTH-1, LCD_HEIGHT-1, LCD_WIDTH-32, LCD_HEIGHT-1);
ili9341_line(LCD_WIDTH-1, LCD_HEIGHT-1, LCD_WIDTH-32, LCD_HEIGHT-32);
ili9341_drawstring("TOUCH LOWER RIGHT", LCD_WIDTH-17*(FONT_WIDTH)-30, LCD_HEIGHT-FONT_GET_HEIGHT-35);
touch_wait_released();
// touch_wait_release();
x2 = last_touch_x;
y2 = last_touch_y;
config.touch_cal[0] = x1;
config.touch_cal[1] = y1;
config.touch_cal[2] = (x2 - x1) * 16 / LCD_WIDTH;
config.touch_cal[3] = (y2 - y1) * 16 / LCD_HEIGHT;
config.flip = old_flip;
config_save(); // Auto save touch calibration
//redraw_all();
}
void
touch_draw_test(void)
{
int x0, y0;
int x1, y1;
ili9341_set_foreground(LCD_FG_COLOR);
ili9341_set_background(LCD_BG_COLOR);
ili9341_clear_screen();
ili9341_drawstring("TOUCH TEST: DRAG PANEL, PRESS BUTTON TO FINISH", OFFSETX, LCD_HEIGHT - FONT_GET_HEIGHT);
int old_button_state = 0;
lcd_set_font(FONT_NORMAL);
while (touch_check() != EVT_TOUCH_PRESSED) {
int button_state = READ_PORT() & BUTTON_MASK;
if (button_state != old_button_state) {
lcd_printf(120, 120, "STATE: % 4d ", button_state);
old_button_state = button_state;
}
}
lcd_set_font(FONT_SMALL);
do {
if (touch_check() == EVT_TOUCH_PRESSED){
touch_position(&x0, &y0);
do {
chThdSleepMilliseconds(50);
touch_position(&x1, &y1);
ili9341_line(x0, y0, x1, y1);
x0 = x1;
y0 = y1;
} while (touch_check() != EVT_TOUCH_RELEASED);
}
}while (!(btn_check() & EVT_BUTTON_SINGLE_CLICK));
}
void
touch_position(int *x, int *y)
{
#ifdef __REMOTE_DESKTOP__
if (remote_mouse_down) {
*x = last_touch_x;
*y = last_touch_y;
return;
}
#endif
int tx = (last_touch_x - config.touch_cal[0]) * 16 / config.touch_cal[2];
int ty = (last_touch_y - config.touch_cal[1]) * 16 / config.touch_cal[3];
if (config.flip) {
tx = LCD_WIDTH - 1 - tx;
ty = LCD_HEIGHT - 1 - ty;
}
*x = tx;
*y = ty;
}
#ifdef TINYSA4
extern const char *get_hw_version_text(void);
#endif
void
show_version(void)
{
int x = 5, y = 5, i = 0;
ili9341_set_foreground(LCD_FG_COLOR);
ili9341_set_background(LCD_BG_COLOR);
ili9341_clear_screen();
uint16_t shift = 0b00000100001;
// Version text for tinySA3
#ifdef TINYSA3
ili9341_drawstring_10x14(info_about[i++], x , y);
y+=FONT_GET_HEIGHT*3+3-5;
while (info_about[i]) {
do {shift>>=1; y+=5;} while (shift&1);
ili9341_drawstring(info_about[i++], x, y+=FONT_STR_HEIGHT+3-5);
}
if (has_esd)
ili9341_drawstring("ESD protected", x, y+=FONT_STR_HEIGHT + 2);
y+=FONT_STR_HEIGHT + 1;
#endif
// Version text for tinySA4
#ifdef TINYSA4
ili9341_drawstring_10x14(info_about[i++], x , y);
y+=FONT_GET_HEIGHT*3+2-5;
ili9341_drawstring_7x13(info_about[i++], x , y);
while (info_about[i]) {
do {shift>>=1; y+=5;} while (shift&1);
ili9341_drawstring_7x13(info_about[i++], x, y+=bFONT_STR_HEIGHT+2-5);
}
lcd_set_font(FONT_NORMAL);
lcd_printf(x, y+=bFONT_STR_HEIGHT, "HW Version:%s", get_hw_version_text());
extern const char *states[];
#define ENABLE_THREADS_COMMAND
#ifdef ENABLE_THREADS_COMMAND
y+=FONT_STR_HEIGHT + 1;
thread_t *tp;
tp = chRegFirstThread();
do {
uint32_t max_stack_use = 0U;
#if (CH_DBG_ENABLE_STACK_CHECK == TRUE) || (CH_CFG_USE_DYNAMIC == TRUE)
uint32_t stklimit = (uint32_t)tp->wabase;
#if CH_DBG_FILL_THREADS == TRUE
uint8_t *p = (uint8_t *)tp->wabase; while(p[max_stack_use]==CH_DBG_STACK_FILL_VALUE) max_stack_use++;
#endif
#else
uint32_t stklimit = 0U;
#endif
lcd_printf(x, y+=bFONT_STR_HEIGHT, "%08x|%08x|%08x|%08x|%4u|%4u|%9s|%12s",
stklimit, (uint32_t)tp->ctx.sp, max_stack_use, (uint32_t)tp,
(uint32_t)tp->refs - 1, (uint32_t)tp->prio, states[tp->state],
tp->name == NULL ? "" : tp->name);
tp = chRegNextThread(tp);
} while (tp != NULL);
#endif
y+=bFONT_STR_HEIGHT + 1;
#endif // TINYSA4
uint16_t cnt = 0;
while (true) {
if (touch_check() == EVT_TOUCH_PRESSED)
break;
if (btn_check() & EVT_BUTTON_SINGLE_CLICK)
break;
chThdSleepMilliseconds(40);
if ((cnt++)&0x07) continue; // Not update time so fast
#ifdef TINYSA4
#ifdef __USE_RTC__
uint32_t tr = rtc_get_tr_bin(); // TR read first
uint32_t dr = rtc_get_dr_bin(); // DR read second
lcd_printf(x, y, "Time: 20%02d/%02d/%02d %02d:%02d:%02d" " (LS%c)",
RTC_DR_YEAR(dr),
RTC_DR_MONTH(dr),
RTC_DR_DAY(dr),
RTC_TR_HOUR(dr),
RTC_TR_MIN(dr),
RTC_TR_SEC(dr),
(RCC->BDCR & STM32_RTCSEL_MASK) == STM32_RTCSEL_LSE ? 'E' : 'I');
#endif
#if 0
uint32_t vbat=adc_vbat_read();
lcd_printf(x, y + bFONT_STR_HEIGHT + 1, "Batt: %d.%03dV", vbat/1000, vbat%1000);
#endif
#endif // TINYSA4
}
lcd_set_font(FONT_SMALL);
}
#ifndef TINYSA4
void
enter_dfu(void)
{
int x = 5, y = 5;
ili9341_set_foreground(LCD_FG_COLOR);
ili9341_set_background(LCD_BG_COLOR);
// leave a last message
ili9341_clear_screen();
ili9341_drawstring_7x13("DFU: Device Firmware Update Mode\n"
"To exit DFU mode, please reset device yourself.", x, y);
// see __early_init in ./NANOVNA_STM32_F072/board.c
*((unsigned long *)BOOT_FROM_SYTEM_MEMORY_MAGIC_ADDRESS) = BOOT_FROM_SYTEM_MEMORY_MAGIC;
NVIC_SystemReset();
}
#endif
static void
select_lever_mode(int mode)
{
if (uistat.lever_mode != mode) {
uistat.lever_mode = mode;
redraw_request |= REDRAW_FREQUENCY | REDRAW_MARKER;
}
}
// type of menu item
enum {
MT_NONE, // sentinel menu
// MT_BLANK, // blank menu (nothing draw)
MT_SUBMENU, // enter to submenu
MT_CALLBACK, // call user function
MT_ADV_CALLBACK, // adv call user function
MT_CANCEL, // menu, step back on one level up
MT_TITLE, // Title
MT_KEYPAD,
MT_REPEATS = 0x08,
MT_ICON = 0x10,
MT_HIGH = 0x20, // Only applicable to high mode
MT_LOW = 0x40, // Only applicable to low mode
MT_FORM = 0x80, // Large button menu
};
//#define MT_BACK 0x40
//#define MT_LEAVE 0x20
#define MT_MASK(x) (0x7 & (x))
#define DATA_STARTS_REPEATS(S,R) (((R)<<4)+(S))
#define MT_CUSTOM_LABEL 0
// Call back functions for MT_CALLBACK type
typedef void (*menuaction_cb_t)(int item, uint16_t data);
#define UI_FUNCTION_CALLBACK(ui_function_name) void ui_function_name(int item, uint16_t data)
typedef void (*menuaction_acb_t)(int item, uint16_t data, ui_button_t *b);
#define UI_FUNCTION_ADV_CALLBACK(ui_function_name) void ui_function_name(int item, uint16_t data, ui_button_t *b)
static freq_t
get_marker_frequency(int marker)
{
if (marker < 0 || marker >= MARKERS_MAX)
return 0;
if (!markers[marker].enabled)
return 0;
return getFrequency(markers[marker].index);
}
static UI_FUNCTION_CALLBACK(menu_marker_op_cb)
{
(void)item;
freq_t freq = get_marker_frequency(active_marker);
if (freq == 0)
return; // no active marker
switch (data) {
case 0: /* MARKER->START */
case 1: /* MARKER->STOP */
case 2: /* MARKER->CENTER */
set_sweep_frequency(data, freq);
if (data == 2) {
uistat.lever_mode = LM_SPAN;
uistat.auto_center_marker = true;
}
break;
case 3: /* MARKERS->SPAN */
{
if (previous_marker == MARKER_INVALID || active_marker == previous_marker) {
// if only 1 marker is active, keep center freq and make span the marker comes to the edge
freq_t center = get_sweep_frequency(ST_CENTER);
freq_t span = center > freq ? center - freq : freq - center;
set_sweep_frequency(ST_SPAN, span * 2);
} else {
// if 2 or more marker active, set start and stop freq to each marker
freq_t freq2 = get_marker_frequency(previous_marker);
if (freq2 == 0)
return;
if (freq > freq2) {
freq2 = freq;
freq = get_marker_frequency(previous_marker);
}
set_sweep_frequency(ST_START, freq);
set_sweep_frequency(ST_STOP, freq2);
}
}
break;
case 4: // marker -> ref level
{
float l = actual_t[markers[active_marker].index];
float s_max = value(l)/setting.scale;
user_set_reflevel(setting.scale*(floorf(s_max)+2));
}
break;
#ifdef __VNA__
case 4: /* MARKERS->EDELAY */
{
if (uistat.current_trace == -1)
break;
float (*array)[2] = measured[trace[uistat.current_trace].channel];
float v = groupdelay_from_array(markers[active_marker].index, array);
set_electrical_delay(electrical_delay + (v / 1e-12));
}
break;
#endif
}
menu_move_back(true);
redraw_request |= REDRAW_CAL_STATUS;
//redraw_all();
}
static UI_FUNCTION_CALLBACK(menu_markers_reset_cb)
{
(void)item;
(void)data;
markers_reset();
}
static UI_FUNCTION_CALLBACK(menu_marker_search_cb)
{
(void)item;
int i = -1;
if (active_marker == MARKER_INVALID)
return;
markers[active_marker].mtype &= ~M_TRACKING;
switch (data) {
case 0: /* search Left */
i = marker_search_left_min(active_marker);
break;
case 1: /* search right */
i = marker_search_right_min(active_marker);
break;
case 2: /* search Left */
i = marker_search_left_max(active_marker);
break;
case 3: /* search right */
i = marker_search_right_max(active_marker);
break;
case 4: /* peak search */
i = marker_search_max(active_marker);
break;
}
if (i != -1) {
markers[active_marker].index = i;
if (data > 1) // Maximum related
interpolate_maximum(active_marker);
else
markers[active_marker].frequency = getFrequency(i);
}
redraw_marker(active_marker);
// if (data == 4)
select_lever_mode(LM_MARKER); // Allow any position with level
// else
// select_lever_mode(LM_SEARCH); // Jump from maximum to maximum
}
#if 0
static UI_FUNCTION_ADV_CALLBACK(menu_marker_tracking_acb){
(void)item;
(void)data;
if (active_marker == MARKER_INVALID) return;
if(b){
b->icon = markers[active_marker].mtype & M_TRACKING ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
markers[active_marker].mtype ^= M_TRACKING;
}
#endif
#ifdef __VNA__
static void
menu_marker_smith_cb(int item, uint8_t data)
{
(void)item;
marker_smith_format = data;
redraw_marker(active_marker);
draw_menu();
}
#endif
static void
active_marker_select(int item) // used only to select an active marker from the modify marker selection menu
{
if (item == -1) {
active_marker = previous_marker;
previous_marker = MARKER_INVALID;
if (active_marker == MARKER_INVALID) {
choose_active_marker();
}
} else {
if (previous_marker != active_marker) {
previous_marker = active_marker;
active_marker = item;
} else {
active_marker = item;
}
}
}
//----------------------- iu_sa.c inserted -------------------
#define FORM_ICON_WIDTH 16
#define FORM_ICON_HEIGHT 16
static const uint8_t left_icons [] =
{
#define I_EMPTY (0*16)
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
#define I_HIGH_INPUT (1*16)
// +----------------+
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000001100000), // | ** |
_BMP16(0b0000000000111001), // | *** *|
_BMP16(0b0000111111111111), // | *************|
_BMP16(0b0000000000111001), // | *** *|
_BMP16(0b0000000001100000), // | ** |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
// +----------------+
#define I_LOW_INPUT (2*16)
// +----------------+
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000001), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000001100000), // | ** |
_BMP16(0b0000000000111001), // | **** *|
_BMP16(0b0000111111111111), // | *************|
_BMP16(0b0000000000111001), // | **** *|
_BMP16(0b0000000001100000), // | ** |
_BMP16(0b0000000000000000), // | |
_BMP16(0b0000000000000000), // | |
// +----------------+
#define I_LOW_OUTPUT (3*16)
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000110000000),
_BMP16(0b0000011100000001),
_BMP16(0b0000111111111111),
_BMP16(0b0000011100000001),
_BMP16(0b0000000110000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
#define I_HIGH_OUTPUT (4*16)
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000110000000),
_BMP16(0b0000011100000001),
_BMP16(0b0000111111111111),
_BMP16(0b0000011100000001),
_BMP16(0b0000000110000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000001),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
#define I_CONNECT (5*16)
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000110000),
_BMP16(0b0000000000111101),
_BMP16(0b0000001111111111),
_BMP16(0b0000010000111101),
_BMP16(0b0000100000110000),
_BMP16(0b0001000000000000),
_BMP16(0b0001000000000000),
_BMP16(0b0000100000110000),
_BMP16(0b0000010000111101),
_BMP16(0b0000001111111111),
_BMP16(0b0000000000111101),
_BMP16(0b0000000000110000),
_BMP16(0b0000000000000000),
_BMP16(0b0000000000000000),
};
const uint8_t right_icons [] =
{
#define I_SA 0
// +----------------+
_BMP16(0b0000000000000000), // | |
_BMP16(0b0111111111111111), // | ***************|
_BMP16(0b0100000000000001), // | * *|
_BMP16(0b1100000000000001), // |** *|
_BMP16(0b1100000000000001), // |** * *|
_BMP16(0b1100000000000001), // |** * *|
_BMP16(0b0100100000000001), // | * * * *|
_BMP16(0b0100100000000001), // | * * * *|
_BMP16(0b0100101010001001), // | * * * * *|
_BMP16(0b0100101010101001), // | * * * * * *|
_BMP16(0b1100101010101001), // |** * * * * * *|
_BMP16(0b1101111111111101), // |** * * * * * *|
_BMP16(0b1100000000000001), // |** *********** *|
_BMP16(0b0100000000000001), // | * *|
_BMP16(0b0111111111111111), // | ***************|
_BMP16(0b0000000000000000), // | |
// +----------------+
#define I_GEN 1
// +----------------+
_BMP16(0b0000000000000000), // | |
_BMP16(0b0111111111111111), // | ***************|
_BMP16(0b0100000000000001), // | * *|
_BMP16(0b1100000000000001), // |** *|
_BMP16(0b1100111110001101), // |** ***** ** *|
_BMP16(0b1100100010001001), // |** * * * *|
_BMP16(0b0100100010001001), // | * * * * *|
_BMP16(0b0100100010001001), // | * * * * *|
_BMP16(0b0100100010001001), // | * * * * *|
_BMP16(0b0100100010001001), // | * * * * *|
_BMP16(0b1100100010001001), // |** * * * *|
_BMP16(0b1101100011111001), // |** ** ***** *|
_BMP16(0b1100000000000001), // |** *|
_BMP16(0b0100000000000001), // | * *|
_BMP16(0b0111111111111111), // | ***************|
_BMP16(0b0000000000000000), // | |
// +----------------+
#define I_CONFIG 2
_BMP16(0b0000000000000000),
_BMP16(0b0111111111111111),
_BMP16(0b0100000000000001),
_BMP16(0b1100000010000001),
_BMP16(0b1100001111000001),
_BMP16(0b1100011110001001),
_BMP16(0b0100011100011101),
_BMP16(0b0100011110111001),
_BMP16(0b0100001111111001),
_BMP16(0b0100011111110001),
_BMP16(0b1100111110000001),
_BMP16(0b1101111100000001),
_BMP16(0b1100111000000001),
_BMP16(0b0100000000000001),
_BMP16(0b0111111111111111),
_BMP16(0b0000000000000000),
#define I_SINUS 3
_BMP16(0b0000000000000000),
_BMP16(0b0111111111111111), // 1
_BMP16(0b0100000000000001), // 2
_BMP16(0b1100000000000001), // 3
_BMP16(0b1100000000110001), // 4
_BMP16(0b1100000001001001), // 5
_BMP16(0b0100000010000101), // 6
_BMP16(0b0101000010000101), // 7
_BMP16(0b0101000010000101), // 8
_BMP16(0b0101000010000001), // 9
_BMP16(0b1100100100000001), //10
_BMP16(0b1100011000000001), //11
_BMP16(0b1100000000000001), //12
_BMP16(0b0100000000000001), //13
_BMP16(0b0111111111111111), //14
_BMP16(0b0000000000000000),
};
#define KP_X(x) (48*(x) + 2 + (LCD_WIDTH-BUTTON_WIDTH-192))
#define KP_Y(y) (48*(y) + 2)
#define KP_PERIOD 10
#define KP_MINUS 11
#define KP_X1 12
#define KP_K 13
#define KP_M 14
#define KP_G 15
#define KP_BS 16
#define KP_INF 17
#define KP_DB 18
#define KP_PLUSMINUS 19
#define KP_KEYPAD 20
#define KP_m 21
#define KP_u 22
#define KP_n 23
#define KP_p 24
#define KP_ENTER 25
#define KP_0 31
#define KP_1 32
#define KP_2 33
#define KP_5 34
#define KP_10 35
#define KP_20 36
#define KP_50 37
#define KP_100 38
#define KP_200 39
#define KP_500 40
enum {NUM_KEYBOARD, TXT_KEYBOARD};
typedef struct {
uint16_t x_offs;
uint16_t y_offs;
uint16_t width;
uint16_t height;
} keypad_pos_t;
// Keyboard size and position data
static const keypad_pos_t key_pos[] = {
[NUM_KEYBOARD] = {KP_X_OFFSET, KP_Y_OFFSET, KP_WIDTH, KP_HEIGHT},
[TXT_KEYBOARD] = {KPF_X_OFFSET, KPF_Y_OFFSET, KPF_WIDTH, KPF_HEIGHT}
};
typedef struct {
uint8_t pos;
int8_t c;
} keypads_t;
static const keypads_t *keypads;
// 7 8 9 G
// 4 5 6 M
// 1 2 3 k
// 0 . < x
static const keypads_t keypads_freq[] = {
{ 16 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 3 },
{ 0x01, 4 },
{ 0x11, 5 },
{ 0x21, 6 },
{ 0x00, 7 },
{ 0x10, 8 },
{ 0x20, 9 },
{ 0x30, KP_G },
{ 0x31, KP_M },
{ 0x32, KP_K },
{ 0x33, KP_X1 },
{ 0x23, KP_BS }
};
// 7 8 9
// 4 5 6
// 1 2 3
// 0 . < x
static const keypads_t keypads_positive[] = {
{ 13 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 3 },
{ 0x01, 4 },
{ 0x11, 5 },
{ 0x21, 6 },
{ 0x00, 7 },
{ 0x10, 8 },
{ 0x20, 9 },
{ 0x33, KP_ENTER },
{ 0x23, KP_BS }
};
// 100 200 500 n
// 10 20 50 u
// 1 2 5 m
// 0 . < x
static const keypads_t keypads_pos_unit[] = {
{ 16 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 5 },
{ 0x01, KP_10 },
{ 0x11, KP_20 },
{ 0x21, KP_50 },
{ 0x00, KP_100 },
{ 0x10, KP_200 },
{ 0x20, KP_500 },
{ 0x30, KP_n },
{ 0x31, KP_u },
{ 0x32, KP_m },
{ 0x33, KP_X1 },
{ 0x23, KP_BS },
};
// 7 8 9 m
// 4 5 6 u
// 1 2 3 -
// 0 . < x
static const keypads_t keypads_plusmin_unit[] = {
{ 16 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 3 },
{ 0x01, 4 },
{ 0x11, 5 },
{ 0x21, 6 },
{ 0x00, 7 },
{ 0x10, 8 },
{ 0x20, 9 },
{ 0x30, KP_u},
{ 0x31, KP_m},
{ 0x32, KP_MINUS },
{ 0x33, KP_X1 },
{ 0x23, KP_BS }
};
// 7 8 9
// 4 5 6
// 1 2 3 -
// 0 . < x
static const keypads_t keypads_plusmin[] = {
{ 14 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 3 },
{ 0x01, 4 },
{ 0x11, 5 },
{ 0x21, 6 },
{ 0x00, 7 },
{ 0x10, 8 },
{ 0x20, 9 },
{ 0x30, KP_u},
{ 0x31, KP_m},
{ 0x32, KP_MINUS },
{ 0x33, KP_X1 },
{ 0x23, KP_BS }
};
// 7 8 9
// 4 5 6
// 1 2 3 m
// 0 . < x
static const keypads_t keypads_time[] = {
{ 14 , NUM_KEYBOARD }, // size and position
{ 0x13, KP_PERIOD },
{ 0x03, 0 },
{ 0x02, 1 },
{ 0x12, 2 },
{ 0x22, 3 },
{ 0x01, 4 },
{ 0x11, 5 },
{ 0x21, 6 },
{ 0x00, 7 },
{ 0x10, 8 },
{ 0x20, 9 },
// { 0x30, KP_n},
// { 0x31, KP_u},
{ 0x32, KP_m },
{ 0x33, KP_X1 },
{ 0x23, KP_BS }
};
#ifdef __USE_SD_CARD__
static const keypads_t keypads_text[] = {
{40, TXT_KEYBOARD }, // size and position
{0x00, '1'}, {0x10, '2'}, {0x20, '3'}, {0x30, '4'}, {0x40, '5'}, {0x50, '6'}, {0x60, '7'}, {0x70, '8'}, {0x80, '9'}, {0x90, '0'},
{0x01, 'Q'}, {0x11, 'W'}, {0x21, 'E'}, {0x31, 'R'}, {0x41, 'T'}, {0x51, 'Y'}, {0x61, 'U'}, {0x71, 'I'}, {0x81, 'O'}, {0x91, 'P'},
{0x02, 'A'}, {0x12, 'S'}, {0x22, 'D'}, {0x32, 'F'}, {0x42, 'G'}, {0x52, 'H'}, {0x62, 'J'}, {0x72, 'K'}, {0x82, 'L'}, {0x92, '_'},
{0x03, '-'}, {0x13, 'Z'}, {0x23, 'X'}, {0x33, 'C'}, {0x43, 'V'}, {0x53, 'B'}, {0x63, 'N'}, {0x73, 'M'}, {0x83, C_LARROW}, {0x93, C_ENTER},
};
#endif
enum {
KM_START, KM_STOP, KM_CENTER, KM_SPAN, KM_CW, // These must be first to share common help text
//#5
KM_REFLEVEL, KM_SCALE, KM_ATTENUATION, KM_ACTUALPOWER, KM_IF,
// #10
KM_SAMPLETIME, KM_LOWOUTLEVEL, KM_DECAY, KM_NOISE,
#ifdef TINYSA4
KM_FREQ_CORR,
#else
KM_10MHZ,
#endif
// #15
KM_REPEAT, KM_EXT_GAIN, KM_TRIGGER, KM_LEVELSWEEP, KM_SWEEP_TIME,
// #20
KM_OFFSET_DELAY, KM_FAST_SPEEDUP, KM_GRIDLINES, KM_MARKER, KM_MODULATION,
// #25
KM_HIGHOUTLEVEL,
#ifdef TINYSA4
KM_COR_AM, KM_COR_WFM, KM_COR_NFM,
KM_DEVIATION, KM_DEPTH,
KM_IF2,
// #30
KM_R,KM_MOD,KM_CP,
#endif
KM_ATTACK,
#ifdef __ULTRA__
KM_ULTRA_START,
#endif
#ifdef TINYSA4
KM_EXP_AVER,
#endif
KM_LEVEL,
#ifdef __LIMITS__
KM_LIMIT_FREQ, KM_LIMIT_LEVEL,
#endif
KM_MARKER_TIME,
// #35
KM_VAR,
#ifdef __NOISE_FIGURE__
KM_NF,
#endif
KM_LINEAR_SCALE,
#ifdef TINYSA4
KM_DIRECT_START,
KM_DIRECT_STOP,
#ifdef __USE_RTC__
KM_RTC_DATE,
KM_RTC_TIME,
#endif
#endif
KM_CODE,
#ifdef __USE_SD_CARD__
KM_FILENAME,
#endif
KM_NONE // always at enum end
};
static const struct {
const keypads_t *keypad_type;
char * name;
} keypads_mode_tbl[KM_NONE] = {
[KM_START] = {keypads_freq , "START"}, // start
[KM_STOP] = {keypads_freq , "STOP"}, // stop
[KM_CENTER] = {keypads_freq , "CENTER"}, // center
[KM_SPAN] = {keypads_freq , "SPAN"}, // span
[KM_CW] = {keypads_freq , "FREQ"}, // cw freq
[KM_REFLEVEL] = {keypads_plusmin_unit, "REF\nLEVEL"}, // reflevel #5
[KM_SCALE] = {keypads_pos_unit , "SCALE"}, // scale
[KM_ATTENUATION] = {keypads_positive , "ATTENUATE"}, // attenuation
[KM_ACTUALPOWER] = {keypads_plusmin_unit, "ACTUAL\nPOWER"}, // actual power
[KM_IF] = {keypads_freq , "IF"}, // IF
[KM_SAMPLETIME] = {keypads_positive , "SAMPLE\nDELAY"}, // sample delay #10
[KM_LOWOUTLEVEL] = {keypads_plusmin , "OUTPUT\nLEVEL"}, // KM_LOWOUTLEVEL
[KM_DECAY] = {keypads_positive , "DECAY"}, // KM_DECAY
[KM_NOISE] = {keypads_positive , "NOISE\nLEVEL"}, // KM_NOISE
#ifdef TINYSA4
[KM_FREQ_CORR] = {keypads_plusmin , "PPB"}, // KM_FREQ_CORR
#else
[KM_10MHZ] = {keypads_freq , "FREQ"}, // KM_10MHz
#endif
[KM_REPEAT] = {keypads_positive , "SAMPLE\nREPEAT"}, // KM_REPEA #15
[KM_EXT_GAIN] = {keypads_plusmin , "EXT\nGAIN"}, // KM_EXT_GAIN
[KM_TRIGGER] = {keypads_plusmin_unit, "LEVEL"}, // KM_TRIGGER
[KM_LEVELSWEEP] = {keypads_plusmin , "LEVEL\nSWEEP"}, // KM_LEVELSWEEP
[KM_SWEEP_TIME] = {keypads_time , "SWEEP\nSECONDS"}, // KM_SWEEP_TIME
[KM_OFFSET_DELAY] = {keypads_positive , "OFFSET\nDELAY"}, // KM_OFFSET_DELAY #20
[KM_FAST_SPEEDUP] = {keypads_positive , "FAST\nSPEEDUP"}, // KM_FAST_SPEEDUP
[KM_GRIDLINES] = {keypads_positive , "MINIMUM\nGRIDLINES"}, // KM_GRIDLINES
[KM_MARKER] = {keypads_freq , "MARKER\nFREQ"}, // KM_MARKER
[KM_MODULATION] = {keypads_freq , "MODULATION\nFREQ"}, // KM_MODULATION
[KM_HIGHOUTLEVEL] = {keypads_plusmin , "OUTPUT\nLEVEL"}, // KM_HIGHOUTLEVEL #25
#ifdef TINYSA4
[KM_COR_AM] = {keypads_plusmin , "COR\nAM"}, // KM_COR_AM
[KM_COR_WFM] = {keypads_plusmin , "COR\nWFM"}, // KM_COR_WFM
[KM_COR_NFM] = {keypads_plusmin , "COR\nNFM"}, // KM_COR_NFM
[KM_DEVIATION] = {keypads_freq , "DEVIATION"}, // KM_DEVIATION
[KM_DEPTH] = {keypads_positive , "DEPTH%"}, // KM_DEPTH
[KM_IF2] = {keypads_freq , "IF2"}, // KM_IF2
[KM_R] = {keypads_plusmin , "R"}, // KM_R #30
[KM_MOD] = {keypads_positive , "MODULO"}, // KM_MOD
[KM_CP] = {keypads_positive , "CP"}, // KM_CP
#endif
[KM_ATTACK] = {keypads_positive , "ATTACK"}, // KM_ATTACK
#ifdef __ULTRA__
[KM_ULTRA_START] = {keypads_freq , "ULTRA\nSTART"}, // KM_ULTRA_START
#endif
#ifdef TINYSA4
[KM_EXP_AVER] = {keypads_positive , "EXPONENTIAL\nAVERAGING"}, //KM_EXP_AVER
#endif
[KM_LEVEL] = {keypads_plusmin , "LEVEL"}, // KM_LEVEL
#ifdef __LIMITS__
[KM_LIMIT_FREQ] = {keypads_freq , "FREQ"}, // KM_LIMIT_FREQ
[KM_LIMIT_LEVEL] = {keypads_plusmin_unit , "LEVEL"}, // KM_LIMIT_LEVEL
#endif
[KM_MARKER_TIME] = {keypads_time , "MARKER\nTIME"}, // KM_MARKER_TIME
[KM_VAR] = {keypads_freq , "JOG\nSTEP"}, // jog step
#ifdef __NOISE_FIGURE__
[KM_NF] = {keypads_plusmin , "NOISE\nFIGURE"}, // noise figure of tinySA
#endif
[KM_LINEAR_SCALE] = {keypads_plusmin , "SCALE"}, // scale for linear units
#ifdef TINYSA4
[KM_DIRECT_START] = {keypads_freq , "DIRECT\nSTART"}, // KM_DIRECT_START
[KM_DIRECT_STOP] = {keypads_freq , "DIRECT\nSTOP"}, // KM_DIRECT_STOP
#ifdef __USE_RTC__
[KM_RTC_DATE] = {keypads_positive , "SET DATE\n YYMMDD"}, // Date
[KM_RTC_TIME] = {keypads_positive , "SET TIME\n HHMMSS"}, // Time
#endif
#endif
[KM_CODE] = {keypads_positive , "CODE"}, // KM_CODE
#ifdef __USE_SD_CARD__
[KM_FILENAME] = {keypads_text , "NAME"}, // filename
#endif
};
#if 0 // Not used
enum { SL_GENLOW_FREQ, SL_GENHIGH_FREQ, SL_GENLOW_LEVEL, SL_GENHIGH_LEVEL };
ui_slider_t ui_sliders [] =
{
{ KM_CENTER, true, 0, 1000000, 0, 350000000, M_GENLOW},
{ KM_CENTER, true, 0, 1000000, 240000000, 960000000, M_GENHIGH},
{ KM_LOWOUTLEVEL, false,0, 1, -76, -6, M_GENLOW},
{ KM_HIGHOUTLEVEL, false,0, 1, -38, +6, M_GENHIGH},
};
#endif
// ===[MENU CALLBACKS]=========================================================
const menuitem_t menu_lowoutputmode[];
const menuitem_t menu_highoutputmode[];
const menuitem_t menu_mode[];
static const menuitem_t menu_modulation[];
static const menuitem_t menu_top[];
static const menuitem_t menu_trace[];
static const menuitem_t menu_marker_trace[];
static const menuitem_t menu_subtract_trace[];
#ifdef __LIMITS__
static const menuitem_t menu_limit_modify[];
static const menuitem_t menu_limit_select[];
#endif
static const menuitem_t menu_average[];
static const menuitem_t menu_reffer[];
static const menuitem_t menu_sweep_points[];
static const menuitem_t menu_sweep_points_form[];
static const menuitem_t menu_modulation[];
static const menuitem_t menu_marker_ref_select[];
#ifdef __USE_SERIAL_CONSOLE__
static const menuitem_t menu_connection[];
#endif
//static const menuitem_t menu_drive_wide[];
static const menuitem_t menu_config[];
#ifdef TINYSA4
static const menuitem_t menu_settings3[];
static const menuitem_t menu_curve[];
static const menuitem_t menu_curve_confirm[];
static const menuitem_t menu_measure_noise_figure[];
static const menuitem_t menu_calibrate_harmonic[];
#endif
static const menuitem_t menu_sweep[];
static const menuitem_t menu_settings[];
static const menuitem_t menu_settings2[];
static const menuitem_t menu_lowoutput_settings[];
extern bool dirty;
char range_text[20];
#ifdef TINYSA4
int input_is_calibrated(void)
{
if (config.input_is_calibrated)
return true;
drawMessageBox("Error", "First calibrate 100kHz to 5.34GHz input", 2000);
redraw_request|= REDRAW_AREA;
return false;
}
int output_is_calibrated(void)
{
if (config.output_is_calibrated)
return true;
drawMessageBox("Error", "First calibrate 30MHz output", 2000);
redraw_request|= REDRAW_AREA;
return false;
}
static int unlock_internals = 0;
static UI_FUNCTION_ADV_CALLBACK(menu_internals_acb)
{
(void)data;
(void)item;
if (b){
return;
}
if (unlock_internals != 5432) {
kp_help_text = "Internals access code";
ui_mode_keypad(KM_CODE);
if (uistat.value != 5432) {
return;
}
unlock_internals = 5432;
}
menu_push_submenu(menu_settings2);
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_sweep_acb)
{
(void)data;
(void)item;
if (b){
if (setting.level_sweep != 0 || get_sweep_frequency(ST_SPAN) != 0) {
plot_printf(b->text, sizeof b->text, "SW:%3.2fMHz %+ddB %.3Fs",
get_sweep_frequency(ST_SPAN) / 1000000.0,
(int)setting.level_sweep,
setting.sweep_time_us/(float)ONE_SECOND_TIME);
}
else
plot_printf(b->text, sizeof b->text, "SWEEP: OFF");
return;
}
menu_push_submenu(menu_sweep);
}
#ifdef __SWEEP_RESTART__
static UI_FUNCTION_ADV_CALLBACK(menu_restart_acb){
(void)item;
(void)data;
if(b){
if (setting.sweep) {
if (current_index >= 0) {
float current_level = setting.level + ((float)current_index)* setting.level_sweep / (float)sweep_points;
plot_printf(b->text, sizeof b->text, "STOP %5.3QHz %+.1fdBm", getFrequency(current_index), current_level);
} else
plot_printf(b->text, sizeof b->text, "STOP SWEEP");
}
else
plot_printf(b->text, sizeof b->text, "START SWEEP");
return;
}
setting.sweep = !setting.sweep;
dirty = true;
}
#endif
#ifdef TINYSA4
float local_actual_level;
int current_curve;
int current_curve_index;
static UI_FUNCTION_ADV_CALLBACK(menu_curve_acb)
{
(void)item;
int old_m;
if (b){
plot_printf(b->text, sizeof b->text, "%8.3QHz %+4.1fdB",
config.correction_frequency[current_curve][data],
config.correction_value[current_curve][data]);
return;
}
switch(current_curve) {
case CORRECTION_LOW_OUT:
old_m = setting.mode;
reset_settings(M_GENLOW);
set_level(-35);
set_sweep_frequency(ST_CW, config.correction_frequency[current_curve][data]);
setting.mute = false;
perform(false, 0, config.correction_frequency[current_curve][data], false);
perform(false, 1, config.correction_frequency[current_curve][data], false);
plot_printf(uistat.text, sizeof uistat.text, "Level of %.3QHz output",
config.correction_frequency[current_curve][data]);
kp_help_text = uistat.text;
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
float new_offset = (-35.0) - uistat.value + config.correction_value[current_curve][data]; // calculate offset based on difference between measured peak level and known peak level
if (new_offset > -25 && new_offset < 25) {
config.correction_value[current_curve][data] = new_offset;
config_save();
}
}
reset_settings(old_m);
break;
case CORRECTION_LNA:
reset_settings(M_LOW);
setting.extra_lna = true;
goto common;
case CORRECTION_LOW:
reset_settings(M_LOW);
common:
set_sweep_frequency(ST_SPAN, 1000000);
set_sweep_frequency(ST_CENTER, config.correction_frequency[current_curve][data]);
setting.step_delay_mode = SD_PRECISE;
current_curve_index = data;
menu_push_submenu(menu_curve_confirm);
break;
}
}
extern float peakLevel;
UI_FUNCTION_CALLBACK(menu_curve_confirm_cb)
{
(void)item;
if (data) {
float new_offset = local_actual_level - peakLevel + config.correction_value[current_curve][current_curve_index]; // calculate offset based on difference between measured peak level and known peak level
if (new_offset > -30 && new_offset < 30) {
config.correction_value[current_curve][current_curve_index] = new_offset;
config_save();
}
}
menu_move_back(false);
}
float measured_noise_figure;
#if 0
UI_FUNCTION_CALLBACK(menu_noise_figure_confirm_cb)
{
(void)item;
if (data) {
if (measured_noise_figure > 3 && measured_noise_figure < 15) {
config.noise_figure = measured_noise_figure;
config_save();
nf_gain = 0.00001; // almost zero
set_measurement(M_NF_VALIDATE); // Continue to validate
return;
}
}
menu_move_back(false);
}
#endif
static UI_FUNCTION_CALLBACK(menu_input_curve_prepare_cb)
{
(void)item;
(void)data;
if (!input_is_calibrated())
return;
kp_help_text = "Enter actual input level";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
local_actual_level = uistat.value;
current_curve = CORRECTION_LOW;
menu_push_submenu(menu_curve);
}
}
static UI_FUNCTION_CALLBACK(menu_lna_curve_prepare_cb)
{
(void)item;
(void)data;
if (!input_is_calibrated())
return;
kp_help_text = "Enter actual input level";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
local_actual_level = uistat.value;
current_curve = CORRECTION_LNA;
menu_push_submenu(menu_curve);
}
}
static UI_FUNCTION_CALLBACK(menu_lna_u_curve_prepare_cb)
{
(void)item;
(void)data;
if (!input_is_calibrated())
return;
kp_help_text = "Enter actual input level";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
local_actual_level = uistat.value;
current_curve = CORRECTION_LNA_ULTRA;
menu_push_submenu(menu_curve);
}
}
static UI_FUNCTION_CALLBACK(menu_ultra_curve_prepare_cb)
{
(void)item;
(void)data;
if (!input_is_calibrated())
return;
kp_help_text = "Enter actual input level";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
local_actual_level = uistat.value;
current_curve = CORRECTION_LOW_ULTRA;
menu_push_submenu(menu_curve);
}
}
static UI_FUNCTION_CALLBACK(menu_output_curve_prepare_cb)
{
(void)item;
(void)data;
if (!output_is_calibrated())
return;
current_curve = CORRECTION_LOW_OUT;
menu_push_submenu(menu_curve);
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_output_level_acb)
{
(void)item;
(void)data;
if (b){
return;
}
int old_m = setting.mode;
reset_settings(M_GENLOW);
#ifdef TINYSA4
#define TEST_LEVEL -30
#else
#define TEST_LEVEL -25
#endif
set_level(TEST_LEVEL);
set_sweep_frequency(ST_CW, 30000000);
setting.mute = false;
perform(false, 0, 30000000, false);
perform(false, 1, 30000000, false);
kp_help_text = "Enter actual level of 30MHz output";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
float old_offset = config.low_level_output_offset;
if (!config.input_is_calibrated) old_offset = 0;
float new_offset = uistat.value - (TEST_LEVEL) + old_offset; // calculate offset based on difference between measured peak level and known peak level
if (uistat.value == 100) { new_offset = 0; config.input_is_calibrated = false; }
if (new_offset > -15 && new_offset < 15) {
config.output_is_calibrated = true;
config.low_level_output_offset = new_offset;
config_save();
}
}
reset_settings(old_m);
}
#ifdef TINYSA4
static UI_FUNCTION_ADV_CALLBACK(menu_output_level2_acb)
{
(void)item;
(void)data;
if (b){
return;
}
if (!output_is_calibrated())
return;
int old_m = setting.mode;
reset_settings(M_GENLOW);
set_level(-30);
set_sweep_frequency(ST_CW, 1000000000);
setting.mute = false;
perform(false, 0, 1000000000, false);
perform(false, 1, 1000000000, false);
kp_help_text = "Enter actual level of 1GHz output";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
float old_offset = config.direct_level_output_offset;
float new_offset = (-30.0) - uistat.value + old_offset; // calculate offset based on difference between measured peak level and known peak level
if (new_offset > -10 && new_offset < 10) {
config.direct_level_output_offset = new_offset;
config_save();
}
}
reset_settings(old_m);
}
static UI_FUNCTION_ADV_CALLBACK(menu_output_level3_acb)
{
(void)item;
(void)data;
if (b){
return;
}
if (!output_is_calibrated())
return;
int old_m = setting.mode;
reset_settings(M_GENLOW);
force_signal_path = true;
test_path = PATH_LEAKAGE;
test_output_drive = -1;
set_level(-30);
set_sweep_frequency(ST_CW, 1200000000);
setting.mute = false;
perform(false, 0, 1200000000, false);
perform(false, 1, 1200000000, false);
kp_help_text = "Enter actual level of 1.2GHz output";
kp_buf[0]=0;
ui_mode_keypad(KM_LEVEL);
if (kp_buf[0] != 0) {
float old_offset = config.adf_level_offset;
float new_offset = (-30.0) - uistat.value + old_offset; // calculate offset based on difference between measured peak level and known peak level
if (new_offset > -10 && new_offset < 10) {
config.adf_level_offset = new_offset;
config_save();
}
}
force_signal_path = false;
reset_settings(old_m);
}
#endif
#ifdef TINYSA4
static const int item_to_mode[2] = { 0,2 };
#else
static const int item_to_mode[4] = { 0,1,2,3 };
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_mode_acb)
{
(void)data;
item = item_to_mode[item];
if (b){
if (item == setting.mode) {
b->param_1.text = "Return";
b->bg = LCD_MENU_ACTIVE_COLOR;
b->border = BUTTON_BORDER_FALLING | MENU_BUTTON_BORDER;
}
else
b->param_1.text = "Switch";
return;
}
set_mode(item);
// draw_cal_status();
switch (item) {
case 0:
// if (setting.mode != M_LOW)
// set_mode(M_LOW);
menu_move_back(true);
break;
case 1:
// if (setting.mode != M_HIGH)
// set_mode(M_HIGH);
menu_move_back(true);
break;
case 2:
menu_push_submenu(menu_lowoutputmode);
break;
case 3:
menu_push_submenu(menu_highoutputmode);
break;
}
redraw_request |= REDRAW_CAL_STATUS;
}
static UI_FUNCTION_ADV_CALLBACK(menu_load_preset_acb)
{
(void)item;
if(b){
setting_t *p = caldata_pointer(data);
if (p)
plot_printf(b->text, sizeof(b->text), "%.6FHz\n%.6FHz", (float)p->frequency0, (float)p->frequency1);
else
plot_printf(b->text, sizeof(b->text), "EMPTY %d", (int)data);
return;
}
if (caldata_recall(data) == -1) {
if (data == 0)
reset_settings(setting.mode); // Restore factory defaults
}
menu_move_back(true);
}
static UI_FUNCTION_ADV_CALLBACK(menu_store_preset_acb)
{
(void)item;
if(b){
b->param_1.u = data;
return;
}
if (data == 100) {
reset_settings(M_LOW); // Restore all defaults in Low mode
set_refer_output(-1);
// setting.mode = -1;
data = 0;
}
caldata_save(data);
menu_move_back(true);
}
#ifdef __SD_CARD_LOAD__
UI_FUNCTION_CALLBACK(menu_load_config_cb)
{
(void)item;
(void)data;
sd_card_load_config("config.ini");
ui_mode_normal();
}
#endif
UI_FUNCTION_CALLBACK(menu_autosettings_cb)
{
(void)item;
(void)data;
reset_settings(setting.mode);
markers_reset();
// set_refer_output(1);
// SetPowerLevel(100); // Reset
// set_clear_storage();
dirty = true;
// menu_move_back(true); // stay in input menu
ui_mode_normal();
// draw_cal_status();
}
static UI_FUNCTION_CALLBACK(menu_scale_cb)
{
(void)item;
(void)data;
kp_help_text = "Enter scale";
kp_buf[0]=0;
if (UNIT_IS_LINEAR(setting.unit))
ui_mode_keypad(KM_LINEAR_SCALE);
else
ui_mode_keypad(KM_SCALE);
ui_mode_normal();
}
#ifdef __CALIBRATE__
static UI_FUNCTION_CALLBACK(menu_calibrate_cb)
{
(void)data;
(void)item;
switch (data) {
case 1:
sweep_mode = SWEEP_CALIBRATE;
#ifdef TINYSA4
menu_move_back(false);
#endif
menu_move_back(true);
break;
case 2:
reset_calibration();
break;
#ifdef TINYSA4
case 3:
if (!input_is_calibrated())
return;
sweep_mode = SWEEP_CALIBRATE_HARMONIC;
menu_move_back(false);
menu_move_back(true);
break;
#endif
}
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_scanning_speed_acb)
{
(void)item;
if(b){
b->icon = data == setting.step_delay_mode ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_step_delay(data);
// menu_move_back(false);
ui_mode_normal();
}
#define CONFIG_MENUITEM_TOUCH_CAL 0
#define CONFIG_MENUITEM_TOUCH_TEST 1
#define CONFIG_MENUITEM_SELFTEST 2
#define CONFIG_MENUITEM_VERSION 3
static UI_FUNCTION_CALLBACK(menu_config_cb)
{
(void)item;
switch (data) {
case CONFIG_MENUITEM_TOUCH_CAL:
touch_cal_exec();
break;
case CONFIG_MENUITEM_TOUCH_TEST:
touch_draw_test();
break;
case CONFIG_MENUITEM_SELFTEST:
sweep_mode = 0; // Suspend sweep to save time
menu_move_back(true);
setting.test = 0;
setting.test_argument = 0;
sweep_mode = SWEEP_SELFTEST;
return;
case CONFIG_MENUITEM_VERSION:
show_version();
break;
}
ui_mode_normal();
redraw_frame();
request_to_redraw_grid();
}
#ifndef TINYSA4
static UI_FUNCTION_CALLBACK(menu_dfu_cb)
{
(void)data;
(void)item;
enter_dfu();
}
#endif
#ifdef __LISTEN__
static UI_FUNCTION_ADV_CALLBACK(menu_listen_acb)
{
(void)data;
(void)item;
if (b){
b->icon = (sweep_mode & SWEEP_LISTEN) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
if (sweep_mode & SWEEP_LISTEN) {
sweep_mode = SWEEP_ENABLE;
} else {
sweep_mode = SWEEP_LISTEN;
}
ui_mode_normal();
redraw_frame();
request_to_redraw_grid();
#if 0
if (markers[active_marker].enabled == M_ENABLED) {
do {
perform(false,0,frequencies[markers[active_marker].index], false);
SI4432_Listen(MODE_SELECT(setting.mode));
} while (ui_process_listen_lever());
}
#endif
}
#endif
#ifdef TINYSA4
static UI_FUNCTION_ADV_CALLBACK(menu_lowoutput_settings_acb)
{
static char mode_string[26];
(void)item;
if (b){
if (data == 255) {
plot_printf(mode_string, sizeof mode_string, "%s %s %s %s",
(!force_signal_path ? "" : path_text[test_path]),
(get_sweep_frequency(ST_START) < MINIMUM_DIRECT_FREQ ? "SINUS" : "" ),
(get_sweep_frequency(ST_STOP) >= MINIMUM_DIRECT_FREQ ? "SQUARE WAVE" : ""),
(get_sweep_frequency(ST_STOP) > MAX_LOW_OUTPUT_FREQ && setting.mixer_output ? "MIXER" : ""));
b->param_1.text = mode_string;
return; }
b->icon = data == setting.mixer_output ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
switch(data) {
case 255:
menu_push_submenu(menu_lowoutput_settings);
return;
case 0:
setting.mixer_output = false;
dirty = true;
break;
case 1:
setting.mixer_output = true;
dirty = true;
break;
}
menu_move_back(false);
}
#endif
// const int menu_modulation_value[]={MO_NONE,MO_AM, MO_NFM, MO_WFM, MO_EXTERNAL};
const char *menu_modulation_text[MO_MAX]=
{ "None", "AM 30%",
#ifdef TINYSA4
"FM 2.5kHz",
"FM 3kHz",
"FM 5kHz",
#else
"FM 4kHz",
#endif
"FM 75kHz", "External"};
static UI_FUNCTION_ADV_CALLBACK(menu_modulation_acb)
{
(void)item;
if (b){
plot_printf(b->text, sizeof b->text, "%s", menu_modulation_text[data]);
b->icon = data == setting.modulation ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
//Serial.println(item);
if (data) {
set_sweep_frequency(ST_SPAN, 0); // No other scanning allowed when modulation is on!!!!!
set_level_sweep(0);
}
set_modulation(data);
// menu_move_back(false); // Don't move back
}
static UI_FUNCTION_ADV_CALLBACK(menu_smodulation_acb){
(void)item;
(void)data;
if(b){
if (setting.modulation == MO_NONE || setting.modulation == MO_EXTERNAL)
plot_printf(b->text, sizeof b->text, "MOD: %s", menu_modulation_text[setting.modulation]);
else {
#ifdef TINYSA4
if (setting.modulation == MO_AM)
plot_printf(b->text, sizeof b->text, "MOD: %4dHz AM %d%%", (int)(setting.modulation_frequency), setting.modulation_depth_x100);
else
plot_printf(b->text, sizeof b->text, "MOD: %4dHz FM %4QHz", (int)(setting.modulation_frequency), (freq_t)(setting.modulation_deviation_div100*100));
#else
plot_printf(b->text, sizeof b->text, "MOD: %4dHz %s", (int)(setting.modulation_frequency), menu_modulation_text[setting.modulation]);
#endif
}
return;
}
menu_push_submenu(menu_modulation);
}
// 0 1 2 3 4 5 6 7
const char *menu_reffer_text[]={"OFF","30MHz","15MHz","10MHz","4MHz","3MHz","2MHz","1MHz"};
static UI_FUNCTION_ADV_CALLBACK(menu_reffer_acb)
{
(void)item;
if (b){
b->icon = setting.refer == ((int)data-1) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
b->param_1.text = menu_reffer_text[data];
return;
}
//Serial.println(item);
set_refer_output((int)data - 1);
menu_move_back(false);
// ui_mode_normal(); // Stay in menu mode
// draw_cal_status();
}
static UI_FUNCTION_ADV_CALLBACK(menu_sreffer_acb){
(void)item;
(void)data;
if(b){
b->param_1.text = menu_reffer_text[setting.refer+1];
return;
}
menu_push_submenu(menu_reffer);
}
#ifdef TINYSA3
static UI_FUNCTION_ADV_CALLBACK(menu_lo_drive_acb)
{
(void)item;
if(b){
b->param_1.i = drive_dBm[data];
b->icon = data == setting.lo_drive ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
//Serial.println(item);
set_lo_drive(data);
menu_move_back(false);
// ui_mode_normal();
// draw_cal_status();
}
#else
static UI_FUNCTION_ADV_CALLBACK(menu_mixer_drive_acb)
{
(void)item;
if(b){
b->param_1.i = data;
b->icon = data == setting.lo_drive ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
//Serial.println(item);
set_lo_drive(data);
menu_move_back(false);
// ui_mode_normal();
// draw_cal_status();
}
#endif
#if 0
static UI_FUNCTION_ADV_CALLBACK(menu_sdrive_acb){
(void)item;
(void)data;
if(b){
#ifdef TINYSA4
b->param_1.i = setting.lo_drive;
#else
b->param_1.i = drive_dBm[setting.lo_drive] + (setting.mode==M_GENHIGH ? setting.external_gain : 0);
#endif
return;
}
menu_push_submenu(menu_drive_wide);
}
#endif
#ifdef __SPUR__
static UI_FUNCTION_ADV_CALLBACK(menu_spur_acb)
{
(void)data;
(void)item;
if (b){
if (setting.mode == M_LOW) {
b->param_1.text = "SPUR\nREMOVAL";
b->icon = AUTO_ICON(setting.spur_removal);
} else {
b->param_1.text = "MIRROR\nMASKING";
#ifdef TINYSA4
b->icon = AUTO_ICON(setting.mirror_masking ? 1 : 0); // mirror_masking does not yet have an auto mode so this is never an auto icon
#else
b->icon = setting.mirror_masking == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
#endif
}
return;
}
if (setting.mode == M_LOW) {
toggle_spur();
} else
toggle_mirror_masking();
// menu_move_back(false);
ui_mode_normal();
}
#if 0
#ifdef __HARMONIC__
static UI_FUNCTION_ADV_CALLBACK(menu_harmonic_spur_acb)
{
(void)data;
(void)item;
if (b){
b->icon = AUTO_ICON(setting.spur_removal);
return;
}
toggle_spur();
ui_mode_normal();
}#endif
#endif
#endif
#endif
#ifdef __ULTRA__
static UI_FUNCTION_ADV_CALLBACK(menu_debug_spur_acb)
{
(void)data;
(void)item;
if (b){
b->icon = debug_spur == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
toggle_debug_spur();
// menu_move_back();
ui_mode_normal();
}
#endif
#ifdef TINYSA4
static UI_FUNCTION_ADV_CALLBACK(menu_hide_21MHz_acb)
{
(void)data;
(void)item;
if (b){
b->icon = config.hide_21MHz == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
config.hide_21MHz = ! config.hide_21MHz;
// menu_move_back();
ui_mode_normal();
}
static UI_FUNCTION_ADV_CALLBACK(menu_progress_bar_acb)
{
(void)data;
(void)item;
if (b){
b->icon = progress_bar == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
progress_bar = !progress_bar;
// menu_move_back();
ui_mode_normal();
}
static UI_FUNCTION_ADV_CALLBACK(menu_extra_lna_acb)
{
(void)data;
(void)item;
if (b){
b->icon = setting.extra_lna == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
toggle_extra_lna();
// menu_move_back(false);
ui_mode_normal();
}
#ifndef __NEW_SWITCHES__
static UI_FUNCTION_ADV_CALLBACK(menu_adf_out_acb)
{
(void)data;
(void)item;
if (b){
b->icon = config.high_out_adf4350 == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
toggle_high_out_adf4350();
// menu_move_back(false);
ui_mode_normal();
}
#endif
#ifdef __WAIT_CTS_WHILE_SLEEPING__
volatile int sleep = 0;
static UI_FUNCTION_ADV_CALLBACK(menu_sleep_acb)
{
(void)data;
(void)item;
if (b){
b->icon = sleep == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
sleep = !sleep;
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_debug_avoid_acb)
{
(void)data;
(void)item;
if (b){
b->icon = debug_avoid == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
toggle_debug_avoid();
// menu_move_back();
ui_mode_normal();
}
static UI_FUNCTION_ADV_CALLBACK(menu_debug_freq_acb)
{
(void)data;
(void)item;
if (b){
b->icon = debug_frequencies == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
debug_frequencies = ! debug_frequencies;
// menu_move_back();
ui_mode_normal();
}
static UI_FUNCTION_ADV_CALLBACK(menu_linear_averaging_acb)
{
(void)data;
(void)item;
if (b){
b->icon = linear_averaging == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
linear_averaging = ! linear_averaging;
dirty = true;
// menu_move_back();
ui_mode_normal();
}
#endif
#ifdef __ULTRA__
static UI_FUNCTION_ADV_CALLBACK(menu_ultra_acb)
{
(void)data;
(void)item;
if (b){
b->icon = config.ultra == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
if (!config.ultra) {
drawMessageBox("Info", "Visit tinysa.org/ultra for unlock code", 2000);
kp_help_text = "Ultra unlock code";
ui_mode_keypad(KM_CODE);
if (uistat.value != 4321)
return;
}
config.ultra = !config.ultra;
config_save();
reset_settings(M_LOW);
if (config.ultra){
set_sweep_frequency(ST_START, 0);
set_sweep_frequency(ST_STOP, 3000000000ULL);
}
// menu_move_back(false);
ui_mode_normal();
}
static UI_FUNCTION_ADV_CALLBACK(menu_direct_acb)
{
(void)data;
(void)item;
if (b){
b->icon = config.direct == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK;
return;
}
config.direct = !config.direct;
config_save();
// menu_move_back(false);
ui_mode_normal();
}
#endif
static UI_FUNCTION_CALLBACK(menu_clearconfig_cb)
{
(void)data;
(void)item;
kp_help_text = "Clear unlock code";
ui_mode_keypad(KM_CODE);
if (uistat.value != 1234)
return;
clear_all_config_prop_data();
#ifndef TINYSA4
#define SCB_AIRCR_VECTKEYSTAT_LSB 16
#define SCB_AIRCR_VECTKEYSTAT (0xFFFF << SCB_AIRCR_VECTKEYSTAT_LSB)
#define SCB_AIRCR_VECTKEY (0x05FA << SCB_AIRCR_VECTKEYSTAT_LSB)
#define SCB_AIRCR_SYSRESETREQ (1 << 2)
SCB->AIRCR = SCB_AIRCR_VECTKEY | SCB_AIRCR_SYSRESETREQ;
while(true);
#else
rccEnableWWDG(FALSE);
WWDG->CFR = 0x60;
WWDG->CR = 0xff;
/* wait forever */
#endif
while (1)
;
}
float nf_gain;
const char * const averageText[] = { "OFF", "MINH", "MAXH", "MAXD", " AVER4", "A16", "AVER", "QUASI", "TABLE", "DECONV"};
static UI_FUNCTION_ADV_CALLBACK(menu_measure_acb)
{
(void)item;
if (b){
b->icon = data == setting.measurement ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
menu_move_back(false);
markers_reset();
if ((data != M_OFF && setting.measurement != M_OFF) || data == M_OFF )
{
// reset_settings(setting.mode);
if (0) {
no_measurement:
drawMessageBox("Error", "Incorrect input", 2000);
redraw_request|= REDRAW_AREA;
data = M_OFF;
}
if (setting.measurement == M_LINEARITY) {
TRACE_DISABLE(TRACE_STORED_FLAG);
}
set_average(0,AV_OFF);
set_external_gain(0.0);
#ifdef TINYSA4
set_extra_lna(false);
#endif
}
switch(data) {
case M_OFF: // Off
// set_measurement(M_OFF);
break;
case M_IMD: // IMD
reset_settings(setting.mode);
for (int i = 1; i< MARKERS_MAX; i++) {
markers[i].mtype = M_DELTA;
}
kp_help_text = "Frequency of fundamental";
ui_mode_keypad(KM_CENTER);
set_sweep_frequency(ST_START, 0);
set_sweep_frequency(ST_STOP, uistat.value*(MARKERS_MAX+1));
set_average(0,AV_4);
// set_measurement(M_IMD);
break;
case M_OIP3: // OIP3
reset_settings(setting.mode);
for (int i = 0; i< 4; i++) {
markers[i].enabled = M_ENABLED;
}
markers[1].mtype = M_TRACKING;
kp_help_text = "Frequency of left signal";
ui_mode_keypad(KM_CENTER);
freq_t left = uistat.value;
kp_help_text = "Right signal";
ui_mode_keypad(KM_CENTER);
freq_t right = uistat.value;
set_sweep_frequency(ST_CENTER, (left+right)/2);
freq_t local_span = (right - left)*10;
#ifdef TINYSA4
if (local_span < 3000)
local_span = 3000;
#else
if (local_span < 30000)
local_span = 30000;
#endif
set_sweep_frequency(ST_SPAN, local_span);
set_average(0,AV_4);
// set_measurement(M_OIP3);
break;
case M_PHASE_NOISE: // Phase noise
reset_settings(setting.mode);
markers[1].enabled = M_ENABLED;
markers[1].mtype = M_DELTA | M_NOISE;
kp_help_text = "Frequency of signal";
ui_mode_keypad(KM_CENTER);
kp_help_text = "Frequency offset";
ui_mode_keypad(KM_SPAN);
set_sweep_frequency(ST_SPAN, uistat.value*4);
// set_measurement(M_PHASE_NOISE);
set_average(0,AV_4);
break;
case M_SNR: // STop band measurement
reset_settings(setting.mode);
kp_help_text = "Frequency of signal";
ui_mode_keypad(KM_CENTER);
kp_help_text = "Bandwidth";
ui_mode_keypad(KM_SPAN);
set_sweep_frequency(ST_SPAN, uistat.value*3);
// set_measurement(M_SNR);
set_average(0,AV_4);
break;
case M_PASS_BAND: // pass band measurement
// reset_settings(setting.mode);
markers[1].enabled = M_ENABLED;
markers[2].enabled = M_ENABLED;
// kp_help_text = "Frequency of signal";
// ui_mode_keypad(KM_CENTER);
// kp_help_text = "Width of signal";
// ui_mode_keypad(KM_SPAN);
// set_sweep_frequency(ST_SPAN, uistat.value*2);
set_measurement(M_PASS_BAND);
// SetAverage(4);
break;
#ifdef __LINEARITY__
case M_LINEARITY:
TRACE_ENABLE(TRACE_STORED_FLAG);
// set_measurement(M_LINEARITY);
break;
#endif
case M_AM: // AM
reset_settings(setting.mode);
for (int i = 1; i< 3; i++) {
markers[i].enabled = M_ENABLED;
#ifdef TINYSA4
markers[i].mtype = M_DELTA| M_TRACKING;
#else
// markers[i].mtype = M_DELTA;// | M_TRACKING;
#endif
}
#ifdef TINYSA4
freq_t span;
#else
freq_t center, span;
markers[0].mtype = M_NORMAL; // M_REFERENCE | M_TRACKING; // Not M_TRACKING!!!!
#endif
kp_help_text = "Frequency of signal";
ui_mode_keypad(KM_CENTER);
#ifdef TINYSA3
center = uistat.value;
#endif
#ifdef TINYSA4
kp_help_text = "Modulation frequency: 500hz .. 10kHz";
#else
kp_help_text = "Modulation frequency: 3 .. 10kHz";
#endif
ui_mode_keypad(KM_SPAN);
span = uistat.value;
#ifdef TINYSA4
if (span < 500 || span > 10000)
goto no_measurement;
#endif
#ifdef TINYSA4
set_RBW((span * 5 / 50) / 100);
#endif
set_sweep_frequency(ST_SPAN, span * 5);
// update_frequencies(); // To ensure markers are positioned right!!!!!!
// set_measurement(M_AM);
#ifndef TINYSA4
set_marker_frequency(0, center);
set_marker_frequency(1, center-span);
set_marker_frequency(2, center+span);
#endif
set_average(0,AV_4);
break;
case M_FM: // FM
reset_settings(setting.mode);
for (int i = 1; i< 3; i++) {
markers[i].enabled = M_ENABLED;
}
markers[0].mtype = M_NORMAL; /// Not M_TRACKING !!!!
kp_help_text = "Frequency of signal";
ui_mode_keypad(KM_CENTER);
set_marker_frequency(0, uistat.value);
#ifdef TINYSA4
kp_help_text = "Modulation frequency: 500Hz .. 10kHz";
ui_mode_keypad(KM_SPAN);
if (uistat.value < 500 || uistat.value > 10000)
goto no_measurement;
set_RBW(uistat.value/300);
#else
kp_help_text = "Modulation frequency: 1 .. 2.5kHz";
ui_mode_keypad(KM_SPAN);
if (uistat.value < 1000 || uistat.value > 2500)
goto no_measurement;
set_RBW(uistat.value/100);
#endif
// actual_rbw_x10
#ifdef TINYSA4
kp_help_text = "Frequency deviation: 3 .. 500kHz";
#define MINIMUM_DEVIATION 1500
#else
kp_help_text = "Frequency deviation: 500Hz .. 500kHz";
#define MINIMUM_DEVIATION 12000
#endif
ui_mode_keypad(KM_SPAN);
if (uistat.value < MINIMUM_DEVIATION)
uistat.value = MINIMUM_DEVIATION; // minimum span
set_sweep_frequency(ST_SPAN, uistat.value*4);
// set_measurement(M_FM);
break;
case M_THD:
set_average(0,AV_4);
// set_measurement(M_THD);
break;
#ifdef __CHANNEL_POWER__
case M_CP: // channel power
reset_settings(setting.mode);
markers[0].enabled = M_DISABLED;
kp_help_text = "Channel frequency";
ui_mode_keypad(KM_CENTER);
kp_help_text = "Channel width";
ui_mode_keypad(KM_SPAN);
set_sweep_frequency(ST_SPAN, uistat.value*3);
// set_measurement(M_CP);
break;
#endif
#ifdef __NOISE_FIGURE__
case M_NF_TINYSA:
reset_settings(setting.mode);
set_refer_output(-1);
nf_gain = 0;
goto noise_figure;
case M_NF_STORE:
if (measured_noise_figure > 2 && measured_noise_figure < 20) {
config.noise_figure = measured_noise_figure;
config_save();
data = M_NF_VALIDATE; // Continue to validate
goto validate;
} else {
drawMessageBox("Error", "NF out of range",1000);
data = M_NF_TINYSA; // Continue to measure
}
break;
case M_NF_VALIDATE:
validate:
nf_gain = 0.00001; // almost zero
goto noise_figure;
case M_NF_AMPLIFIER: // noise figure
#if 0
reset_settings(setting.mode);
set_refer_output(-1);
#endif
kp_help_text = "Amplifier Gain ";
float old_gain = setting.external_gain;
ui_mode_keypad(KM_EXT_GAIN);
nf_gain = setting.external_gain;
setting.external_gain = old_gain;
noise_figure:
markers[0].enabled = M_ENABLED;
markers[0].mtype = M_NOISE | M_AVER; // Not tracking
set_extra_lna(true);
set_attenuation(0);
if (data == M_NF_TINYSA) {
kp_help_text = "Noise center frequency";
ui_mode_keypad(KM_CENTER);
set_marker_frequency(0, uistat.value);
#if 0
kp_help_text = "Noise span";
ui_mode_keypad(KM_SPAN);
#else
set_sweep_frequency(ST_SPAN, 100000);
#endif
set_RBW(1000); // 300kHz
}
// set_sweep_frequency(ST_SPAN, 0);
set_average(0,AV_100);
if (data == M_NF_TINYSA || data == M_NF_VALIDATE ) {
menu_push_submenu(menu_measure_noise_figure);
goto leave;
}
break;
#endif
#ifdef __FFT_DECONV__
case M_DECONV:
set_average(0,AV_DECONV);
break;
#endif
}
// selection = -1;
ui_mode_normal();
goto leave; // to get rid of warning
leave:
set_measurement(data);
// draw_cal_status();
}
static UI_FUNCTION_ADV_CALLBACK(menu_atten_acb)
{
(void)item;
(void)data;
if(b){
if (MODE_HIGH(setting.mode)) {
b->param_1.text = "0dB";
b->icon = (setting.atten_step*30 == data) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
}
else {
b->param_1.text = "AUTO";
b->icon = setting.auto_attenuation ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
}
return;
}
if (MODE_HIGH(setting.mode)) {
setting.auto_attenuation = false;
set_attenuation(0);
} else
set_auto_attenuation();
menu_move_back(true);
}
static UI_FUNCTION_ADV_CALLBACK(menu_atten_high_acb)
{
(void)item;
if(b){
b->icon = (setting.atten_step*30 == data) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
setting.auto_attenuation = false;
set_attenuation(data);
menu_move_back(true);
}
static UI_FUNCTION_ADV_CALLBACK(menu_reflevel_acb)
{
(void)item;
(void)data;
if(b){
b->icon = setting.auto_reflevel ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_auto_reflevel(true);
menu_move_back(true);
}
static uint8_t current_trace = TRACE_ACTUAL;
static UI_FUNCTION_ADV_CALLBACK(menu_average_acb)
{
(void)item;
if (b){
b->icon = setting.average[current_trace] == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_average(current_trace,data);
if (data == AV_TABLE)
menu_push_submenu(menu_limit_select);
else {
ui_mode_normal();
}
// menu_move_back(true);
}
static UI_FUNCTION_ADV_CALLBACK(menu_trace_acb)
{
(void)item;
if(b){
b->param_1.i = data+1;
b->icon = (data == current_trace) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
b->bg = LCD_TRACE_1_COLOR+data;
return;
}
if (setting.normalized_trace != -1 && data == TRACE_TEMP) {
drawMessageBox("Error", "Disable normalization first", 2000);
redraw_request|= REDRAW_AREA;
} else
current_trace = data;
menu_move_back(false);
}
static UI_FUNCTION_ADV_CALLBACK(menu_marker_trace_acb)
{
(void)item;
if(b){
b->param_1.i = data+1;
b->icon = (data == markers[active_marker].trace) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
b->bg = LCD_TRACE_1_COLOR+data;
return;
}
markers[active_marker].trace = data;
menu_move_back(false);
}
static UI_FUNCTION_ADV_CALLBACK(menu_store_trace_acb)
{
(void)item;
if(b){
plot_printf(b->text, sizeof(b->text), S_RARROW"TRACE %d", data+1);
b->bg = LCD_TRACE_1_COLOR+data;
if (current_trace == data)
b->fg = LCD_DARK_GREY;
return;
}
store_trace(current_trace,data);
menu_move_back(false);
}
static UI_FUNCTION_ADV_CALLBACK(menu_subtract_trace_acb)
{
(void)item;
if(b){
if (data) {
plot_printf(b->text, sizeof(b->text), "SUBTRACT\nTRACE %d", data);
b->bg = LCD_TRACE_1_COLOR+data-1;
}
else
plot_printf(b->text, sizeof(b->text), "SUBTRACT\nOFF");
b->icon = (data == setting.subtract[current_trace]) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
if (data - 1 == current_trace)
b->fg = LCD_DARK_GREY;
return;
}
subtract_trace(current_trace,data-1);
menu_move_back(false);
}
static UI_FUNCTION_ADV_CALLBACK(menu_traces_acb)
{
(void)item;
int count = 0;
if(b){
if (data == 0) { // Select trace
b->param_1.i = current_trace+1;
b->bg = LCD_TRACE_1_COLOR+current_trace;
} else if (data == 1) { // View
b->icon = IS_TRACE_ENABLE(current_trace) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
}
else if (data == 2) // freeze
b->icon = setting.stored[current_trace] ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
else if (data == 5) {
if (setting.subtract[current_trace]) {
b->icon = BUTTON_ICON_CHECK;
plot_printf(b->text, sizeof(b->text), "SUBTRACT\nTRACE %d", setting.subtract[current_trace]);
} else {
b->icon = BUTTON_ICON_NOCHECK;
plot_printf(b->text, sizeof(b->text), "SUBTRACT\nOFF");
}
// b->icon = setting.subtract[current_trace] ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; // icon not needed
} else if (data == 4) {
if (current_trace == TRACES_MAX-1)
b->fg = LCD_DARK_GREY;
else
b->icon = setting.normalized[current_trace] ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
} else if (data == 3) {
b->icon = setting.average[current_trace] != AV_OFF ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
plot_printf(b->text, sizeof(b->text), "CALC\n%s", averageText[setting.average[current_trace]]);
// b->icon = setting.average[current_trace] ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; // icon not needed
}
return;
}
switch(data) {
case 0:
menu_push_submenu(menu_trace);
return;
case 1:
for (int i=0;i<TRACES_MAX;i++)
if (IS_TRACE_ENABLE(i))
count++;
if (IS_TRACE_ENABLE(current_trace)) {
if (count > 1) { // Always 1 trace enabled
TRACE_DISABLE(1<<current_trace);
} else {
drawMessageBox("Trace", "Enable at least one trace", 2000);
redraw_request|= REDRAW_AREA;
}
} else {
TRACE_ENABLE(1<<current_trace);
}
break;
case 2: // Freeze
setting.stored[current_trace] = !setting.stored[current_trace];
break;
case 5:
menu_push_submenu(menu_subtract_trace);
return;
break;
case 4:
if (current_trace < TRACES_MAX-1) {
toggle_normalize(current_trace);
if (setting.normalized[current_trace]) {
// kp_help_text = "Ref level";
// ui_mode_keypad(KM_REFLEVEL);
// setting.normalize_level = 20.0; // uistat.value;
} else {
// set_auto_reflevel(true);
}
}
break;
case 3:
menu_push_submenu(menu_average);
return;
break;
#ifdef __USE_SD_CARD__
case 6:
save_csv(1+(2<<current_trace)); // frequencies + trace
break;
#endif
}
// ui_mode_normal();
// draw_cal_status();
}
static UI_FUNCTION_ADV_CALLBACK(menu_waterfall_acb){
(void)item;
(void)data;
if (b){
#ifdef TINYSA4
if (!(sweep_mode & SWEEP_ENABLE)){
b->icon = (sweep_mode & SWEEP_ONCE) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
plot_printf(b->text, sizeof(b->text), "SINGLE\nSWEEP");
} else {
b->icon = setting.waterfall ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
plot_printf(b->text, sizeof(b->text), "WATER\nFALL");
}
#else
b->icon = setting.waterfall ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
plot_printf(b->text, sizeof(b->text), "WATER\nFALL");
#endif
return;
}
#ifdef TINYSA4
if (is_paused()) {
resume_once(1);
} else
#endif
{
setting.waterfall++; if (setting.waterfall>W_BIG)setting.waterfall = W_OFF;
if (setting.waterfall != W_OFF)
setting.level_meter = false;
set_waterfall();
ui_mode_normal();
}
}
#ifdef __LEVEL_METER__
static UI_FUNCTION_ADV_CALLBACK(menu_level_meter_acb){
(void)item;
(void)data;
if (b){
b->icon = setting.level_meter ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
setting.level_meter = !setting.level_meter;
if (setting.level_meter)
setting.waterfall = W_OFF;
set_level_meter();
ui_mode_normal();
}
#endif
#ifdef __LIMITS__
uint8_t active_limit = 0;
static UI_FUNCTION_ADV_CALLBACK(menu_limit_select_acb)
{
(void)item;
if(b){
int count = 0;
for (int i=0;i<LIMITS_MAX;i++) {if (setting.limits[current_trace][i].enabled) count++; }
if (count == 0) setting.limits[current_trace][0].enabled = true;
b->icon = (setting.limits[current_trace][data].enabled?BUTTON_ICON_CHECK:BUTTON_ICON_NOCHECK) ;
plot_printf(b->text, sizeof(b->text), "%.6FHz\n%.2F%s", (float)setting.limits[current_trace][data].frequency, value(setting.limits[current_trace][data].level),unit_string[setting.unit]);
return;
}
active_limit = data;
setting.limits[current_trace][active_limit].enabled = true;
dirty = true;
limits_update();
menu_push_submenu(menu_limit_modify);
}
#endif
extern const menuitem_t menu_marker_select[];
static UI_FUNCTION_ADV_CALLBACK(menu_marker_modify_acb)
{
(void)item;
if (active_marker == MARKER_INVALID) return;
if(b){
uistat.text[0] = 0;
uistat.text[1] = 0;
switch(data) {
case 0:
uistat.text[0] = active_marker+'1';
break;
case M_DELTA:
uistat.text[0] = markers[active_marker].ref+'1';
/* fall through */
case M_NOISE:
case M_TRACKING:
case M_AVER:
b->icon = BUTTON_ICON_NOCHECK;
if (markers[active_marker].mtype & data)
b->icon = BUTTON_ICON_CHECK;
break;
case M_STORED:
uistat.text[0] = markers[active_marker].trace+'1';
b->bg = LCD_TRACE_1_COLOR+markers[active_marker].trace;
break;
}
b->param_1.text = uistat.text;
return;
}
if (data == M_DELTA && !(markers[active_marker].mtype & M_DELTA)) { // Not yet set
menu_push_submenu(menu_marker_ref_select);
goto set_delta;
return;
} else if (data == M_STORED) {
current_trace = 0;
menu_push_submenu(menu_marker_trace);
return;
} else if (markers[active_marker].mtype & data)
markers[active_marker].mtype &= ~data;
else if (data) {
set_delta:
markers[active_marker].mtype |= data;
} else
menu_push_submenu(menu_marker_select);
markmap_all_markers();
// redraw_marker(active_marker, TRUE);
// menu_move_back(false);
}
static UI_FUNCTION_ADV_CALLBACK(menu_marker_ref_select_acb)
{
(void)item;
if(b){
// b->icon = markers[data-1].enabled ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
b->icon = (markers[active_marker].ref == data-1 ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP );
b->param_1.i = data;
return;
}
markers[data-1].enabled = true;
// interpolate_maximum(data-1); // possibly not a maximum
set_marker_index(data-1, markers[data-1].index);
markers[active_marker].ref = data-1;
redraw_marker(active_marker);
menu_move_back(false);
}
extern const menuitem_t menu_marker_modify[];
static UI_FUNCTION_ADV_CALLBACK(menu_marker_select_acb)
{
(void)item;
if(b){
b->icon = markers[data-1].enabled ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
b->param_1.i = data;
return;
}
markers[data-1].enabled = true;
// interpolate_maximum(data-1); // possibly not a maximum
set_marker_index(data-1, markers[data-1].index);
active_marker_select(data-1);
// menu_push_submenu(menu_marker_modify);
redraw_marker(active_marker);
menu_move_back(false);
}
static UI_FUNCTION_CALLBACK(menu_marker_delete_cb)
{
(void)item;
(void)data;
if (active_marker>=0){
for (int i = 0; i<MARKER_COUNT; i++ ) {
if (markers[i].enabled && (markers[i].mtype & M_DELTA) && markers[i].ref == active_marker)
markers[i].enabled = false;
}
markers[active_marker].enabled = false;
markmap_all_markers();
menu_move_back(false);
}
}
#ifdef __LIMITS__
static UI_FUNCTION_CALLBACK(menu_limit_disable_cb)
{
(void)item;
(void)data;
int count = 0;
for (int i=0;i<LIMITS_MAX;i++) {if (setting.limits[current_trace][i].enabled) count++; }
if (count == 1 && setting.limits[current_trace][active_limit].enabled) {
drawMessageBox("Error", "At least one entry",1000);
return;
}
if (active_limit<LIMITS_MAX){
setting.limits[current_trace][active_limit].enabled = false;
dirty = true;
limits_update();
menu_move_back(false);
}
}
#endif
#ifdef TINYSA4
static const uint16_t rbwsel_x10[]={0,2,10,30,100,300,1000,3000,6000,8500};
static const char* rbwsel_text[]={"AUTO","200","1k","3k","10k","30k","100k","300k","600k","850k"};
#else
static const uint16_t rbwsel_x10[]={0,30,100,300,1000,3000,6000};
#endif
#ifdef __VBW__
static const uint16_t vbwsel_x100[]={0,100,30,10,3,1};
//static const char* vbwsel_text[]={"AUTO","0.01","0.03", "0.1", "0.3"," "};
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_rbw_acb)
{
(void)item;
if (b){
#ifdef TINYSA4
b->param_1.text = rbwsel_text[data];
#else
b->param_1.u = rbwsel_x10[data]/10;
#endif
b->icon = setting.rbw_x10 == rbwsel_x10[data] ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_RBW(rbwsel_x10[data]);
menu_move_back(true);
}
#ifdef __VBW__
static UI_FUNCTION_ADV_CALLBACK(menu_vbw_acb)
{
(void)item;
if (b){
b->param_1.f = vbwsel_x100[data] > 0 ? 1.0f/vbwsel_x100[data] : 0;
b->icon = setting.vbw_x100 == vbwsel_x100[data] ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_VBW(vbwsel_x100[data]);
menu_move_back(true);
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_unit_acb)
{
(void)item;
if (b){
b->icon = data == setting.unit ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
set_unit(data);
menu_move_back(true);
}
#if 0
enum {
S_20,S_10,S_5,S_2,S_1,S_P5,S_P2,S_P1,S_P05,S_P02,S_P01
};
static const float menu_scale_per_value[11]={20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01};
static UI_FUNCTION_ADV_CALLBACK(menu_scale_per_acb)
{
(void)item;
if(b){
return;
}
set_scale(menu_scale_per_value[data]);
menu_move_back(true);
}
#endif
const char *mode_text[] = {"PRE","POST","MID"};
static UI_FUNCTION_ADV_CALLBACK(menu_trigger_acb)
{
(void)item;
if(b){
if (data == T_MODE) {
b->param_1.text = mode_text[setting.trigger_mode - T_PRE];
} else if (data == T_UP || data == T_DOWN)
b->icon = setting.trigger_direction == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
else
b->icon = setting.trigger == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
if (data == T_MODE) {
setting.trigger_mode += 1;
if (setting.trigger_mode > T_MID)
setting.trigger_mode = T_PRE;
set_trigger(setting.trigger_mode);
} else if (data != T_DONE) {
set_trigger(data);
// menu_move_back(false);
ui_mode_normal();
}
completed = true;
}
#if 0
static void choose_active_trace(void)
{
int i;
if (trace[uistat.current_trace].enabled)
// do nothing
return;
for (i = 0; i < TRACE_COUNT ; i++)
if (trace[i].enabled) {
uistat.current_trace = i;
return;
}
}
#endif
static void choose_active_marker(void)
{
int i;
for (i = 0; i < MARKER_COUNT; i++)
if (markers[i].enabled == M_ENABLED) {
active_marker = i;
return;
}
active_marker = MARKER_INVALID;
}
#ifdef TINYSA4
#define __HARMONIC__
#endif
#ifdef __HARMONIC__
static UI_FUNCTION_ADV_CALLBACK(menu_harmonic_acb)
{
(void)item;
if(b){
b->icon = setting.harmonic == data ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
set_harmonic(data);
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_settings_agc_acb){
(void)item;
(void)data;
if(b){
b->icon = AUTO_ICON(setting.agc);
return;
}
toggle_AGC();
}
static UI_FUNCTION_ADV_CALLBACK(menu_settings_lna_acb){
(void)item;
(void)data;
if(b){
if (S_IS_AUTO(setting.lna))
b->icon = BUTTON_ICON_CHECK_AUTO;
else
b->icon = setting.lna ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_LNA();
}
static UI_FUNCTION_ADV_CALLBACK(menu_settings_bpf_acb){
(void)item;
(void)data;
if(b){
b->icon = setting.tracking ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_tracking();
}
#ifdef __LCD_BRIGHTNESS__
static UI_FUNCTION_CALLBACK(menu_brightness_cb)
{
(void)item;
(void)data;
int16_t value = config._brightness;
ili9341_set_foreground(LCD_MENU_TEXT_COLOR);
ili9341_set_background(LCD_MENU_COLOR);
ili9341_fill(LCD_WIDTH/2-80, LCD_HEIGHT/2-20, 160, 40);
ili9341_drawstring_7x13("BRIGHTNESS", LCD_WIDTH/2-35, LCD_HEIGHT/2-13);
ili9341_drawstring_7x13(S_LARROW" USE LEVELER BUTTON "S_RARROW, LCD_WIDTH/2-72, LCD_HEIGHT/2+2);
while (TRUE) {
int status = btn_check();
if (status & (EVT_UP|EVT_DOWN)) {
do {
if (status & EVT_UP ) value+=5;
if (status & EVT_DOWN) value-=5;
if (value < 0) value = 0;
if (value > 100) value = 100;
lcd_setBrightness(value);
status = btn_wait_release();
} while (status != 0);
}
if (status == EVT_BUTTON_SINGLE_CLICK)
break;
}
config._brightness = (uint8_t)value;
lcd_setBrightness(value);
redraw_request|= REDRAW_AREA;
ui_mode_normal();
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_settings_pulse_acb){
(void)item;
(void)data;
if(b){
b->icon = setting.pulse ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_pulse();
}
#ifdef __DRAW_LINE__
static UI_FUNCTION_ADV_CALLBACK(menu_settings_draw_line_acb){
(void)item;
(void)data;
if(b){
b->icon = setting.draw_line ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_draw_line();
if (setting.draw_line) {
kp_help_text = "Level";
ui_mode_keypad(KM_TRIGGER);
set_trigger(T_AUTO);
}
}
#endif
#ifdef __HAM_BAND__
static UI_FUNCTION_ADV_CALLBACK(menu_settings_ham_bands){
(void)item;
(void)data;
if(b){
b->icon = config.hambands ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_hambands();
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_settings_below_if_acb){
(void)item;
(void)data;
if(b){
if (S_IS_AUTO(setting.below_IF))
b->icon = BUTTON_ICON_CHECK_AUTO;
else
b->icon = setting.below_IF ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_below_IF();
}
#if 0
static UI_FUNCTION_ADV_CALLBACK(menu_settings_ultra_acb){
(void)item;
(void)data;
if(b){
if (S_IS_AUTO(setting.ultra))
b->icon = BUTTON_ICON_CHECK_AUTO;
else
b->icon = setting.ultra ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_ultra();
}
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_lo_output_acb){
(void)item;
(void)data;
if(b){
b->icon = setting.tracking_output ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_tracking_output();
}
static UI_FUNCTION_ADV_CALLBACK(menu_pause_acb)
{
(void) data;
(void) item;
if (b){
b->icon = !(sweep_mode & SWEEP_ENABLE) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
toggle_sweep();
// menu_move_back(true);
// draw_cal_status();
}
static UI_FUNCTION_ADV_CALLBACK(menu_flip_acb)
{
(void) data;
(void) item;
if (b){
return;
}
config.flip = ! config.flip;
ili9341_flip(config.flip);
config_save();
redraw_request|= REDRAW_AREA | REDRAW_FREQUENCY | REDRAW_CAL_STATUS;
}
static UI_FUNCTION_ADV_CALLBACK(menu_shift_acb)
{
(void) data;
(void) item;
if (b){
b->icon = setting.frequency_offset != FREQUENCY_SHIFT ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
if (setting.frequency_offset != FREQUENCY_SHIFT) {
setting.frequency_offset = FREQUENCY_SHIFT;
} else {
if (FREQ_IS_STARTSTOP()) {
freq_t old_start = get_sweep_frequency(ST_START);
freq_t old_stop = get_sweep_frequency(ST_STOP);
kp_help_text = "Actual start frequency";
ui_mode_keypad(KM_START);
setting.frequency_offset = uistat.value - old_start + FREQUENCY_SHIFT;
set_sweep_frequency(ST_START, old_start);
set_sweep_frequency(ST_STOP, old_stop);
} else {
freq_t old_center = get_sweep_frequency(ST_CENTER);
freq_t old_span = get_sweep_frequency(ST_SPAN);
kp_help_text = "Actual center frequency";
ui_mode_keypad(KM_CENTER);
setting.frequency_offset = uistat.value - old_center + FREQUENCY_SHIFT;
set_sweep_frequency(ST_CENTER, old_center);
set_sweep_frequency(ST_SPAN, old_span);
}
}
ui_mode_normal();
// menu_move_back(true);
// draw_cal_status();
}
#ifdef __REMOTE_DESKTOP__
#if 0 // Not used in UI
static UI_FUNCTION_ADV_CALLBACK(menu_send_display_acb)
{
(void) data;
(void) item;
if (b){
b->icon = auto_capture ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
auto_capture = ! auto_capture;
// Update all screen to CPU
if (auto_capture)
redraw_request|=REDRAW_AREA|REDRAW_BATTERY|REDRAW_FREQUENCY|REDRAW_CAL_STATUS;
}
#endif
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_outputmode_acb)
{
(void) data;
(void) item;
if(b){
b->param_1.text = setting.mute ? "OFF" : "ON";
return;
}
toggle_mute();
}
static UI_FUNCTION_ADV_CALLBACK(menu_enter_marker_acb)
{
(void) data;
(void) item;
if(b){
b->param_1.text = FREQ_IS_CW() ? "TIME" : "FREQUENCY";
return;
}
if (FREQ_IS_CW())
ui_mode_keypad(KM_MARKER_TIME);
else
ui_mode_keypad(KM_MARKER);
}
#ifdef TINYSA4
static const uint16_t points_setting[] = {51, 101, 201, 256, 290, 450};
#else
static const uint16_t points_setting[] = {51, 101, 145, 290};
#endif
static UI_FUNCTION_ADV_CALLBACK(menu_points_acb){
(void)item;
if(b){
b->icon = points_setting[data] == sweep_points ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
b->param_1.i = points_setting[data];
return;
}
set_sweep_points(points_setting[data]);
}
#ifdef __USE_SERIAL_CONSOLE__
static UI_FUNCTION_ADV_CALLBACK(menu_serial_speed_acb)
{
static const uint32_t usart_speed[] = {19200, 38400, 57600, 115200, 230400, 460800, 921600, 1843200, 2000000, 3000000};
(void)item;
uint32_t speed = usart_speed[data];
if (b){
b->icon = config._serial_speed == speed ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
b->param_1.u = speed;
return;
}
config._serial_speed = speed;
shell_update_speed();
}
static UI_FUNCTION_ADV_CALLBACK(menu_connection_acb)
{
(void)item;
if (b){
b->icon = (config._mode&_MODE_CONNECTION_MASK) == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP;
return;
}
config._mode&=~_MODE_CONNECTION_MASK;
config._mode|=data;
config_save();
shell_reset_console();
}
#endif
#ifdef __USE_SD_CARD__
//*******************************************************************************************
// Bitmap file header for LCD_WIDTH x LCD_HEIGHT image 16bpp (v4 format allow set RGB mask)
//*******************************************************************************************
#define BMP_UINT32(val) ((val)>>0)&0xFF, ((val)>>8)&0xFF, ((val)>>16)&0xFF, ((val)>>24)&0xFF
#define BMP_UINT16(val) ((val)>>0)&0xFF, ((val)>>8)&0xFF
#define BMP_H1_SIZE (14) // BMP header 14 bytes
#define BMP_V4_SIZE (108) // v4 header 108 bytes
#define BMP_HEAD_SIZE (BMP_H1_SIZE + BMP_V4_SIZE) // Size of all headers
#define BMP_SIZE (2*LCD_WIDTH*LCD_HEIGHT) // Bitmap size = 2*w*h
#define BMP_FILE_SIZE (BMP_SIZE + BMP_HEAD_SIZE) // File size = headers + bitmap
static const uint8_t bmp_header_v4[BMP_H1_SIZE + BMP_V4_SIZE] = {
// BITMAPFILEHEADER (14 byte size)
0x42, 0x4D, // BM signature
BMP_UINT32(BMP_FILE_SIZE), // File size (h + v4 + bitmap)
BMP_UINT16(0), // reserved
BMP_UINT16(0), // reserved
BMP_UINT32(BMP_HEAD_SIZE), // Size of all headers (h + v4)
// BITMAPINFOv4 (108 byte size)
BMP_UINT32(BMP_V4_SIZE), // Data offset after this point (v4 size)
BMP_UINT32(LCD_WIDTH), // Width
BMP_UINT32(LCD_HEIGHT), // Height
BMP_UINT16(1), // Planes
BMP_UINT16(16), // 16bpp
BMP_UINT32(3), // Compression (BI_BITFIELDS)
BMP_UINT32(BMP_SIZE), // Bitmap size (w*h*2)
BMP_UINT32(0x0EC4), // x Resolution (96 DPI = 96 * 39.3701 inches per meter = 0x0EC4)
BMP_UINT32(0x0EC4), // y Resolution (96 DPI = 96 * 39.3701 inches per meter = 0x0EC4)
BMP_UINT32(0), // Palette size
BMP_UINT32(0), // Palette used
// Extend v4 header data (color mask for RGB565)
BMP_UINT32(0b1111100000000000),// R mask = 0b11111000 00000000
BMP_UINT32(0b0000011111100000),// G mask = 0b00000111 11100000
BMP_UINT32(0b0000000000011111),// B mask = 0b00000000 00011111
BMP_UINT32(0b0000000000000000),// A mask = 0b00000000 00000000
'B','G','R','s', // CSType = 'sRGB'
BMP_UINT32(0), // ciexyzRed.ciexyzX Endpoints
BMP_UINT32(0), // ciexyzRed.ciexyzY
BMP_UINT32(0), // ciexyzRed.ciexyzZ
BMP_UINT32(0), // ciexyzGreen.ciexyzX
BMP_UINT32(0), // ciexyzGreen.ciexyzY
BMP_UINT32(0), // ciexyzGreen.ciexyzZ
BMP_UINT32(0), // ciexyzBlue.ciexyzX
BMP_UINT32(0), // ciexyzBlue.ciexyzY
BMP_UINT32(0), // ciexyzBlue.ciexyzZ
BMP_UINT32(0), // GammaRed
BMP_UINT32(0), // GammaGreen
BMP_UINT32(0), // GammaBlue
};
static void swap_bytes(uint16_t *buf, int size) {
for (int i = 0; i < size; i++)
buf[i] = __REVSH(buf[i]); // swap byte order (example 0x10FF to 0xFF10)
}
static uint16_t file_mask;
// Save format enum
enum {
FMT_BMP_FILE, FMT_CSV_FILE,
#ifdef __SD_CARD_DUMP_FIRMWARE__
FMT_BIN_FILE,
#endif
FMT_CMD_FILE,
FMT_CFG_FILE,
FMT_PRS_FILE,
};
// Save file extension
static const char *file_ext[] = {
[FMT_BMP_FILE] = "bmp",
[FMT_CSV_FILE] = "csv",
#ifdef __SD_CARD_DUMP_FIRMWARE__
[FMT_BIN_FILE] = "bin",
#endif
[FMT_CMD_FILE] = "cmd",
[FMT_CFG_FILE] = "cfg",
[FMT_PRS_FILE] = "prs",
};
static void sa_save_file(uint8_t format);
static UI_FUNCTION_CALLBACK(menu_sdcard_cb) {
(void)item;
sa_save_file(data);
}
static UI_FUNCTION_ADV_CALLBACK(menu_autoname_acb)
{
(void)item;
(void)data;
if (b){
b->icon = config._mode & _MODE_AUTO_FILENAME ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK;
return;
}
config._mode^= _MODE_AUTO_FILENAME;
}
#ifdef __SD_FILE_BROWSER__
#include "vna_browser.c"
#endif
#endif
// ===[MENU DEFINITION]=========================================================
// Back button submenu list
static const menuitem_t menu_back[] = {
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
static const menuitem_t menu_store_preset[] =
{
{ MT_ADV_CALLBACK, 0, "STORE AS\nSTARTUP",menu_store_preset_acb},
{ MT_ADV_CALLBACK |MT_REPEATS, DATA_STARTS_REPEATS(1,4), "STORE %d", menu_store_preset_acb},
#ifdef TINYSA4
{ MT_CALLBACK, FMT_PRS_FILE, "STORE\n"S_RARROW"SD", menu_sdcard_cb},
#endif
{ MT_ADV_CALLBACK, 100,"FACTORY\nDEFAULTS",menu_store_preset_acb},
{ MT_NONE, 0, NULL,menu_back} // next-> menu_back
};
static const menuitem_t menu_load_preset[] =
{
{ MT_ADV_CALLBACK, 0, "LOAD\nSTARTUP", menu_load_preset_acb},
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(1,4), MT_CUSTOM_LABEL, menu_load_preset_acb},
#ifdef __SD_FILE_BROWSER__
{ MT_CALLBACK, FMT_PRS_FILE, "LOAD FROM\n SD", menu_sdcard_browse_cb },
#endif
{ MT_SUBMENU, 0, "STORE" , menu_store_preset},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef TINYSA4
static const menuitem_t menu_mixer_drive[] = {
{ MT_ADV_CALLBACK, 4, "Auto", menu_mixer_drive_acb},
{ MT_ADV_CALLBACK, 3, "%+ddBm", menu_mixer_drive_acb},
{ MT_ADV_CALLBACK, 2, "%+ddBm", menu_mixer_drive_acb},
{ MT_ADV_CALLBACK, 1, "%+ddBm", menu_mixer_drive_acb},
{ MT_ADV_CALLBACK, 0, "%+ddBm", menu_mixer_drive_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#else
static const menuitem_t menu_lo_drive[] = {
{ MT_ADV_CALLBACK, 15, "%+ddBm", menu_lo_drive_acb},
{ MT_ADV_CALLBACK, 14, "%+ddBm", menu_lo_drive_acb},
{ MT_ADV_CALLBACK, 13, "%+ddBm", menu_lo_drive_acb},
{ MT_ADV_CALLBACK, 12, "%+ddBm", menu_lo_drive_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_modulation[] = {
{ MT_FORM | MT_TITLE, 0, "MODULATION",NULL},
{ MT_FORM | MT_ADV_CALLBACK, MO_NONE, MT_CUSTOM_LABEL, menu_modulation_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_LOW, MO_AM, "AM", menu_modulation_acb},
#ifdef TINYSA4
{ MT_FORM | MT_ADV_CALLBACK, MO_WFM, "FM", menu_modulation_acb},
{ MT_FORM | MT_KEYPAD, KM_MODULATION, "FREQ: %s", "50Hz..5kHz"},
{ MT_FORM | MT_KEYPAD, KM_DEPTH, "AM DEPTH: %s%%", "0..100"},
{ MT_FORM | MT_KEYPAD, KM_DEVIATION, "FM DEVIATION: %s", "1kHz..300kHz"},
// { MT_FORM | MT_ADV_CALLBACK, MO_NFM2, MT_CUSTOM_LABEL, menu_modulation_acb},
// { MT_FORM | MT_ADV_CALLBACK, MO_NFM3, MT_CUSTOM_LABEL, menu_modulation_acb},
#else
{ MT_FORM | MT_ADV_CALLBACK, MO_NFM, MT_CUSTOM_LABEL, menu_modulation_acb},
{ MT_FORM | MT_ADV_CALLBACK, MO_WFM, MT_CUSTOM_LABEL, menu_modulation_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_LOW, MO_EXTERNAL,MT_CUSTOM_LABEL, menu_modulation_acb},
{ MT_FORM | MT_KEYPAD, KM_MODULATION, "FREQ: %s", "50Hz..5kHz"},
#endif
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_sweep[] = {
{ MT_FORM | MT_KEYPAD, KM_SPAN, "SPAN: %s", VARIANT("0..350MHz", range_text)},
{ MT_FORM | MT_KEYPAD | MT_LOW, KM_LEVELSWEEP,"LEVEL CHANGE: %s", VARIANT("-70..70","-90..90")},
{ MT_FORM | MT_KEYPAD, KM_SWEEP_TIME, "SWEEP TIME: %s", "0..600 seconds"},
{ MT_FORM | MT_SUBMENU, 0, "SWEEP POINTS", menu_sweep_points_form},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef TINYSA4
static const menuitem_t menu_lowoutput_settings[] = {
{ MT_FORM | MT_ADV_CALLBACK, 0, "Cleanest signal, max 4.4GHz", menu_lowoutput_settings_acb},
{ MT_FORM | MT_ADV_CALLBACK, 1, "Highest accuracy, max 5.4GHz", menu_lowoutput_settings_acb},
{ MT_FORM | MT_SUBMENU, 255, S_RARROW"Config", menu_config},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
char low_level_help_text[12] = "-76..-6";
char center_text[18] = "FREQ: %s";
const menuitem_t menu_lowoutputmode[] = {
{ MT_FORM | MT_ADV_CALLBACK, 0, "LOW OUTPUT %s", menu_outputmode_acb},
// { MT_FORM | MT_ADV_CALLBACK, 0, "MOD: %s", menu_smodulation_acb},
{ MT_FORM | MT_KEYPAD, KM_CENTER, center_text, VARIANT("10kHz..350MHz","10kHz..850MHz")},
{ MT_FORM | MT_KEYPAD, KM_LOWOUTLEVEL, "LEVEL: %s", low_level_help_text},
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_smodulation_acb},
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_sweep_acb},
#ifdef __SWEEP_RESTART__
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_restart_acb},
#endif
{ MT_FORM | MT_KEYPAD, KM_EXT_GAIN, "EXTERNAL GAIN: %s", "-100..+100"},
#ifdef TINYSA4
{ MT_FORM | MT_ADV_CALLBACK, 255, "OUTPUT: %s", menu_lowoutput_settings_acb},
#endif
{ MT_FORM | MT_CANCEL, 0, "MODE", NULL },
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_highoutputmode[] = {
{ MT_FORM | MT_ADV_CALLBACK, 0, "HIGH OUTPUT %s", menu_outputmode_acb},
{ MT_FORM | MT_KEYPAD, KM_CENTER, center_text, VARIANT("240MHz..959MHz",range_text)},
{ MT_FORM | MT_KEYPAD, KM_HIGHOUTLEVEL, "LEVEL: %s", low_level_help_text /* "-76..-6" */},
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_smodulation_acb},
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_sweep_acb},
#ifdef __SWEEP_RESTART__
{ MT_FORM | MT_ADV_CALLBACK, 0, MT_CUSTOM_LABEL, menu_restart_acb},
#endif
{ MT_FORM | MT_KEYPAD, KM_EXT_GAIN, "EXTERNAL GAIN: %s", "-100..+100"},
#ifdef TINYSA4
{ MT_FORM | MT_SUBMENU, 255, S_RARROW" Settings", menu_settings3},
#endif
{ MT_FORM | MT_CANCEL, 0, "MODE", NULL },
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};
static const menuitem_t menu_average[] = {
{ MT_ADV_CALLBACK, AV_OFF, "OFF", menu_average_acb},
{ MT_ADV_CALLBACK, AV_MIN, "MIN\nHOLD", menu_average_acb},
{ MT_ADV_CALLBACK, AV_MAX_HOLD, "MAX\nHOLD", menu_average_acb},
{ MT_ADV_CALLBACK, AV_MAX_DECAY, "MAX\nDECAY", menu_average_acb},
{ MT_ADV_CALLBACK, AV_4, "AVER 4", menu_average_acb},
{ MT_ADV_CALLBACK, AV_16, "AVER 16", menu_average_acb},
#ifdef TINYSA4
{ MT_ADV_CALLBACK, AV_100, "AVER", menu_average_acb},
#endif
#ifdef __QUASI_PEAK__
{ MT_ADV_CALLBACK, AV_QUASI, "QUASI\nPEAK", menu_average_acb},
#endif
#ifdef __LIMITS__
{ MT_ADV_CALLBACK, AV_TABLE, "TABLE"S_RARROW"\nTRACE", menu_average_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_rbw[] = {
{ MT_ADV_CALLBACK, 0, " AUTO", menu_rbw_acb},
#ifdef TINYSA4
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(1,9), "%sHz", menu_rbw_acb},
#else
{ MT_ADV_CALLBACK | MT_REPEATS, DATA_STARTS_REPEATS(1,6), "%4dkHz", menu_rbw_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef __VBW__
static const menuitem_t menu_vbw[] = {
{ MT_ADV_CALLBACK, 0, " AUTO", menu_vbw_acb},
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(1,5), "%b.2f RBW", menu_vbw_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_reffer[] = {
{ MT_FORM | MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,8), "%s", menu_reffer_acb},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_atten[] = {
{ MT_ADV_CALLBACK, 0, "%s", menu_atten_acb},
{ MT_KEYPAD | MT_LOW, KM_ATTENUATION, "MANUAL\n\b%s", "0 - 30dB"},
// { MT_ADV_CALLBACK | MT_HIGH,0, "0dB", menu_atten_high_acb},
{ MT_ADV_CALLBACK | MT_HIGH,30, "22.5 - 40dB", menu_atten_high_acb},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_reflevel[] = {
{ MT_ADV_CALLBACK,0, "AUTO", menu_reflevel_acb},
{ MT_KEYPAD, KM_REFLEVEL, "MANUAL\n\b%s", NULL},
{ MT_CANCEL, 0, S_LARROW" BACK", NULL },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
const menuitem_t menu_marker_search[] = {
{ MT_CALLBACK, 4, "PEAK\n SEARCH", menu_marker_search_cb },
{ MT_CALLBACK, 0, "MIN\n" S_LARROW" LEFT", menu_marker_search_cb },
{ MT_CALLBACK, 1, "MIN\n" S_RARROW" RIGHT", menu_marker_search_cb },
{ MT_CALLBACK, 2, "MAX\n" S_LARROW" LEFT", menu_marker_search_cb },
{ MT_CALLBACK, 3, "MAX\n" S_RARROW" RIGHT", menu_marker_search_cb },
{ MT_ADV_CALLBACK, 0, "ENTER\n%s", menu_enter_marker_acb},
{ MT_ADV_CALLBACK, M_TRACKING, "TRACKING",menu_marker_modify_acb },
#ifdef TINYSA4
{ MT_KEYPAD, KM_NOISE, "PEAK\n\b%s", "2..20 dB"},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
const menuitem_t menu_marker_modify[] = {
{ MT_ADV_CALLBACK, 0, "MARKER %s", menu_marker_modify_acb},
{ MT_ADV_CALLBACK, M_DELTA, "DELTA %s", menu_marker_modify_acb},
{ MT_ADV_CALLBACK, M_NOISE, "NOISE", menu_marker_modify_acb},
{ MT_ADV_CALLBACK, M_TRACKING, "TRACKING", menu_marker_modify_acb},
{ MT_ADV_CALLBACK, M_STORED, "TRACE %s", menu_marker_modify_acb},
{ MT_ADV_CALLBACK, M_AVER, "TRACE\nAVERAGE", menu_marker_modify_acb},
{ MT_SUBMENU, 0, "SEARCH", menu_marker_search},
{ MT_CALLBACK, M_DELETE, "DELETE", menu_marker_delete_cb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef __LIMITS__
static const menuitem_t menu_limit_modify[] =
{
{ MT_KEYPAD, KM_LIMIT_FREQ, "FREQUENCY\n\b%s", "Frequency"},
{ MT_KEYPAD, KM_LIMIT_LEVEL, "LEVEL\n\b%s", "Level"},
{ MT_CALLBACK, 0, "DISABLE", menu_limit_disable_cb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_limit_select[] = {
{ MT_ADV_CALLBACK | MT_REPEATS, DATA_STARTS_REPEATS(0,LIMITS_MAX), MT_CUSTOM_LABEL, menu_limit_select_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
#if 0
const menuitem_t menu_marker_sel[] = {
{ MT_CALLBACK, 1, "MARKER %d", menu_marker_sel_cb },
{ MT_CALLBACK, 2, "MARKER %d", menu_marker_sel_cb },
{ MT_CALLBACK, 3, "MARKER %d", menu_marker_sel_cb },
{ MT_CALLBACK, 4, "MARKER %d", menu_marker_sel_cb },
// { MT_CALLBACK, 0, "ALL OFF", menu_marker_sel_cb },
{ MT_CALLBACK, 0, "DELTA", menu_marker_sel_cb },
{ MT_CALLBACK, 0, "NOISE", menu_marker_sel_cb },
{ MT_CALLBACK, 0, "TRACKING", menu_marker_sel_cb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
const menuitem_t menu_marker_select[] = {
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(1,MARKER_COUNT), "MARKER %d", menu_marker_select_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_marker_ref_select[] = {
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(1,MARKER_COUNT), S_RARROW"MARKER %d", menu_marker_ref_select_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
const menuitem_t menu_marker_ops[] = {
{ MT_CALLBACK, ST_START, S_RARROW" START", menu_marker_op_cb },
{ MT_CALLBACK, ST_STOP, S_RARROW" STOP", menu_marker_op_cb },
{ MT_CALLBACK, ST_CENTER, S_RARROW" CENTER", menu_marker_op_cb },
{ MT_CALLBACK, ST_SPAN, S_RARROW" SPAN", menu_marker_op_cb },
{ MT_CALLBACK, 4, S_RARROW" REF LEVEL",menu_marker_op_cb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_marker[] = {
// { MT_SUBMENU, 0, "SELECT\nMARKER", menu_marker_sel},
{ MT_SUBMENU, 0, "MODIFY\nMARKERS", menu_marker_modify},
{ MT_SUBMENU, 0, "MARKER\nOPS", menu_marker_ops},
{ MT_SUBMENU, 0, "SEARCH\nMARKER", menu_marker_search},
{ MT_CALLBACK, 0, "RESET\nMARKERS", menu_markers_reset_cb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifndef TINYSA4
static const menuitem_t menu_dfu[] = {
{ MT_FORM | MT_CALLBACK, 0, "ENTER DFU", menu_dfu_cb},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
#ifdef __HARMONIC__
static const menuitem_t menu_harmonic[] =
{
{ MT_ADV_CALLBACK, 0, "OFF", menu_harmonic_acb},
{ MT_ADV_CALLBACK, 2, "2", menu_harmonic_acb},
{ MT_ADV_CALLBACK, 3, "3", menu_harmonic_acb},
{ MT_ADV_CALLBACK, 4, "4", menu_harmonic_acb},
{ MT_ADV_CALLBACK, 5, "5", menu_harmonic_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_scanning_speed[] =
{
// { MT_ADV_CALLBACK, SD_NORMAL, "NORMAL", menu_scanning_speed_acb}, // order must match definition of enum
// { MT_ADV_CALLBACK, SD_PRECISE, PRECISE", menu_scanning_speed_acb},
// { MT_ADV_CALLBACK | MT_LOW,SD_FAST, "FAST", menu_scanning_speed_acb},
// { MT_KEYPAD | MT_LOW,KM_FAST_SPEEDUP, "FAST\nSPEEDUP", "2..20"},
{ MT_KEYPAD, KM_SAMPLETIME, "SDELAY\n\b%s", "250..10000, 0=auto"}, // This must be item 4 to match highlighting
{ MT_KEYPAD, KM_OFFSET_DELAY, "ODELAY\n\b%s", "250..10000, 0=auto"}, // This must be item 5 to match highlighting
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_sweep_points[] = {
#ifdef TINYSA4
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,6), "%3d point", menu_points_acb },
#else
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,4), "%3d point", menu_points_acb },
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_sweep_points_form[] = {
#ifdef TINYSA4
{ MT_FORM|MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,6), "%3d point", menu_points_acb },
#else
{ MT_FORM|MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,4), "%3d point", menu_points_acb },
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_sweep_speed[] =
{
{ MT_ADV_CALLBACK, SD_NORMAL, "NORMAL", menu_scanning_speed_acb}, // order must match definition of enum
{ MT_ADV_CALLBACK, SD_PRECISE, "PRECISE", menu_scanning_speed_acb},
#ifdef TINYSA4
{ MT_ADV_CALLBACK, SD_FAST, "FAST", menu_scanning_speed_acb},
#else
{ MT_ADV_CALLBACK | MT_LOW,SD_FAST, "FAST", menu_scanning_speed_acb},
#endif
{ MT_ADV_CALLBACK, SD_NOISE_SOURCE, "NOISE\nSOURCE", menu_scanning_speed_acb},
#ifdef TINYSA4
{ MT_KEYPAD, KM_FAST_SPEEDUP,"SPEEDUP\n\b%s", "2..20, 0=disable"},
#else
{ MT_KEYPAD | MT_LOW,KM_FAST_SPEEDUP,"SPEEDUP\n\b%s", "2..20, 0=disable"},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef TINYSA4
static const menuitem_t menu_curve3[] = {
{ MT_FORM | MT_ADV_CALLBACK | MT_REPEATS, DATA_STARTS_REPEATS(14,6), MT_CUSTOM_LABEL, menu_curve_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_curve2[] = {
{ MT_FORM | MT_ADV_CALLBACK | MT_REPEATS, DATA_STARTS_REPEATS(7,7), MT_CUSTOM_LABEL, menu_curve_acb },
{ MT_FORM | MT_SUBMENU, 0, S_RARROW" MORE", menu_curve3},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_curve[] = {
{ MT_FORM | MT_ADV_CALLBACK | MT_REPEATS, DATA_STARTS_REPEATS(0,7), MT_CUSTOM_LABEL, menu_curve_acb },
{ MT_FORM | MT_SUBMENU, 0, S_RARROW" MORE", menu_curve2},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_curve_confirm[] = {
{ MT_CALLBACK, 1, "OK", menu_curve_confirm_cb },
{ MT_CALLBACK, 0, "CANCEL", menu_curve_confirm_cb },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
#if 0
static const menuitem_t menu_noise_figure_confirm[] = {
{ MT_CALLBACK, 1, "STORE\nTINYSA NF", menu_noise_figure_confirm_cb },
{ MT_CALLBACK, 0, "CANCEL", menu_noise_figure_confirm_cb },
{ MT_NONE, 0, NULL, NULL } // sentinel
};
#endif
#endif
#ifdef TINYSA4
static const menuitem_t menu_actual_power2[] =
{
{ MT_ADV_CALLBACK, 0, "30MHz\nLEVEL", menu_output_level_acb},
{ MT_ADV_CALLBACK, 0, "1GHz\nLEVEL", menu_output_level2_acb},
{ MT_ADV_CALLBACK, 0, "1.2GHz\nLEVEL", menu_output_level3_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_actual_power[] =
{
{ MT_KEYPAD, KM_ACTUALPOWER, "INPUT\nLEVEL", "Enter actual level under marker"},
#ifdef TINYSA4
{ MT_SUBMENU, 0, "OUTPUT\nLEVEL", menu_actual_power2},
{ MT_CALLBACK, 0, "INPUT\nCURVE", menu_input_curve_prepare_cb},
{ MT_CALLBACK, 0, "LNA\nCURVE", menu_lna_curve_prepare_cb},
{ MT_CALLBACK, 0, "ULTRA\nCURVE", menu_ultra_curve_prepare_cb},
{ MT_CALLBACK, 0, "LNA_U\nCURVE", menu_lna_u_curve_prepare_cb},
{ MT_CALLBACK, 0, "OUTPUT\nCURVE", menu_output_curve_prepare_cb},
#else
{ MT_ADV_CALLBACK, 0, "OUTPUT\nLEVEL", menu_output_level_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef TINYSA4
static const menuitem_t menu_settings4[];
#endif
#ifdef TINYSA4
static const menuitem_t menu_settings4[] =
{
{ MT_ADV_CALLBACK, 0, "DEBUG\nFREQ", menu_debug_freq_acb},
{ MT_ADV_CALLBACK, 0, "DEBUG\nAVOID", menu_debug_avoid_acb},
{ MT_ADV_CALLBACK, 0, "DEBUG\nSPUR", menu_debug_spur_acb},
{ MT_ADV_CALLBACK, 0, "HIDE\n21MHz", menu_hide_21MHz_acb},
#if 0 // only used during development
{ MT_KEYPAD, KM_COR_AM, "COR\nAM", "Enter AM modulation correction"},
{ MT_KEYPAD, KM_COR_WFM, "COR\nWFM", "Enter WFM modulation correction"},
{ MT_KEYPAD, KM_COR_NFM, "COR\nNFM", "Enter NFM modulation correction"},
#endif
// { MT_CALLBACK, 0 , "CLEAR\nCONFIG", menu_clearconfig_cb},
// { MT_SUBMENU, 0, S_RARROW" MORE", menu_settings3},
{ MT_KEYPAD, KM_DIRECT_START, "DSTART\n\b%s", ""},
{ MT_KEYPAD, KM_DIRECT_STOP, "DSTOP\n\b%s", ""},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_settings3[] =
{
#ifdef TINYSA4
// { MT_KEYPAD, KM_GRIDLINES, "MINIMUM\nGRIDLINES", "Enter minimum horizontal grid divisions"},
#ifndef __NEW_SWITCHES__
{ MT_ADV_CALLBACK, 0, "ADF OUT", menu_adf_out_acb},
#endif
{ MT_KEYPAD, KM_ULTRA_START,"ULTRASTART\n\b%s", "10G=auto"},
// { MT_KEYPAD | MT_LOW, KM_IF2, "IF2 FREQ", "Set to zero for no IF2"},
{ MT_KEYPAD, KM_R, "R\n\b%s", "Set R"},
{ MT_KEYPAD, KM_MOD, "MODULO\n\b%s", "Set MODULO"},
{ MT_KEYPAD, KM_CP, "CP", "Set CP"},
#ifdef __WAIT_CTS_WHILE_SLEEPING__
{ MT_ADV_CALLBACK, 0, "SLEEP\nWAIT", menu_sleep_acb},
#endif
#ifdef __HARMONIC__
{ MT_SUBMENU ,0, "HARMONIC", menu_harmonic},
#endif
// { MT_ADV_CALLBACK | MT_LOW, 0, "ULTRA\nMODE", menu_settings_ultra_acb},
#ifdef __HAM_BAND__
{ MT_ADV_CALLBACK, 0, "HAM\nBANDS", menu_settings_ham_bands},
#endif
{ MT_SUBMENU, 0, S_RARROW" MORE", menu_settings4},
#else
#ifdef __ULTRA__
{ MT_ADV_CALLBACK, 0, "ENABLE\nULTRA", menu_ultra_acb},
{ MT_KEYPAD, KM_ULTRA_START, "ULTRA\nSTART", "Enter ULTRA mode start freq"},
{ MT_ADV_CALLBACK, 0, "DEBUG\nSPUR", menu_debug_spur_acb},
#endif
#ifdef __HARMONIC__
{ MT_SUBMENU | MT_HIGH,0, "HARMONIC", menu_harmonic},
// { MT_ADV_CALLBACK,0, "SPUR\nREMOVAL", menu_harmonic_spur_acb},
#endif
#ifdef __HAM_BAND__
{ MT_ADV_CALLBACK, 0, "HAM\nBANDS", menu_settings_ham_bands},
#endif
#endif // TINYSA4
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_settings2[] =
{
{ MT_ADV_CALLBACK, 0, "AGC", menu_settings_agc_acb},
{ MT_ADV_CALLBACK, 0, "LNA", menu_settings_lna_acb},
{ MT_ADV_CALLBACK | MT_LOW, 0, "BPF", menu_settings_bpf_acb},
{ MT_ADV_CALLBACK | MT_LOW, 0, "BELOW IF", menu_settings_below_if_acb},
{ MT_KEYPAD | MT_LOW, KM_IF, "IF FREQ\n\b%s", "0=auto IF"},
#ifdef TINYSA4
#ifdef __QUASI_PEAK__
{ MT_KEYPAD, KM_DECAY, "DECAY\n\b%s", "0..1000000ms or sweeps"},
{ MT_KEYPAD, KM_ATTACK, "ATTACK\n\b%s", "0..100000ms"},
#endif
#endif
{ MT_SUBMENU,0, "SCAN\nSPEED", menu_scanning_speed},
#ifdef TINYSA4
{ MT_SUBMENU | MT_LOW,0, "MIXER\nDRIVE", menu_mixer_drive},
{ MT_SUBMENU, 0, S_RARROW" MORE", menu_settings3},
#else
{ MT_SUBMENU | MT_LOW,0, "MIXER\nDRIVE", menu_lo_drive},
{ MT_KEYPAD, KM_10MHZ, "CORRECT\nFREQUENCY", "Enter actual l0MHz frequency"},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef TINYSA4
static const menuitem_t menu_settings[] =
{
{ MT_ADV_CALLBACK,0, "PROGRESS\nBAR", menu_progress_bar_acb},
{ MT_ADV_CALLBACK, 0, "DIRECT\nMODE", menu_direct_acb},
{ MT_ADV_CALLBACK, 0, "LINEAR\nAVERAGING", menu_linear_averaging_acb},
{ MT_KEYPAD, KM_FREQ_CORR, "FREQ CORR\n\b%s", "Enter ppb correction"},
// { MT_SUBMENU, 0, "CALIBRATE\nHARMONIC", menu_calibrate_harmonic},
#ifdef __NOISE_FIGURE__
{ MT_KEYPAD, KM_NF, "NF\n\b%s", "Enter tinySA noise figure"},
#endif
#ifdef __SD_CARD_DUMP_FIRMWARE__
{ MT_CALLBACK, FMT_BIN_FILE, "DUMP\nFIRMWARE", menu_sdcard_cb},
#endif
#ifdef __SD_CARD_LOAD__
{ MT_CALLBACK, 0 , "LOAD\nCONFIG.INI", menu_load_config_cb},
// { MT_CALLBACK, 1 , "LOAD\nSETTING.INI", menu_load_config_cb},
#endif
{ MT_ADV_CALLBACK, 0, "INTERNALS", menu_internals_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
#ifdef __NOISE_FIGURE__
static const menuitem_t menu_measure_noise_figure[] =
{
{ MT_ADV_CALLBACK, M_NF_TINYSA, "MEASURE\nTINYSA NF",menu_measure_acb},
{ MT_ADV_CALLBACK, M_NF_STORE, "STORE\nTINYSA NF",menu_measure_acb},
{ MT_ADV_CALLBACK, M_NF_VALIDATE, "VALIDATE\nTINYSA NF",menu_measure_acb},
{ MT_ADV_CALLBACK, M_NF_AMPLIFIER, "MEASURE\nAMP NF",menu_measure_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_measure2[] = {
{ MT_ADV_CALLBACK, M_AM, "AM", menu_measure_acb},
{ MT_ADV_CALLBACK, M_FM, "FM", menu_measure_acb},
{ MT_ADV_CALLBACK, M_THD, "THD", menu_measure_acb},
#ifdef __CHANNEL_POWER__
{ MT_ADV_CALLBACK, M_CP, "CHANNEL\nPOWER",menu_measure_acb},
#endif
#ifdef __LINEARITY__
{ MT_ADV_CALLBACK | MT_LOW, M_LINEARITY, "LINEAR", menu_measure_acb},
#endif
#ifdef __NOISE_FIGURE__
{ MT_SUBMENU | MT_LOW, 0, "NOISE\nFIGURE", menu_measure_noise_figure},
#endif
#ifdef __FFT_DECONV__
{ MT_ADV_CALLBACK, M_DECONV, "DECONV", menu_measure_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_measure[] = {
{ MT_ADV_CALLBACK, M_OFF, "OFF", menu_measure_acb},
{ MT_ADV_CALLBACK, M_IMD, "HARMONIC", menu_measure_acb},
{ MT_ADV_CALLBACK, M_OIP3, "OIP3", menu_measure_acb},
{ MT_ADV_CALLBACK, M_PHASE_NOISE,"PHASE\nNOISE", menu_measure_acb},
{ MT_ADV_CALLBACK, M_SNR, "SNR", menu_measure_acb},
{ MT_ADV_CALLBACK, M_PASS_BAND, "-3dB\nWIDTH", menu_measure_acb},
{ MT_SUBMENU, 0, S_RARROW" MORE", menu_measure2},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef __CALIBRATE__
#ifdef TINYSA4
static const menuitem_t menu_calibrate_harmonic[] =
{
{ MT_FORM | MT_TITLE, 0, "Connect 5.34GHz at -50 to -10dBm", NULL},
#ifdef TINYSA4
{ MT_FORM | MT_CALLBACK, 3, "CALIBRATE", menu_calibrate_cb},
#endif
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_calibrate_normal[] =
{
{ MT_FORM | MT_TITLE, 0, "Connect CAL and RF", NULL},
#ifdef TINYSA4
{ MT_FORM | MT_CALLBACK, 1, "CALIBRATE", menu_calibrate_cb},
#endif
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_calibrate[] =
{
{ MT_FORM | MT_SUBMENU, 1, "CALIBRATE 100kHz to 5.34GHz", menu_calibrate_normal},
{ MT_FORM | MT_SUBMENU, 1, "CALIBRATE above 5.34GHz", menu_calibrate_harmonic},
{ MT_FORM | MT_CALLBACK, 2, "RESET CALIBRATION", menu_calibrate_cb},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#else
static const menuitem_t menu_calibrate[] =
{
{ MT_FORM | MT_TITLE, 0, "Connect HIGH and LOW", NULL},
{ MT_FORM | MT_CALLBACK, 1, "CALIBRATE", menu_calibrate_cb},
{ MT_FORM | MT_CALLBACK, 2, "RESET CALIBRATION", menu_calibrate_cb},
{ MT_FORM | MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
#endif
#ifdef __USE_SERIAL_CONSOLE__
const menuitem_t menu_serial_speed[] = {
{ MT_ADV_CALLBACK|MT_REPEATS, DATA_STARTS_REPEATS(0,10), "%u", menu_serial_speed_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_connection[] = {
{ MT_ADV_CALLBACK, _MODE_USB, "USB", menu_connection_acb },
{ MT_ADV_CALLBACK, _MODE_SERIAL, "SERIAL", menu_connection_acb },
{ MT_SUBMENU, 0, "SERIAL\nSPEED", menu_serial_speed },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
const menuitem_t menu_touch[] = {
{ MT_CALLBACK, CONFIG_MENUITEM_TOUCH_CAL, "TOUCH CAL", menu_config_cb},
{ MT_CALLBACK, CONFIG_MENUITEM_TOUCH_TEST, "TOUCH TEST", menu_config_cb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef __USE_RTC__
const menuitem_t menu_date_time[] = {
{ MT_KEYPAD, KM_RTC_TIME, "SET TIME\n\b%s", 0 }, // MUST BE BEFORE DATE
{ MT_KEYPAD, KM_RTC_DATE, "SET DATE\n\b%s", 0 },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
static const menuitem_t menu_config2[] =
{
{ MT_ADV_CALLBACK, 0, "PULSE\nHIGH", menu_settings_pulse_acb},
{ MT_ADV_CALLBACK | MT_LOW, 0,"LO OUTPUT", menu_lo_output_acb},
#ifdef __ULTRA__
{ MT_ADV_CALLBACK, 0, "ENABLE\nULTRA", menu_ultra_acb},
#endif
{ MT_KEYPAD, KM_GRIDLINES, "MINIMUM\nGRIDLINES", "Enter minimum horizontal grid divisions"},
{ MT_KEYPAD, KM_VAR, "JOG STEP\n\b%s","0 = AUTO"},
{ MT_CALLBACK, 0 , "CLEAR\nCONFIG", menu_clearconfig_cb},
#ifdef __USE_SERIAL_CONSOLE__
{ MT_SUBMENU, 0, "CONNECTION", menu_connection},
#endif
{ MT_SUBMENU, 0, "LEVEL\nCORRECTION", menu_actual_power},
#ifdef TINYSA4
{ MT_SUBMENU, 0, "EXPERT\nCONFIG", menu_settings},
#else
{ MT_SUBMENU, 0, "EXPERT\nCONFIG", menu_settings2},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_config[] = {
{ MT_SUBMENU, 0, "TOUCH", menu_touch},
{ MT_CALLBACK, CONFIG_MENUITEM_SELFTEST, "SELF TEST", menu_config_cb},
#ifdef __CALIBRATE__
{ MT_SUBMENU, 0, "LEVEL CAL", menu_calibrate},
#endif
{ MT_CALLBACK, CONFIG_MENUITEM_VERSION, "VERSION", menu_config_cb},
#ifdef __SPUR__
{ MT_ADV_CALLBACK,0, "%s", menu_spur_acb},
#endif
{ MT_KEYPAD, KM_REPEAT, "SAMPLE REP\n\b%s", "1..100"},
#ifdef __LCD_BRIGHTNESS__
{ MT_CALLBACK, 0, "BRIGHTNESS", menu_brightness_cb},
#endif
#ifdef __USE_RTC__
{ MT_SUBMENU, 0, "DATE\nTIME", menu_date_time},
#endif
#ifndef TINYSA4
{ MT_SUBMENU, 0, S_RARROW" DFU", menu_dfu},
#endif
{ MT_SUBMENU, 0, S_RARROW"MORE", menu_config2},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_trace[] =
{
{ MT_ADV_CALLBACK|MT_REPEATS,DATA_STARTS_REPEATS(0,TRACES_MAX), "TRACE %d", menu_trace_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_marker_trace[] =
{
{ MT_ADV_CALLBACK|MT_REPEATS,DATA_STARTS_REPEATS(0,TRACES_MAX), "TRACE %d", menu_marker_trace_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_store_trace[] =
{
{ MT_ADV_CALLBACK|MT_REPEATS,DATA_STARTS_REPEATS(0,TRACES_MAX), MT_CUSTOM_LABEL, menu_store_trace_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_subtract_trace[] =
{
{ MT_ADV_CALLBACK|MT_REPEATS,DATA_STARTS_REPEATS(0,TRACES_MAX+1), MT_CUSTOM_LABEL, menu_subtract_trace_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_traces[] =
{
{ MT_ADV_CALLBACK,0, "TRACE %d", menu_traces_acb},
{ MT_ADV_CALLBACK,1, "ENABLE", menu_traces_acb},
{ MT_ADV_CALLBACK,2, "FREEZE", menu_traces_acb},
{ MT_ADV_CALLBACK,3, MT_CUSTOM_LABEL, menu_traces_acb}, // Calc
{ MT_ADV_CALLBACK,4, "NORMALIZE", menu_traces_acb},
{ MT_ADV_CALLBACK,5, MT_CUSTOM_LABEL, menu_traces_acb}, // Trace Math
{ MT_SUBMENU, 0, "COPY\n"S_RARROW"TRACE", menu_store_trace},
#ifdef TINYSA4
{ MT_ADV_CALLBACK,6, "WRITE\n"S_RARROW"SD", menu_traces_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_display[] = {
{ MT_ADV_CALLBACK,0, "PAUSE\nSWEEP", menu_pause_acb},
{ MT_ADV_CALLBACK,1, MT_CUSTOM_LABEL, menu_waterfall_acb},
#ifdef __LEVEL_METER__
{ MT_ADV_CALLBACK,1, "BIG\nNUMBER", menu_level_meter_acb},
#endif
#ifdef __DRAW_LINE__
{ MT_ADV_CALLBACK,1, "DRAW\nLINE", menu_settings_draw_line_acb},
#endif
{ MT_KEYPAD, KM_SWEEP_TIME, "SWEEP\nTIME", "0..600s, 0=disable"}, // This must be item 3 to match highlighting
{ MT_SUBMENU, 0, "SWEEP\nPOINTS", menu_sweep_points},
{ MT_SUBMENU, 0, "SWEEP\nACCURACY", menu_sweep_speed},
{ MT_ADV_CALLBACK,0, "ROTATE\nDISPLAY", menu_flip_acb},
//#ifdef __REMOTE_DESKTOP__
// { MT_ADV_CALLBACK,0, "SEND\nDISPLAY", menu_send_display_acb},
//#endif
// { MT_KEYPAD, KM_SWEEP_TIME, "SWEEP\nTIME", NULL},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_unit[] =
{
{ MT_ADV_CALLBACK,U_DBM, "dBm", menu_unit_acb},
{ MT_ADV_CALLBACK,U_DBMV, "dBmV", menu_unit_acb},
{ MT_ADV_CALLBACK,U_DBUV, "dB"S_MICRO"V", menu_unit_acb},
{ MT_ADV_CALLBACK,U_VOLT, "Volt", menu_unit_acb},
//{ MT_ADV_CALLBACK,U_UVOLT, S_MICRO"Volt", menu_unit_acb},
{ MT_ADV_CALLBACK,U_WATT, "Watt", menu_unit_acb},
//{ MT_ADV_CALLBACK,U_UWATT, S_MICRO"Watt", menu_unit_acb},
#ifdef TINYSA4
{ MT_ADV_CALLBACK,U_RAW, "RAW", menu_unit_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_trigger[] = {
{ MT_ADV_CALLBACK, T_AUTO, "AUTO", menu_trigger_acb},
{ MT_ADV_CALLBACK, T_NORMAL, "NORMAL", menu_trigger_acb},
{ MT_ADV_CALLBACK, T_SINGLE, "SINGLE", menu_trigger_acb},
// { MT_ADV_CALLBACK, T_DONE, "READY", menu_trigger_acb},
{ MT_KEYPAD, KM_TRIGGER, "TRIGGER LEV\n\b%s", NULL},
{ MT_ADV_CALLBACK, T_UP, "UP\nEDGE", menu_trigger_acb},
{ MT_ADV_CALLBACK, T_DOWN, "DOWN\nEDGE", menu_trigger_acb},
{ MT_ADV_CALLBACK, T_MODE, "%s\nTRIGGER", menu_trigger_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_level[] = {
{ MT_SUBMENU, 0, "REF LEVEL", menu_reflevel},
//{ MT_SUBMENU, 0, "SCALE/DIV", menu_scale_per},
{ MT_CALLBACK,0, "SCALE/DIV", menu_scale_cb},
{ MT_SUBMENU, 0, "ATTENUATE", menu_atten},
// { MT_SUBMENU,0, "CALC", menu_average},
{ MT_SUBMENU, 0, "UNIT", menu_unit},
{ MT_KEYPAD, KM_EXT_GAIN, "EXT GAIN\n\b%s",NULL},
#ifdef TINYSA4
{ MT_ADV_CALLBACK | MT_LOW ,0,"LNA", menu_extra_lna_acb},
#endif
{ MT_SUBMENU, 0, "TRIGGER", menu_trigger},
#ifdef __LISTEN__
{ MT_ADV_CALLBACK, 0, "LISTEN", menu_listen_acb},
#endif
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
static const menuitem_t menu_stimulus[] = {
{ MT_KEYPAD, KM_START, "START\n\b%s", NULL},
{ MT_KEYPAD, KM_STOP, "STOP\n\b%s", NULL},
{ MT_KEYPAD, KM_CENTER, "CENTER\n\b%s", NULL},
{ MT_KEYPAD, KM_SPAN, "SPAN\n\b%s", NULL},
{ MT_KEYPAD, KM_CW, "ZERO SPAN", NULL},
{ MT_SUBMENU,0, "RBW", menu_rbw},
#ifdef __VBW__
{ MT_SUBMENU, 0, "VBW", menu_vbw},
#endif
{ MT_ADV_CALLBACK,0, "SHIFT\nFREQ", menu_shift_acb},
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#ifdef __USE_SD_CARD__
static const menuitem_t menu_storage[] = {
#ifdef __SD_FILE_BROWSER__
{ MT_CALLBACK, FMT_BMP_FILE, "LOAD BMP", menu_sdcard_browse_cb },
{ MT_CALLBACK, FMT_CMD_FILE, "LOAD CMD", menu_sdcard_browse_cb },
#endif
{ MT_ADV_CALLBACK, 0, "AUTO NAME", menu_autoname_acb },
{ MT_NONE, 0, NULL, menu_back} // next-> menu_back
};
#endif
#ifdef TINYSA4
const menuitem_t menu_mode[] = {
// { MT_FORM | MT_TITLE, 0, "tinySA MODE", NULL},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_INPUT+I_SA, "Spectrum Analyzer", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_OUTPUT+I_SINUS, "Signal Generator", menu_mode_acb},
// { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_HIGH_OUTPUT+I_GEN, "%s to HIGH out", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_CONNECT+I_GEN, "Calibration Output: %s", menu_sreffer_acb},
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};
#else
const menuitem_t menu_mode[] = {
// { MT_FORM | MT_TITLE, 0, "tinySA MODE", NULL},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_INPUT+I_SA, "%s to LOW in", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_HIGH_INPUT+I_SA, "%s to HIGH in", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_OUTPUT+I_SINUS, "%s to LOW out", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_HIGH_OUTPUT+I_GEN, "%s to HIGH out", menu_mode_acb},
{ MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_CONNECT+I_GEN, "Cal. output: %s", menu_sreffer_acb},
// { MT_SUBMENU, 0, "EXPERT\nCONFIG", menu_settings3},
// { MT_FORM | MT_CANCEL, 0, S_RARROW" BACK", NULL },
{ MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel
};
#endif
static const menuitem_t menu_top[] = {
{ MT_SUBMENU, 0, "PRESET", menu_load_preset},
{ MT_SUBMENU, 0, "FREQUENCY", menu_stimulus},
{ MT_SUBMENU, 0, "LEVEL", menu_level},
{ MT_SUBMENU, 0, "TRACE", menu_traces},
{ MT_SUBMENU, 0, "DISPLAY", menu_display},
{ MT_SUBMENU, 0, "MARKER", menu_marker},
{ MT_SUBMENU, 0, "MEASURE", menu_measure},
#ifdef __USE_SD_CARD__
{ MT_SUBMENU, 0, "STORAGE", menu_storage},
#endif
{ MT_SUBMENU, 0, "CONFIG", menu_config},
{ MT_SUBMENU, 0, "MODE", menu_mode},
{ MT_NONE, 0, NULL, NULL } // sentinel,
// MENUITEM_CLOSE,
};
// ===[MENU DEFINITION END]======================================================
#define ACTIVE_COLOR RGBHEX(0x007FFF)
static void menu_item_modify_attribute( // To modify menu buttons with keypad modes
const menuitem_t *menu, int item, ui_button_t *button)
{
if (menu == menu_display) {
if (item == 5)
button->icon = setting.sweep_time_us != 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO;
// } else if (menu == menu_sweep_speed) {
// if (item == 3)
// button->icon = setting.fast_speedup != 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO;
} else if (menu == menu_reflevel) {
if (item == 1)
button->icon = setting.auto_reflevel ? BUTTON_ICON_GROUP: BUTTON_ICON_GROUP_CHECKED;
} else if (menu == menu_atten) {
if (item == 1)
button->icon = setting.auto_attenuation ? BUTTON_ICON_GROUP: BUTTON_ICON_GROUP_CHECKED;
}
}
static void fetch_numeric_target(uint8_t mode)
{
switch (mode) {
case KM_START:
uistat.freq_value = get_sweep_frequency(ST_START) + (setting.frequency_offset - FREQUENCY_SHIFT);
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_STOP:
uistat.freq_value = get_sweep_frequency(ST_STOP) + (setting.frequency_offset - FREQUENCY_SHIFT);
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_CENTER:
uistat.freq_value = get_sweep_frequency(ST_CENTER) + (setting.frequency_offset - FREQUENCY_SHIFT);
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_SPAN:
uistat.freq_value = get_sweep_frequency(ST_SPAN);
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_CW:
uistat.freq_value = get_sweep_frequency(ST_CW) + (setting.frequency_offset - FREQUENCY_SHIFT);
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_SCALE:
case KM_LINEAR_SCALE:
uistat.value = setting.scale;
plot_printf(uistat.text, sizeof uistat.text, "%f/", uistat.value);
break;
case KM_REFLEVEL:
uistat.value = setting.reflevel;
plot_printf(uistat.text, sizeof uistat.text, "%.3F", uistat.value);
break;
case KM_ATTENUATION:
uistat.value = get_attenuation();
plot_printf(uistat.text, sizeof uistat.text, "%ddB", ((int32_t)uistat.value));
break;
case KM_ACTUALPOWER:
uistat.value = get_level_offset();
plot_printf(uistat.text, sizeof uistat.text, "%ddB", ((int32_t)uistat.value));
break;
case KM_IF:
uistat.freq_value = setting.frequency_IF;
if (!setting.auto_IF)
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
else
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
break;
#ifdef TINYSA4
case KM_IF2:
uistat.freq_value = config.frequency_IF2;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_R:
uistat.value = setting.R;
if (setting.R)
plot_printf(uistat.text, sizeof uistat.text, "%d", setting.R);
else
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
break;
case KM_MOD:
if (local_modulo)
plot_printf(uistat.text, sizeof uistat.text, "%d", local_modulo);
else
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
break;
case KM_CP:
uistat.value = ADF4350_modulo;
plot_printf(uistat.text, sizeof uistat.text, "%d", ADF4350_modulo);
break;
#endif
case KM_SAMPLETIME:
uistat.value = setting.step_delay;
if (uistat.value)
plot_printf(uistat.text, sizeof uistat.text, "%dus", ((int32_t)uistat.value));
else
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
break;
case KM_FAST_SPEEDUP:
uistat.value = setting.fast_speedup;
plot_printf(uistat.text, sizeof uistat.text, "%d", ((int32_t)uistat.value));
break;
case KM_REPEAT:
uistat.value = setting.repeat;
plot_printf(uistat.text, sizeof uistat.text, "%d", ((int32_t)uistat.value));
break;
case KM_LOWOUTLEVEL:
uistat.value = get_level(); // compensation for dB offset during low output mode
float end_level = ((int32_t)uistat.value)+setting.level_sweep;
if (end_level < level_min())
end_level = level_min();
if (end_level > level_max())
end_level = level_max();
uistat.value += setting.external_gain;
end_level += setting.external_gain;
if (setting.level_sweep != 0)
plot_printf(uistat.text, sizeof uistat.text, "%.1f to %.1fdBm", uistat.value, end_level);
else
#ifdef TINYSA4
plot_printf(uistat.text, sizeof uistat.text, "%+.1fdBm %s", uistat.value, (setting.disable_correction?"Uncorrected":""));
#else
plot_printf(uistat.text, sizeof uistat.text, "%+.1fdBm", uistat.value);
#endif
break;
case KM_HIGHOUTLEVEL:
uistat.value = get_level(); // compensation for dB offset during low output mode
uistat.value += setting.external_gain;
plot_printf(uistat.text, sizeof uistat.text, "%+.1fdBm", uistat.value);
break;
case KM_DECAY:
uistat.value = setting.decay;
plot_printf(uistat.text, sizeof uistat.text, "%d", ((int32_t)uistat.value));
break;
#ifdef __QUASI_PEAK__
case KM_ATTACK:
uistat.value = setting.attack;
plot_printf(uistat.text, sizeof uistat.text, "%d", ((int32_t)uistat.value));
break;
#endif
#ifdef __ULTRA__
case KM_ULTRA_START:
uistat.freq_value = config.ultra_start;
if (config.ultra_start == ULTRA_AUTO)
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
else
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value );
break;
case KM_DIRECT_START:
uistat.freq_value = config.direct_start;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_DIRECT_STOP:
uistat.freq_value = config.direct_stop;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
#endif
#ifdef __LIMITS__
case KM_LIMIT_FREQ:
uistat.freq_value = setting.limits[current_trace][active_limit].frequency;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_LIMIT_LEVEL:
uistat.value = value(setting.limits[current_trace][active_limit].level);
plot_printf(uistat.text, sizeof uistat.text, "%.1f", uistat.value);
break;
#endif
case KM_NOISE:
uistat.value = setting.noise;
plot_printf(uistat.text, sizeof uistat.text, "%d", ((int32_t)uistat.value));
break;
#ifdef TINYSA4
case KM_FREQ_CORR:
if (config.setting_frequency_30mhz >= 3000000000ULL)
uistat.value = (config.setting_frequency_30mhz - 3000000000ULL)/3;
else
uistat.value = - ((int)(3000000000ULL - config.setting_frequency_30mhz))/3;
plot_printf(uistat.text, sizeof uistat.text, "%d", (int32_t)uistat.value);
break;
#else
case KM_10MHZ:
uistat.freq_value = config.setting_frequency_10mhz;
plot_printf(uistat.text, sizeof uistat.text, "%3.6fMHz", uistat.freq_value);
break;
#endif
case KM_EXT_GAIN:
uistat.value = setting.external_gain;
plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value);
break;
case KM_LEVELSWEEP:
uistat.value = setting.level_sweep;
plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value);
break;
case KM_SWEEP_TIME:
// if (setting.sweep_time_us < calc_min_sweep_time_us())
// uistat.value = calc_min_sweep_time_us();
// else
uistat.value = setting.sweep_time_us;
uistat.value /= (float)ONE_SECOND_TIME;
plot_printf(uistat.text, sizeof uistat.text, "%.3Fs", uistat.value);
break;
case KM_TRIGGER:
uistat.value = value(setting.trigger_level);
char *format;
if (UNIT_IS_LINEAR(setting.unit))
format = "%.3F%s"; // 5 characters incl u, m, etc...
else
format = "%.1f%s";
plot_printf(uistat.text, sizeof uistat.text, format, uistat.value,unit_string[setting.unit]);
break;
case KM_MARKER:
if (active_marker >=0) {
uistat.freq_value = markers[active_marker].frequency;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
}
break;
case KM_MODULATION:
if (active_marker >=0) {
uistat.value = setting.modulation_frequency;
plot_printf(uistat.text, sizeof uistat.text, "%7.0fHz", uistat.value);
}
break;
#ifdef TINYSA4
case KM_DEVIATION:
uistat.freq_value = setting.modulation_deviation_div100 * 100;
plot_printf(uistat.text, sizeof uistat.text, "%.3QHz", uistat.freq_value);
break;
case KM_DEPTH:
uistat.value = setting.modulation_depth_x100;
plot_printf(uistat.text, sizeof uistat.text, "%3d", (int)uistat.value);
break;
#endif
case KM_VAR:
uistat.freq_value = setting.frequency_var;
if ( setting.frequency_var)
plot_printf(uistat.text, sizeof uistat.text, "%.4QHz", setting.frequency_var);
else
plot_printf(uistat.text, sizeof uistat.text, "AUTO");
break;
#ifdef __NOISE_FIGURE__
case KM_NF:
uistat.value = config.noise_figure;
plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value);
break;
#endif
#ifdef __USE_RTC__
case KM_RTC_TIME:
{
uint32_t tr = rtc_get_tr_bin(); // TR read first
plot_printf(uistat.text, sizeof uistat.text, "%02d:%02d:%02d",
RTC_TR_HOUR(dr),
RTC_TR_MIN(dr),
RTC_TR_SEC(dr));
}
break;
case KM_RTC_DATE:
{
uint32_t dr = rtc_get_dr_bin(); // DR read second
plot_printf(uistat.text, sizeof uistat.text, "20%02d/%02d/%02d",
RTC_DR_YEAR(dr),
RTC_DR_MONTH(dr),
RTC_DR_DAY(dr));
}
break;
#endif
}
}
static void
set_numeric_value(void)
{
switch (keypad_mode) {
case KM_START:
set_sweep_frequency(ST_START, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT));
break;
case KM_STOP:
set_sweep_frequency(ST_STOP, (freq_t)(uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)));
break;
case KM_CENTER:
set_sweep_frequency(ST_CENTER, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT));
break;
case KM_SPAN:
setting.modulation = MO_NONE;
set_sweep_frequency(ST_SPAN, uistat.freq_value);
break;
case KM_CW:
set_sweep_frequency(ST_CW, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT));
break;
case KM_LINEAR_SCALE:
case KM_SCALE:
user_set_scale(uistat.value);
break;
case KM_REFLEVEL:
user_set_reflevel(uistat.value);
break;
case KM_ATTENUATION:
setting.auto_attenuation = false;
set_attenuation(uistat.value);
break;
case KM_ACTUALPOWER:
set_actual_power(uistat.value);
config_save();
break;
case KM_IF:
set_IF(uistat.freq_value);
// config_save();
break;
#ifdef TINYSA4
case KM_IF2:
set_IF2(uistat.freq_value);
// config_save();
break;
case KM_R:
set_R(uistat.value);
// config_save();
break;
case KM_MOD:
set_modulo(uistat.value);
break;
case KM_CP:
ADF4351_CP((int)uistat.value);
// config_save();
break;
#endif
case KM_SAMPLETIME:
set_step_delay(uistat.value);
break;
case KM_OFFSET_DELAY:
set_offset_delay(uistat.value);
break;
case KM_FAST_SPEEDUP:
set_fast_speedup(uistat.value);
break;
case KM_REPEAT:
set_repeat(uistat.value);
break;
case KM_LOWOUTLEVEL:
set_level(uistat.value - setting.external_gain);
break;
case KM_HIGHOUTLEVEL:
set_level(uistat.value - setting.external_gain);
break;
case KM_DECAY:
set_decay(uistat.value);
break;
#ifdef __QUASI_PEAK__
case KM_ATTACK:
set_attack(uistat.value);
break;
#endif
#ifdef __ULTRA__
case KM_ULTRA_START:
config.ultra_start = uistat.freq_value;
reset_settings(setting.mode);
// config_save(); // TODO not now
//ultra_start = config.ultra_start;
break;
case KM_DIRECT_START:
config.direct_start = uistat.freq_value;
config_save();
break;
case KM_DIRECT_STOP:
config.direct_stop = uistat.freq_value;
config_save();
break;
#endif
#ifdef TINYSA4
case KM_EXP_AVER:
setting.exp_aver = uistat.value;
dirty = true;
#endif
case KM_LEVEL:
break;
#ifdef __LIMITS__
case KM_LIMIT_FREQ:
setting.limits[current_trace][active_limit].frequency = uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT);
dirty = true;
limits_update();
break;
case KM_LIMIT_LEVEL:
setting.limits[current_trace][active_limit].level = to_dBm(uistat.value);
dirty = true;
limits_update();
break;
#endif
case KM_NOISE:
set_noise(uistat.value);
break;
#ifdef TINYSA4
case KM_FREQ_CORR:
set_freq_corr(uistat.value);
break;
#else
case KM_10MHZ:
set_10mhz(uistat.freq_value);
break;
#endif
case KM_EXT_GAIN:
set_external_gain(uistat.value);
break;
case KM_LEVELSWEEP:
setting.modulation = MO_NONE;
set_level_sweep(uistat.value);
break;
case KM_SWEEP_TIME:
set_sweep_time_us(uistat.value*ONE_SECOND_TIME);
update_grid();
break;
case KM_TRIGGER:
if (setting.trigger == T_AUTO )
set_trigger(T_NORMAL);
set_trigger_level(to_dBm(uistat.value));
completed = true;
break;
case KM_GRIDLINES:
set_gridlines(uistat.value);
break;
case KM_MARKER:
set_marker_frequency(active_marker, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT));
break;
case KM_MARKER_TIME:
set_marker_time(active_marker, uistat.value);
break;
case KM_MODULATION:
set_modulation_frequency((int)uistat.value);
break;
#ifdef TINYSA4
case KM_COR_AM:
config.cor_am = -(int)uistat.value;
config_save();
dirty = true;
break;
case KM_COR_WFM:
config.cor_wfm = -(int)uistat.value;
config_save();
dirty = true;
break;
case KM_COR_NFM:
config.cor_nfm = -(int)uistat.value;
config_save();
dirty = true;
break;
case KM_DEVIATION:
set_deviation((int)uistat.freq_value);
break;
case KM_DEPTH:
set_depth((int)uistat.value);
break;
#endif
case KM_VAR:
setting.frequency_var = uistat.freq_value;
break;
#ifdef __NOISE_FIGURE__
case KM_NF:
config.noise_figure = uistat.value;
config_save();
dirty = true;
break;
#endif
#ifdef __USE_RTC__
case KM_RTC_DATE:
case KM_RTC_TIME:
{
int i = 0;
uint32_t dt_buf[2];
dt_buf[0] = rtc_get_tr_bcd(); // TR should be read first for sync
dt_buf[1] = rtc_get_dr_bcd(); // DR should be read second
// 0 1 2 4 5 6
// time[] ={sec, min, hr, 0, day, month, year, 0}
uint8_t *time = (uint8_t*)dt_buf;
for (; i < 6 && kp_buf[i]!=0; i++) kp_buf[i]-= '0';
for (; i < 6 ; i++) kp_buf[i] = 0;
for (i = 0; i < 3; i++) kp_buf[i] = (kp_buf[2*i]<<4) | kp_buf[2*i+1]; // BCD format
if (keypad_mode == KM_RTC_DATE) {
// Month limit 1 - 12 (in BCD)
if (kp_buf[1] < 1) kp_buf[1] = 1;
else if (kp_buf[1] > 0x12) kp_buf[1] = 0x12;
// Day limit (depend from month):
uint8_t day_max = 28 + ((0b11101100000000000010111110111011001100>>(kp_buf[1]<<1))&3);
day_max = ((day_max/10)<<4)|(day_max%10); // to BCD
if (kp_buf[2] < 1) kp_buf[2] = 1;
else if (kp_buf[2] > day_max) kp_buf[2] = day_max;
time[6] = kp_buf[0]; // year
time[5] = kp_buf[1]; // month
time[4] = kp_buf[2]; // day
}
else {
// Hour limit 0 - 23, min limit 0 - 59, sec limit 0 - 59 (in BCD)
if (kp_buf[0] > 0x23) kp_buf[0] = 0x23;
if (kp_buf[1] > 0x59) kp_buf[1] = 0x59;
if (kp_buf[2] > 0x59) kp_buf[2] = 0x59;
time[2] = kp_buf[0]; // hour
time[1] = kp_buf[1]; // min
time[0] = kp_buf[2]; // sec
}
rtc_set_time(dt_buf[1], dt_buf[0]);
}
break;
#endif
}
}
void
menu_move_top(void)
{
while (menu_current_level > 0)
menu_move_back(false);
}
// -------------------------- CAL STATUS ---------------------------------------------
const char * const dBText[] = { "1dB/", "2dB/", "5dB/", "10dB/", "20dB/"};
const int refMHz[] = { 30, 15, 10, 4, 3, 2, 1 };
float my_round(float v)
{
float m = 1;
int sign = 1;
if (v < 0) {
sign = -1;
v = -v;
}
while (v < 100) {
v = v * 10;
m = m / 10;
}
while (v > 1000) {
v = v / 10;
m = m * 10;
}
v = (int)(v+0.5);
v = v * m;
if (sign == -1) {
v = -v;
}
return v;
}
const char * const unit_string[MAX_UNIT_TYPE*2] = { "dBm", "dBmV", "dB"S_MICRO"V", "RAW", "V", "W", "dB", "dB", "dB", "RAW", "V", "W" }; // unit + 6 is delta unit
//static const float scale_value[]={50000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002, 0.001,0.0005,0.0002, 0.0001};
//static const char * const scale_vtext[]= {"50000", "20000", "10000", "5000", "2000", "1000", "500", "200", "100", "50", "20","10","5","2","1","0.5","0.2","0.1","0.05","0.02","0.01", "0.005","0.002","0.001", "0.0005","0.0002","0.0001"};
// Quick menu
#define MAX_QUICK_MENU 20
#define MAX_ITEM_SPACE 2
static uint16_t quick_menu_y[MAX_QUICK_MENU];
static menuitem_t *quick_menu[MAX_QUICK_MENU];
static uint8_t max_quick_menu = 0;
static uint8_t item_space = 0; //
int invoke_quick_menu(int y)
{
int i;
for (i = 0; i < max_quick_menu;i++) {
if (y < quick_menu_y[i]) {
if ((uint32_t)quick_menu[i] < KM_NONE) {
ui_mode_keypad((int)quick_menu[i]);
} else {
selection = -1;
menu_current_level = 0;
menu_push_submenu(quick_menu[i]);
}
return TRUE;
}
}
return FALSE;
}
#define YSTEP 8
int add_quick_menu(int y, menuitem_t *menu)
{
y += YSTEP*item_space/2 + YSTEP;
if (max_quick_menu<MAX_QUICK_MENU-1) {
quick_menu_y[max_quick_menu] = y;
quick_menu[max_quick_menu++] = menu;
}
return y;
}
const char *month[] = { "Jan", "Feb", "Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" };
void draw_cal_status(void)
{
#define BLEN 7
char buf[BLEN+1];
buf[6]=0;
int x = 0;
int y = OFFSETY;
unsigned int color;
const bool rounding = !UNIT_IS_LINEAR(setting.unit);
const char * const unit = unit_string[setting.unit];
redraw_cal_status:
buf[6]=0;
x = 0;
y = OFFSETY;
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(0, 0, OFFSETX, LCD_HEIGHT);
max_quick_menu = 0;
if (MODE_OUTPUT(setting.mode)) { // No cal status during output
#ifdef TINYSA4
if (level_error) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
ili9341_drawstring("LEVEL\nERROR", 0 , 80);
}
if (depth_error) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
ili9341_drawstring("DEPTH\nERROR", 0 , 140);
}
#endif
return;
}
// if (current_menu_is_form() && !in_selftest)
// return;
//ili9341_set_background(LCD_BG_COLOR);
float yMax = setting.reflevel;
if (level_is_calibrated())
color = setting.auto_reflevel ? LCD_FG_COLOR : LCD_BRIGHT_COLOR_GREEN;
else
color = LCD_BRIGHT_COLOR_RED;
ili9341_set_foreground(color);
// Ref level
if (rounding)
lcd_printf(x, y, "%+4d", (int)yMax);
else
lcd_printf(x, y, "%+4.3F", (yMax/setting.unit_scale));
y = add_quick_menu(y, (menuitem_t *)menu_reflevel);
// Unit
#if 0
color = LCD_FG_COLOR;
ili9341_set_foreground(color);
if (setting.auto_reflevel){
y += YSTEP + YSTEP/2 ;
ili9341_drawstring("AUTO", x, y);
}
#endif
lcd_printf(x, y, "%c%s", unit_scale_text[setting.unit_scale_index], unit);
y = add_quick_menu(y, (menuitem_t *)menu_unit);
// Scale
ili9341_set_foreground(LCD_FG_COLOR);
#if 0
unsigned int i = 0;
while (i < ARRAY_COUNT(scale_value)) {
float t = (setting.scale/setting.unit_scale) / scale_value[i];
if (t > 0.9 && t < 1.1){
lcd_printf(x, y, "%s%c/",scale_vtext[i],unit_scale_text[setting.unit_scale_index]);
break;
}
i++;
}
#else
lcd_printf(x, y, "%.2F/",setting.scale);
#endif
y = add_quick_menu(y, (menuitem_t *)KM_SCALE);
// Trigger status
if (is_paused()) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
ili9341_drawstring("PAUSED", x, y);
y += YSTEP + YSTEP/2 ;
}
if (setting.trigger == T_SINGLE || setting.trigger == T_NORMAL ) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
ili9341_drawstring("ARMED", x, y);
y += YSTEP + YSTEP/2 ;
}
// AM warning
if (signal_is_AM) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
ili9341_drawstring("AM", x, y);
y += YSTEP + YSTEP/2 ;
}
quick_menu_y[max_quick_menu] = y;
quick_menu[max_quick_menu++] = (menuitem_t *)NULL;
// if (setting.mode == M_LOW) {
// Attenuation
ili9341_set_foreground(setting.auto_attenuation ? LCD_FG_COLOR : LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Atten:\n%4.2FdB", get_attenuation());
y = add_quick_menu(y+= YSTEP, (menuitem_t *)menu_atten);
// }
// Calc
if (setting.average[0]>0) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Calc:\n%s", averageText[setting.average[0]]);
y = add_quick_menu(y+= YSTEP, (menuitem_t *)menu_average);
}
#ifdef __SPUR__ // Spur
#ifdef TINYSA3
if (setting.spur_removal != S_OFF) {
#endif
ili9341_set_foreground(setting.spur_removal == S_ON ? LCD_BRIGHT_COLOR_GREEN : LCD_FG_COLOR);
lcd_printf(x, y, "Spur:\n%s", S_IS_AUTO(setting.spur_removal) ? "AUTO" : (setting.spur_removal == S_OFF ?"OFF" : "ON"));
y = add_quick_menu(y += YSTEP, (menuitem_t *)menu_config);
#ifdef TINYSA3
}
#endif
if (setting.mirror_masking) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
ili9341_drawstring("Mask:\nON", x, y);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)menu_stimulus);
}
#endif
if (setting.subtract[0]) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
ili9341_drawstring("Norm.", x, y);
y = add_quick_menu(y, (menuitem_t *)menu_display);
}
// RBW
ili9341_set_foreground(setting.rbw_x10 ? LCD_BRIGHT_COLOR_GREEN : LCD_FG_COLOR);
if (dirty) update_rbw();
lcd_printf(x, y, "RBW:\n%.1FHz", actual_rbw_x10*100.0);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)menu_rbw);
#ifdef __VBW__
// VBW
if (setting.frequency_step > 0) {
int vbw = setting.vbw_x100;
if (vbw != 0)
color = LCD_BRIGHT_COLOR_GREEN;
else {
color = LCD_FG_COLOR;
vbw = 1;
}
ili9341_set_foreground(color);
lcd_printf(x, y, "VBW:\n%.1FHz", actual_rbw_x10*100.0 / vbw);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)menu_vbw);
}
#endif
// Sweep time: SD_NORMAL, SD_PRECISE, SD_FAST, SD_MANUAL
static const char fscan[]={0, 'P', 'F', 'N', 'M'};
if (dirty) {
calculate_step_delay();
setting.actual_sweep_time_us = calc_min_sweep_time_us();
}
#if 0 // Activate for sweep time debugging
lcd_printf(x, y, "%cScan:\n%5.3Fs", fscan[setting.step_delay_mode&7], (float)setting.sweep_time_us/ONE_SECOND_TIME);
#endif
ili9341_set_foreground((setting.step_delay_mode&7) != 0 ? LCD_BRIGHT_COLOR_GREEN : LCD_FG_COLOR);
lcd_printf(x, y, "%cScan:", fscan[setting.step_delay_mode&7]);
ili9341_set_foreground((setting.step_delay || setting.sweep_time_us ) ? LCD_BRIGHT_COLOR_GREEN : LCD_FG_COLOR);
lcd_printf(x, y+YSTEP, "%5.3Fs",(float)setting.actual_sweep_time_us/ONE_SECOND_TIME);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)menu_sweep_speed);
#if 0 // Activate for sweep time debugging
y += YSTEP;
update_rbw(); // To ensure the calc_min_sweep time shown takes the latest delay into account
calculate_step_delay();
uint32_t t = calc_min_sweep_time_us();
lcd_printf(x, y, "%5.3Fs", (float)t/ONE_SECOND_TIME);
y += YSTEP;
lcd_printf(x, y, "%5.3Fs", (float)setting.additional_step_delay_us/ONE_SECOND_TIME);
y += YSTEP + YSTEP/2 ;
#endif
#ifdef TINYSA4
if (setting.extra_lna){
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "LNA:ON");
y = add_quick_menu(y, (menuitem_t *)menu_level);
y += YSTEP;
}
if (config.ultra_start != ULTRA_AUTO){
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Ultra:\n%3QHz", ultra_start);
y = add_quick_menu(y += YSTEP, (menuitem_t *)menu_config);
}
if (setting.disable_correction){
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
lcd_printf(x, y, "Corr:\nOFF");
y += 2*YSTEP + YSTEP/2;
}
if (force_signal_path){
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
lcd_printf(x, y, "Path:\n%s", path_text[signal_path]);
y += 2*YSTEP + YSTEP/2;
}
#endif
// Cal output
if (setting.refer >= 0) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Ref:\n%dMHz",reffer_freq[setting.refer]/1000000);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)menu_reffer);
}
// Offset
if (setting.external_gain != 0.0) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Gain:\n%4.1fdB",setting.external_gain);
y = add_quick_menu(y+=YSTEP, (menuitem_t *)KM_EXT_GAIN);
}
// Repeat
if (setting.repeat != 1) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
lcd_printf(x, y, "Repeat\n x%d", setting.repeat);
y = add_quick_menu(y+=YSTEP,( menuitem_t *)KM_REPEAT);
}
// Trigger
if (setting.trigger != T_AUTO) {
if (is_paused() || setting.trigger == T_NORMAL) {
ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN);
} else {
ili9341_set_foreground(LCD_BRIGHT_COLOR_RED);
}
ili9341_drawstring("TRIG:", x, y);
y += YSTEP;
if (rounding)
lcd_printf(x, y, "%6.3f", value(setting.trigger_level));
else
lcd_printf(x, y, "%6.4F", value(setting.trigger_level));
// lcd_printf(x, y, "%4f", value(setting.trigger_level)/setting.unit_scale);
y = add_quick_menu(y,(menuitem_t *)menu_trigger);
}
#ifndef TINYSA4
// Mode
ili9341_set_foreground(level_is_calibrated() ? LCD_BRIGHT_COLOR_GREEN : LCD_BRIGHT_COLOR_RED);
ili9341_drawstring_7x13(MODE_LOW(setting.mode) ? "LOW" : "HIGH", x, y);
y += YSTEP + YSTEP/2 ;
#endif
// Compact status string
// ili9341_set_background(LCD_FG_COLOR);
ili9341_set_foreground(LCD_FG_COLOR);
strncpy(buf," ",BLEN-1);
if (setting.auto_IF)
buf[0] = 'f';
else
buf[0] = 'F';
if (S_IS_AUTO(setting.agc))
buf[1] = 'g';
else if (S_STATE(setting.agc))
buf[1] = 'G';
if (S_IS_AUTO(setting.lna))
buf[2] = 'n';
else if (S_STATE(setting.lna))
buf[2] = 'N';
if (S_IS_AUTO(setting.below_IF))
buf[3] = 'b';
else if (S_STATE(setting.below_IF))
buf[3] = 'B';
#ifdef TINYSA4
if (S_IS_AUTO(setting.spur_removal))
buf[4] = 's';
else if (S_STATE(setting.spur_removal))
buf[4] = 'S';
#endif
ili9341_drawstring(buf, x, y);
// Version
y += YSTEP + YSTEP/2 ;
#ifdef TINYSA4 // 'tinySA4_v1.2-[0-9]*-gxxxxxxx'
strncpy(buf,&TINYSA_VERSION[9], BLEN+1); // '1.2-...'
#else // 'tinySA_v1.2-[0-9]*-gxxxxxxx'
strncpy(buf,&TINYSA_VERSION[8], BLEN+1); // '1.2-...'
#endif
if (buf[5]=='-' ) { // '1.2-n-g...'
if (buf[4]=='0') // '1.2-0-g...'
buf[3] = 0; // -> '1.2'
else {
buf[5] = buf[4]; // -> '1.200n'
buf[4] = '0';
buf[3] = '0';
}
} else if (buf[6]=='-' ) { // 1.2-nn-g...
buf[3] = '0'; // -> '1.20nn'
} else { // 1.2-345-g... (or 1.2-3456...)
buf[3] = buf[4]; // -> '1.2345'
buf[4] = buf[5];
buf[5] = buf[6];
}
buf[6] = 0;
ili9341_drawstring(buf, x, y);
#ifdef __USE_RTC__
y += YSTEP + YSTEP/2 ;
uint32_t dr = rtc_get_dr_bin(); // DR read second
lcd_printf(x, y, "20%02d/\n%s/%02d", RTC_DR_YEAR(dr), month[RTC_DR_MONTH(dr)-1], RTC_DR_DAY(dr));
y += YSTEP*2;
uint32_t tr = rtc_get_tr_bin(); // TR read first
lcd_printf(x, y, "%02d:%02d", RTC_TR_HOUR(dr), RTC_TR_MIN(dr));
#endif
if (y >= BATTERY_START && item_space > 0) {
item_space--; // Reduce item spacing
goto redraw_cal_status;
}
if ((y + (max_quick_menu+1) * YSTEP/2) < BATTERY_START && item_space < MAX_ITEM_SPACE) {
item_space++; // Increase item spacing
goto redraw_cal_status;
}
// ili9341_set_background(LCD_BG_COLOR);
if (!setting.waterfall) { // Do not draw bottom level if in waterfall mode
// Bottom level
y = area_height + OFFSETY;
if (level_is_calibrated())
if (setting.auto_reflevel)
color = LCD_FG_COLOR;
else
color = LCD_BRIGHT_COLOR_GREEN;
else
color = LCD_BRIGHT_COLOR_RED;
ili9341_set_foreground(color);
if (rounding)
lcd_printf(x, y, "%4d", (int)(yMax - setting.scale * NGRIDY));
else
lcd_printf(x, y, "%+4.3F", ((yMax - setting.scale * NGRIDY)/setting.unit_scale));
y = add_quick_menu(y,(menuitem_t *)menu_average);
}
}
//----------------------------
#define MENU_STACK_DEPTH_MAX 7
const menuitem_t *menu_stack[MENU_STACK_DEPTH_MAX] = {
menu_top, NULL, NULL, NULL, NULL, NULL, NULL
};
int current_menu_is_form(void)
{
return menu_stack[menu_current_level]->type & MT_FORM;
}
static bool menuDisabled(uint8_t type){
if ((type & MT_LOW) && !MODE_LOW(setting.mode))
return true;
if ((type & MT_HIGH) && !MODE_HIGH(setting.mode))
return true;
// if (type == MT_BLANK)
// return true;
return false;
}
static const menuitem_t *menu_next_item(const menuitem_t *m, int *sub_item){
do{
if (m->type & MT_REPEATS) {
(*sub_item)++;
if (*sub_item < ((m->data>>4) & 0x0f))
return m;
*sub_item = 0;
}
m++;
m = MT_MASK(m->type) == MT_NONE ? (menuitem_t *)m->reference : m;
} while(m!=NULL && menuDisabled(m->type));
return m;
}
static const menuitem_t *current_menu_item(int i, int *sub_item){
*sub_item = 0;
const menuitem_t * m = menu_stack[menu_current_level];
while (i--) m = menu_next_item(m,sub_item);
return m;
}
static int current_menu_get_count(void){
int i = 0,sub_item = 0;
const menuitem_t *m = menu_stack[menu_current_level];
while (m){m = menu_next_item(m, &sub_item); i++;}
return i;
}
static void
ensure_selection(void)
{
const menuitem_t *menu = menu_stack[menu_current_level];
int i = current_menu_get_count();
if (selection < 0) selection = -1;
if (selection >= i) selection = i-1;
if (MT_MASK(menu[0].type) == MT_TITLE && selection == 0) selection = 1;
if (i < MENU_BUTTON_MIN) i = MENU_BUTTON_MIN;
if (i >= MENU_BUTTON_MAX) i = MENU_BUTTON_MAX;
#ifdef MENU_USE_AUTOHEIGHT
menu_button_height = MENU_BUTTON_HEIGHT_N(i);
#endif
}
static void
menu_move_back(bool leave_ui)
{
if (menu_current_level == 0)
return;
erase_menu_buttons();
bool form = current_menu_is_form();
menu_current_level--;
// redraw all if switch from form to normal menu mode or back
if (form != current_menu_is_form())
redraw_request|=REDRAW_AREA|REDRAW_BATTERY|REDRAW_FREQUENCY|REDRAW_CAL_STATUS;
selection = -1;
if (leave_ui)
ui_mode_normal();
else
ui_mode_menu();
}
void
menu_push_submenu(const menuitem_t *submenu)
{
erase_menu_buttons();
if (menu_current_level < MENU_STACK_DEPTH_MAX-1)
menu_current_level++;
menu_stack[menu_current_level] = submenu;
ui_mode_menu();
}
void
menu_push_lowoutput(void)
{
menu_push_submenu(menu_lowoutputmode);
}
void
menu_push_highoutput(void)
{
menu_push_submenu(menu_highoutputmode);
}
/*
static void
menu_move_top(void)
{
if (menu_current_level == 0)
return;
menu_current_level = 0;
ensure_selection();
erase_menu_buttons();
draw_menu();
}
*/
static void
menu_invoke(int item)
{
int sub_item;
const menuitem_t *menu = current_menu_item(item, &sub_item);
if (menu == NULL) return;
switch (MT_MASK(menu->type)) {
// case MT_NONE:
// case MT_BLANK:
// ui_mode_normal();
// break;
case MT_CANCEL:
menu_move_back(false);
break;
case MT_CALLBACK: {
uistat.auto_center_marker = false;
menuaction_cb_t cb = (menuaction_cb_t)menu->reference;
if (cb) (*cb)(item, (menu->type & MT_REPEATS) ? (menu->data & 0x0f)+sub_item : menu->data);
// if (!(menu->type & MT_FORM))
redraw_request |= REDRAW_CAL_STATUS;
break;
}
case MT_ADV_CALLBACK: {
uistat.auto_center_marker = false;
menuaction_acb_t cb = (menuaction_acb_t)menu->reference;
if (cb) (*cb)(item, (menu->type & MT_REPEATS) ? (menu->data & 0x0f)+sub_item : menu->data, NULL);
// if (!(menu->type & MT_FORM))
redraw_request |= REDRAW_CAL_STATUS | REDRAW_BATTERY;
break;
}
case MT_SUBMENU:
menu_push_submenu((const menuitem_t*)menu->reference);
break;
case MT_KEYPAD:
uistat.auto_center_marker = false;
if (current_menu_is_form()) {
redraw_frame(); // Remove form numbers
}
kp_help_text = (char *)menu->reference;
if (menu->data <= KM_CW) { // One of the frequency input keypads
if (MODE_LOW(setting.mode))
kp_help_text = VARIANT("0..350MHz",range_text);
else if (menu->data == KM_SPAN)
kp_help_text = VARIANT("0..720Mhz",range_text);
else
kp_help_text = VARIANT("240..960Mhz",range_text);
}
ui_mode_keypad(menu->data);
redraw_request |= REDRAW_CAL_STATUS;
break;
}
// Redraw menu after if UI in menu mode
if (ui_mode == UI_MENU)
draw_menu();
}
static const char * const keypad_scale_text[] = {"0", "1", "2", "5", "10", "20" , "50", "100", "200", "500"};
//static const int keypad_scale_value[] = { 1, 2, 5, 10, 20 , 50, 100, 200, 500};
static void
draw_button(uint16_t x, uint16_t y, uint16_t w, uint16_t h, ui_button_t *b)
{
uint16_t bw = b->border&BUTTON_BORDER_WIDTH_MASK;
ili9341_set_foreground(b->fg);
ili9341_set_background(b->bg);
if (bw==0) return;
uint16_t br = LCD_RISE_EDGE_COLOR;
uint16_t bd = LCD_FALLEN_EDGE_COLOR;
uint16_t type = b->border;
ili9341_set_background(type&BUTTON_BORDER_TOP ? br : bd);ili9341_fill(x, y, w, bw); // top
ili9341_set_background(type&BUTTON_BORDER_RIGHT ? br : bd);ili9341_fill(x + w - bw, y, bw, h); // right
ili9341_set_background(type&BUTTON_BORDER_LEFT ? br : bd);ili9341_fill(x, y, bw, h); // left
ili9341_set_background(type&BUTTON_BORDER_BOTTOM ? br : bd);ili9341_fill(x, y + h - bw, w, bw); // bottom
// Set colors for button text after
ili9341_set_background(b->bg);
if (type & BUTTON_BORDER_NO_FILL) return;
ili9341_fill(x + bw, y + bw, w - (bw * 2), h - (bw * 2));
}
void drawMessageBox(const char *header, char *text, uint32_t delay){
ui_button_t b;
b.bg = LCD_MENU_COLOR;
b.fg = LCD_MENU_TEXT_COLOR;
b.border = BUTTON_BORDER_FLAT|1;
// Draw header
draw_button((LCD_WIDTH-MESSAGE_BOX_WIDTH)/2, LCD_HEIGHT/2-40, MESSAGE_BOX_WIDTH, 60, &b);
ili9341_drawstring_7x13(header, (LCD_WIDTH-MESSAGE_BOX_WIDTH)/2 + 10, LCD_HEIGHT/2-40 + 5);
// Draw window
ili9341_set_background(LCD_FG_COLOR);
ili9341_fill((LCD_WIDTH-MESSAGE_BOX_WIDTH)/2+3, LCD_HEIGHT/2-40+bFONT_STR_HEIGHT+8, MESSAGE_BOX_WIDTH-6, 60-bFONT_STR_HEIGHT-8-3);
ili9341_drawstring_7x13(text, (LCD_WIDTH-MESSAGE_BOX_WIDTH)/2 + 20, LCD_HEIGHT/2-40 + bFONT_STR_HEIGHT + 8 + 14);
chThdSleepMilliseconds(delay);
}
static void
draw_keypad_button(int id) {
if (id < 0) return;
ui_button_t button;
button.fg = LCD_MENU_TEXT_COLOR;
if (id == selection) {
button.bg = LCD_MENU_ACTIVE_COLOR;
button.border = KEYBOARD_BUTTON_BORDER|BUTTON_BORDER_FALLING;
} else{
button.bg = LCD_MENU_COLOR;
button.border = KEYBOARD_BUTTON_BORDER|BUTTON_BORDER_RISE;
}
const keypad_pos_t *p = &key_pos[keypads[0].c];
char txt[2] = {0,0};
int x = p->x_offs + (keypads[id+1].pos>> 4) * p->width;
int y = p->y_offs + (keypads[id+1].pos&0xF) * p->height;
draw_button(x, y, p->width, p->height, &button);
if (keypads[0].c == NUM_KEYBOARD) {
if (keypads[id+1].c < KP_0) { // KP_0
ili9341_drawfont(keypads[id+1].c,
x + (KP_WIDTH - NUM_FONT_GET_WIDTH) / 2,
y + (KP_HEIGHT - NUM_FONT_GET_HEIGHT) / 2);
} else {
const char *t = keypad_scale_text[keypads[id+1].c - KP_0];
ili9341_drawstring_10x14(t,
x + (KP_WIDTH - wFONT_MAX_WIDTH*strlen(t)) / 2,
y + (KP_HEIGHT - wFONT_GET_HEIGHT) / 2);
}
} else {
txt[0] = keypads[id+1].c;
ili9341_drawstring_10x14(txt,
x + KPF_WIDTH/2 - FONT_WIDTH + 1,
y + KPF_HEIGHT/2 - FONT_GET_HEIGHT);
}
}
static void
draw_keypad(void)
{
int i;
for(i = 0; i < keypads[0].pos; i++)
draw_keypad_button(i);
}
static int
menu_is_multiline(const char *label)
{
int n = 1;
if (label)
while (*label)
if (*label++ == '\n')
n++;
return n;
}
static int period_pos(void) {int j; for (j = 0; j < kp_index && kp_buf[j] != '.'; j++); return j;}
static void
draw_numeric_input(const char *buf)
{
uint16_t i;
uint16_t x = 10 + 10 * FONT_WIDTH + 4;
uint16_t xsim;
#ifdef __USE_RTC__
if (keypad_mode == KM_RTC_DATE || keypad_mode == KM_RTC_TIME)
xsim = 0b01010100;
else
#endif
xsim = (0b00100100100100100 >>(2-(period_pos()%3)))&(~1);
ili9341_set_foreground(LCD_INPUT_TEXT_COLOR);
ili9341_set_background(LCD_INPUT_BG_COLOR);
for (i = 0; buf[i]; i++) {
int c = buf[i];
if (c == '.'){c = KP_PERIOD;xsim<<=4;}
else if (c == '-'){c = KP_MINUS; xsim&=~3;}
else// if (c >= '0' && c <= '9')
c = c - '0';
if (c < 0) c = 0;
// Add space before char
int16_t space = xsim&1 ? 2 + 10 : 2;
xsim>>=1;
ili9341_fill(x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4, space, NUM_INPUT_HEIGHT);
x+=space;
if (c >= 0) // c is number
ili9341_drawfont(c, x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4);
else
break;
x+=NUM_FONT_GET_WIDTH;
}
ili9341_fill(x, LCD_HEIGHT-NUM_INPUT_HEIGHT+4, LCD_WIDTH - 1 - x, NUM_INPUT_HEIGHT);
if (buf[0] == 0 && kp_help_text != NULL) {
int lines = menu_is_multiline(kp_help_text);
ili9341_set_foreground(LCD_INPUT_TEXT_COLOR);
ili9341_drawstring_7x13(kp_help_text, 64+NUM_FONT_GET_WIDTH+2, LCD_HEIGHT-(lines*bFONT_GET_HEIGHT+NUM_INPUT_HEIGHT)/2);
}
}
static void
draw_text_input(const char *buf)
{
ili9341_set_foreground(LCD_INPUT_TEXT_COLOR);
ili9341_set_background(LCD_INPUT_BG_COLOR);
uint16_t x = 14 + 10 * FONT_WIDTH;
uint16_t y = LCD_HEIGHT-(wFONT_GET_HEIGHT + NUM_INPUT_HEIGHT)/2;
ili9341_fill(x, y, wFONT_MAX_WIDTH * 20, wFONT_GET_HEIGHT);
ili9341_drawstring_10x14(buf, x, y);
}
static void
draw_numeric_area_frame(void)
{
ili9341_set_foreground(LCD_INPUT_TEXT_COLOR);
ili9341_set_background(LCD_INPUT_BG_COLOR);
ili9341_fill(0, LCD_HEIGHT-NUM_INPUT_HEIGHT, LCD_WIDTH, NUM_INPUT_HEIGHT);
char *name = keypads_mode_tbl[keypad_mode].name;
int lines = menu_is_multiline(name);
ili9341_drawstring_7x13(name, 10, LCD_HEIGHT-NUM_INPUT_HEIGHT + (NUM_INPUT_HEIGHT-lines*bFONT_STR_HEIGHT)/2);
//ili9341_drawfont(KP_KEYPAD, 300, 216);
draw_numeric_input("");
}
#define ICON_WIDTH 16
#define ICON_HEIGHT 11
static const uint8_t check_box[] = {
_BMP16(0b0011111111110000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0011111111110000),
_BMP16(0b0011111111110000),
_BMP16(0b0010000000001000),
_BMP16(0b0010000000011000),
_BMP16(0b0010000000110000),
_BMP16(0b0010000001100000),
_BMP16(0b0010100011010000),
_BMP16(0b0010110110010000),
_BMP16(0b0010011100010000),
_BMP16(0b0010001000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0011111111110000),
_BMP16(0b0011111111111000),
_BMP16(0b0010000000001000),
_BMP16(0b0010001111101000),
_BMP16(0b0010011001101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010111111101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010000000001000),
_BMP16(0b0011111111111000),
_BMP16(0b0011111111111000),
_BMP16(0b0010000000001000),
_BMP16(0b0010110001101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010111011101000),
_BMP16(0b0010111111101000),
_BMP16(0b0010110101101000),
_BMP16(0b0010110101101000),
_BMP16(0b0010110001101000),
_BMP16(0b0010000000001000),
_BMP16(0b0011111111111000),
_BMP16(0b0000000000000000),
_BMP16(0b0000011110000000),
_BMP16(0b0000100001000000),
_BMP16(0b0001000000100000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0010000000010000),
_BMP16(0b0001000000100000),
_BMP16(0b0000100001000000),
_BMP16(0b0000011110000000),
_BMP16(0b0000000000000000),
_BMP16(0b0000011110000000),
_BMP16(0b0000100001000000),
_BMP16(0b0001001100100000),
_BMP16(0b0010011110010000),
_BMP16(0b0010111111010000),
_BMP16(0b0010111111010000),
_BMP16(0b0010011110010000),
_BMP16(0b0001001100100000),
_BMP16(0b0000100001000000),
_BMP16(0b0000011110000000),
};
#ifndef MENU_USE_AUTOHEIGHT
#ifdef TINYSA4
#define menu_button_height ((menu[i].type & MT_FORM) || menu_is_multiline(menu[i].label) == 2 ? LCD_HEIGHT/10 : LCD_HEIGHT/12 )
#else
#define menu_button_height ((menu[i].type & MT_FORM) || menu_is_multiline(menu[i].label) == 2 ? LCD_HEIGHT/8 : LCD_HEIGHT/10 )
#endif
#endif
static void
draw_menu_buttons(const menuitem_t *menu, uint32_t mask)
{
int i, y;
ui_button_t button;
const menuitem_t *m = menu;
int sub_item = 0;
// while (menuDisabled(m->type))
// m = menu_next_item(m, &sub_item); // Just in case the first item is disabled
for (i = 0, y = 0; m; m = menu_next_item(m, &sub_item), i++, y += menu_button_height) {
if ((mask&(1<<i)) == 0)
continue;
button.icon = BUTTON_ICON_NONE;
// Border width
button.border = MENU_BUTTON_BORDER;
if (MT_MASK(m->type) == MT_TITLE) {
button.fg = LCD_FG_COLOR;
button.bg = LCD_BG_COLOR;
button.border = 0; // no border for title
} else {
button.bg = LCD_MENU_COLOR;
button.fg = LCD_MENU_TEXT_COLOR;
}
if (i == selection){
button.bg = LCD_MENU_ACTIVE_COLOR;
button.border|= BUTTON_BORDER_FALLING;
}
else
button.border|= BUTTON_BORDER_RISE;
// Need replace this obsolete bad function on new MT_ADV_CALLBACK variant
menu_item_modify_attribute(menu, i, &button); // before plot_printf to create status text
char *text;
// MT_ADV_CALLBACK - allow change button data in callback, more easy and correct
if (MT_MASK(m->type) == MT_ADV_CALLBACK){
menuaction_acb_t cb = (menuaction_acb_t)m->reference;
if (cb) (*cb)(i, (m->type & MT_REPEATS) ? (m->data & 0x0f)+sub_item : m->data, &button);
// Apply custom text, from button label and
if (m->label != MT_CUSTOM_LABEL)
plot_printf(button.text, sizeof(button.text), m->label, button.param_1.u);
text = button.text;
}
else
text = (char *)m->label;
// Only keypad retrieves value
if (MT_MASK(m->type) == MT_KEYPAD) {
fetch_numeric_target(m->data);
plot_printf(button.text, sizeof button.text, m->label, uistat.text);
text = button.text;
}
int button_height = menu_button_height;
if (current_menu_is_form()) {
int button_width = MENU_FORM_WIDTH;
int button_start = (LCD_WIDTH - MENU_FORM_WIDTH)/2; // At center of screen
draw_button(button_start, y, button_width, button_height, &button);
uint16_t text_offs = button_start + 6;
if (button.icon >=0){
ili9341_blitBitmap(button_start+3, y+(button_height-ICON_HEIGHT)/2, ICON_WIDTH, ICON_HEIGHT, &check_box[button.icon*2*ICON_HEIGHT]);
text_offs = button_start+6+ICON_WIDTH+1;
}
#ifdef __ICONS__
if (m->type & MT_ICON) {
ili9341_blitBitmap(button_start+MENU_FORM_WIDTH-2*FORM_ICON_WIDTH-8,y+(button_height-FORM_ICON_HEIGHT)/2,FORM_ICON_WIDTH,FORM_ICON_HEIGHT,& left_icons[((menu[i].data >>4)&0xf)*2*FORM_ICON_HEIGHT]);
ili9341_blitBitmap(button_start+MENU_FORM_WIDTH- FORM_ICON_WIDTH-8,y+(button_height-FORM_ICON_HEIGHT)/2,FORM_ICON_WIDTH,FORM_ICON_HEIGHT,&right_icons[((menu[i].data >>0)&0xf)*2*FORM_ICON_HEIGHT]);
}
#endif
int local_text_shift = 0;
if (MT_MASK(m->type) == MT_KEYPAD) {
int local_slider_positions = 0;
if (m->data == KM_CENTER) {
local_slider_positions = LCD_WIDTH/2+setting.slider_position;
lcd_printf(button_start+12 + 0 * MENU_FORM_WIDTH/5, y+button_height-9, "%+3.0FHz", -(float)setting.slider_span);
lcd_printf(button_start+12 + 1 * MENU_FORM_WIDTH/5, y+button_height-9, "%+3.0FHz", -(float)setting.slider_span/10);
lcd_printf(button_start+12 + 2 * MENU_FORM_WIDTH/5, y+button_height-9, "Set");
lcd_printf(button_start+12 + 3 * MENU_FORM_WIDTH/5, y+button_height-9, "%+3.0FHz", (float)setting.slider_span/10);
lcd_printf(button_start+12 + 4 * MENU_FORM_WIDTH/5, y+button_height-9, "%+3.0FHz", (float)setting.slider_span);
} else if (m->data == KM_LOWOUTLEVEL) {
local_slider_positions = ((get_level() - level_min()) * (MENU_FORM_WIDTH-8)) / level_range() + OFFSETX+4;
lcd_printf(button_start+12 + 0 * MENU_FORM_WIDTH/5, y+button_height-9, "%+ddB", -10);
lcd_printf(button_start+12 + 1 * MENU_FORM_WIDTH/5, y+button_height-9, "%+ddB", -1);
lcd_printf(button_start+12 + 2 * MENU_FORM_WIDTH/5, y+button_height-9, "Set");
lcd_printf(button_start+12 + 3 * MENU_FORM_WIDTH/5, y+button_height-9, "%+ddB", 1);
lcd_printf(button_start+12 + 4 * MENU_FORM_WIDTH/5, y+button_height-9, "%+ddB", 10);
} else if (m->data == KM_HIGHOUTLEVEL) {
local_slider_positions = ((get_level() - level_min() ) * (MENU_FORM_WIDTH-8)) / level_range() + OFFSETX+4;
}
if (local_slider_positions){
if (local_slider_positions < button_start)
local_slider_positions = button_start;
// Shift down text if slider present
local_text_shift = 2;
ili9341_blitBitmap(local_slider_positions - 4, y, 7, 5, slider_bitmap);
// Draw divider for sliders
for (int i = 1; i <= 4; i++)
ili9341_line(button_start + i * MENU_FORM_WIDTH/5, y+button_height-9, button_start + i * MENU_FORM_WIDTH/5, y+button_height);
}
}
// ili9341_drawstring_size(text, text_offs, y+(button_height-2*FONT_GET_HEIGHT)/2-local_text_shift, 2);
ili9341_drawstring_10x14(text, text_offs, y+(button_height-wFONT_GET_HEIGHT)/2-local_text_shift);
} else {
int button_width = MENU_BUTTON_WIDTH;
int button_start = LCD_WIDTH - MENU_BUTTON_WIDTH;
draw_button(button_start, y, button_width, button_height, &button);
uint16_t text_offs = button_start + 7;
if (button.icon >=0){
ili9341_blitBitmap(button_start+2, y+(button_height-ICON_HEIGHT)/2, ICON_WIDTH, ICON_HEIGHT, &check_box[button.icon*2*ICON_HEIGHT]);
text_offs = button_start+2+ICON_WIDTH;
}
int lines = menu_is_multiline(text);
#define BIG_BUTTON_FONT 1
#ifdef BIG_BUTTON_FONT
ili9341_drawstring_7x13(text, text_offs, y+(button_height-lines*bFONT_GET_HEIGHT)/2);
#else
ili9341_drawstring(text, text_offs, y+(button_height-linesFONT_GET_HEIGHT)/2);
#endif
}
}
// Cleanup other buttons (less flicker)
// Erase empty buttons
if (NO_WATERFALL - y > 0){
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(LCD_WIDTH-MENU_BUTTON_WIDTH, y, MENU_BUTTON_WIDTH, NO_WATERFALL - y);
}
// if (current_menu_is_form())
// draw_battery_status();
}
enum { SL_UNKNOWN, SL_SPAN, SL_MOVE};
void set_keypad_value(int v)
{
keypad_mode = v;
set_numeric_value();
}
void check_frequency_slider(freq_t slider_freq)
{
if ( (maxFreq - minFreq) < (freq_t)setting.slider_span) {
setting.slider_span = maxFreq - minFreq; // absolute mode with max step size
}
freq_t half_span = setting.slider_span >> 1;
int temp = (setting.slider_span / (MENU_FORM_WIDTH-8));
if (minFreq + half_span > slider_freq) {
setting.slider_position -= (minFreq + half_span - slider_freq) / temp; // reposition if needed
}
if (maxFreq < slider_freq + half_span) {
setting.slider_position += (slider_freq + half_span - maxFreq) / temp; // reposition if needed
}
}
#define TOUCH_DEAD_ZONE 40
static void
menu_select_touch(const menuitem_t * m, int i, int pos)
{
uint32_t mask = (1<<i)|(1<<selection);
selection = i;
draw_menu_mask(mask);
#if 1 // drag values
int keypad = m->data;
int touch_x, touch_y, prev_touch_x = 0;
systime_t dt = 0;
int mode = SL_UNKNOWN;
systime_t ticks = chVTGetSystemTimeX();
while (touch_check() != EVT_TOUCH_NONE){
dt = chVTGetSystemTimeX() - ticks;
if (dt > BUTTON_DOWN_LONG_TICKS) break;
}
if (current_menu_is_form() && MT_MASK(m->type) == MT_KEYPAD && dt >= BUTTON_DOWN_LONG_TICKS){
// Wait release touch and process it
while (touch_check() != EVT_TOUCH_NONE){
touch_position(&touch_x, &touch_y);
if (abs(touch_x - prev_touch_x) < 2) continue;
fetch_numeric_target(keypad);
int new_slider = touch_x - LCD_WIDTH/2; // Can have negative outcome
if (new_slider < - (MENU_FORM_WIDTH-8)/2 - 1)
new_slider = -(MENU_FORM_WIDTH-8)/2 - 1;
if (new_slider > (MENU_FORM_WIDTH-8)/2 + 1)
new_slider = (MENU_FORM_WIDTH-8)/2 + 1;
if (keypad == KM_CENTER) {
if (mode == SL_UNKNOWN ) {
if (abs(setting.slider_position - new_slider) < TOUCH_DEAD_ZONE) // Pick up slider
mode = SL_MOVE;
else
mode = SL_SPAN;
}
if (mode == SL_MOVE ) {
long_t freq_delta = (setting.slider_span/(MENU_FORM_WIDTH-8))*(new_slider - setting.slider_position);
if (freq_delta < 0 && uistat.freq_value < (freq_t)(-freq_delta))
uistat.freq_value = 0;
else
uistat.freq_value+= freq_delta;
if (uistat.freq_value < minFreq)
uistat.freq_value = minFreq;
if (uistat.freq_value > maxFreq)
uistat.freq_value = maxFreq;
setting.slider_position = new_slider;
set_keypad_value(keypad);
dirty = false;
perform(false, 0, uistat.freq_value, false);
draw_menu_mask(1<<i);
}
else if (mode == SL_SPAN ){
freq_t slider_freq;
slider_freq = uistat.freq_value;
int pw=new_slider + LCD_WIDTH/2;
setting.slider_position = pw - LCD_WIDTH/2; // Show delta on slider
setting.slider_span = 10;
while (pw>0) {
setting.slider_span += setting.slider_span;
pw -= 12;
if (pw <=0)
break;
setting.slider_span += setting.slider_span + (setting.slider_span >>1);
pw -= 12;
if (pw<=0)
break;
setting.slider_span *= 2;
pw -= 12;
}
if ((freq_t)setting.slider_span > (maxFreq - minFreq))
setting.slider_span = (maxFreq - minFreq);
freq_t old_minFreq = minFreq; // Save when in high mode
minFreq = 0; // And set minFreq to 0 for span display
uistat.freq_value = setting.slider_span;
set_keypad_value(keypad);
plot_printf(center_text, sizeof center_text, "RANGE: %%s");
draw_menu_mask(1<<i); // Show slider span
minFreq = old_minFreq; // and restore minFreq
uistat.freq_value = slider_freq; // and restore current slider freq
set_keypad_value(keypad);
plot_printf(center_text, sizeof center_text, "FREQ: %%s");
setting.slider_position = 0; // reset slider after span change
check_frequency_slider(slider_freq);
}
chThdSleepMilliseconds(100);
} else if (keypad == KM_LOWOUTLEVEL) {
uistat.value = setting.external_gain + ((touch_x - OFFSETX+4) * level_range() ) / (MENU_FORM_WIDTH-8) + level_min() ;
set_keypad_value(keypad);
draw_menu_mask(1<<i);
perform(false, 0, get_sweep_frequency(ST_CENTER), false);
} else if (keypad == KM_HIGHOUTLEVEL) {
set_level( (touch_x - OFFSETX+4) *(level_range()) / (MENU_FORM_WIDTH-8) + level_min() );
draw_menu_mask(1<<i);
perform(false, 0, get_sweep_frequency(ST_CENTER), false);
}
prev_touch_x = touch_x;
}
selection = -1;
draw_menu_mask(1<<i);
return;
}
if (current_menu_is_form() && MT_MASK(m->type) == MT_KEYPAD){
bool do_exit = false;
long_t step = 0;
if (keypad == KM_LOWOUTLEVEL) {
switch (pos) {
case 0:step = -10;break;
case 1:step = -1;break;
case 2:goto nogo;
case 3:step = +1;break;
case 4:step = +10;break;
}
uistat.value = setting.external_gain + get_level() + step;
do_exit = true;
}
else if (keypad == KM_CENTER) {
switch (pos) {
case 0: step = setting.slider_span; step=-step; break;
case 1: step = setting.slider_span/10;step=-step; break;
case 2: goto nogo;
case 3: step = setting.slider_span/10;break;
case 4: step = setting.slider_span; break;
}
if (step < 0 && get_sweep_frequency(ST_CENTER) < (freq_t)(-step))
uistat.freq_value = 0;
else
uistat.freq_value = get_sweep_frequency(ST_CENTER) + step;
do_exit = true;
setting.slider_position = 0; // reset slider after step
check_frequency_slider(uistat.freq_value);
}
if (do_exit){
set_keypad_value(keypad);
selection = -1;
draw_menu_mask(1<<i);
perform(false, 0, get_sweep_frequency(ST_CENTER), false);
return;
}
}
nogo:
setting.slider_position = 0; // Reset slider when entering frequency
#endif
// touch_wait_release();
selection = -1;
menu_invoke(i);
}
static void
menu_apply_touch(int touch_x, int touch_y)
{
const menuitem_t *m = menu_stack[menu_current_level];
int i;
int y = 0;
int active_button_start;
if (current_menu_is_form()) {
active_button_start = (LCD_WIDTH - MENU_FORM_WIDTH)/2;
// active_button_stop = LCD_WIDTH - active_button_start;
} else {
active_button_start = LCD_WIDTH - MENU_BUTTON_WIDTH;
// active_button_stop = LCD_WIDTH;
}
int sub_item = 0;
// while (menuDisabled(m->type))
// m = menu_next_item(m, &sub_item); // Just in case the first item is disabled
for (i = 0; m; m = menu_next_item(m,&sub_item), i++, y+= menu_button_height) {
if (MT_MASK(m->type) == MT_TITLE) continue;
if (y < touch_y && touch_y < y+menu_button_height && touch_x > active_button_start) {
menu_select_touch(m, i, (( touch_x - active_button_start) * 5 ) / MENU_FORM_WIDTH);
return;
}
}
if (current_menu_is_form())
return;
touch_wait_release();
ui_mode_normal();
}
void
draw_menu(void)
{
draw_menu_buttons(menu_stack[menu_current_level], -1);
}
void
draw_menu_mask(uint32_t mask)
{
draw_menu_buttons(menu_stack[menu_current_level], mask);
}
#ifdef __SWEEP_RESTART__
systime_t old_sweep_time;
void
refresh_sweep_menu(int i)
{
current_index = i;
systime_t new_sweep_time = chVTGetSystemTimeX();
if (new_sweep_time - old_sweep_time > ONE_SECOND_TIME/200 && i >= 0) {
old_sweep_time = new_sweep_time;
if (menu_stack[menu_current_level] == menu_lowoutputmode)
draw_menu_buttons(menu_stack[menu_current_level], 1 << 5);
if (menu_stack[menu_current_level] == menu_highoutputmode)
draw_menu_buttons(menu_stack[menu_current_level], 1 << 5);
}
}
#endif
static void
erase_menu_buttons(void)
{
// Not need, screen redraw in all cases
// ili9341_fill(area_width, 0, LCD_WIDTH - area_width, area_height, LCD_BG_COLOR);
// if (current_menu_is_form())
// ili9341_fill(OFFSETX, 0,LCD_WIDTH-OFFSETX, menu_button_height*MENU_BUTTON_MAX, LCD_BG_COLOR);
// else
// ili9341_fill(LCD_WIDTH-MENU_BUTTON_WIDTH, 0, MENU_BUTTON_WIDTH, menu_button_height*MENU_BUTTON_MAX, LCD_BG_COLOR);
draw_frequencies();
}
#if 0
static void
erase_numeric_input(void)
{
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(0, LCD_HEIGHT-NUM_INPUT_HEIGHT, LCD_WIDTH, NUM_INPUT_HEIGHT);
}
#endif
static void
leave_ui_mode()
{
// if (ui_mode == UI_MENU) {
// request_to_draw_cells_behind_menu();
// erase_menu_buttons();
// }
ili9341_set_background(LCD_BG_COLOR);
// Erase bottom area (not redraw on area update)
// if (menu_button_height*MENU_BUTTON_MAX - area_height > 0)
// ili9341_fill(LCD_WIDTH-MENU_BUTTON_WIDTH, area_height, MENU_BUTTON_WIDTH, menu_button_height*MENU_BUTTON_MAX - area_height);
if (setting.waterfall)
set_waterfall();
redraw_request|=REDRAW_AREA | REDRAW_FREQUENCY | REDRAW_CAL_STATUS | REDRAW_BATTERY;
}
void
ui_mode_menu(void)
{
// if (ui_mode == UI_MENU)
// return;
ui_mode = UI_MENU;
ensure_selection();
if (current_menu_is_form()) {
redraw_frame();
area_width = 0;
area_height = 0;
} else {
area_width = AREA_WIDTH_NORMAL - MENU_BUTTON_WIDTH;
area_height = AREA_HEIGHT_NORMAL;
}
draw_menu();
redraw_request|=REDRAW_BATTERY|REDRAW_CAL_STATUS;
}
static void
ui_mode_keypad(int _keypad_mode)
{
if (ui_mode == UI_KEYPAD && keypad_mode == _keypad_mode )
return;
// keypads array
keypad_mode = _keypad_mode;
keypads = keypads_mode_tbl[_keypad_mode].keypad_type;
ui_mode = UI_KEYPAD;
if (!current_menu_is_form())
draw_menu();
draw_keypad();
draw_numeric_area_frame();
ui_process_keypad();
}
void
ui_mode_normal(void)
{
if (ui_mode == UI_NORMAL)
return;
if (current_menu_is_form())
return;
leave_ui_mode();
area_width = AREA_WIDTH_NORMAL;
area_height = AREA_HEIGHT_NORMAL;
ui_mode = UI_NORMAL;
}
static void
lever_move_marker(int status)
{
uint16_t step = 1<<2;
do {
if (active_marker != MARKER_INVALID && markers[active_marker].enabled) {
int idx = (int)markers[active_marker].index;
if (status & EVT_DOWN) {
idx -= step>>2;
if (idx < 0) idx = 0 ;
}
if (status & EVT_UP) {
idx += step>>2;
if (idx > sweep_points-1) idx = sweep_points-1 ;
}
markers[active_marker].index = idx;
markers[active_marker].frequency = getFrequency(idx);
redraw_marker(active_marker);
markers[active_marker].mtype &= ~M_TRACKING; // Disable tracking when dragging marker
step++;
}
status = btn_wait_release();
} while (status != 0);
}
static void
lever_search_marker(int status)
{
int i = -1;
if (active_marker != MARKER_INVALID) {
if (status & EVT_DOWN)
i = marker_search_left_max(markers[active_marker].index);
else if (status & EVT_UP)
i = marker_search_right_max(markers[active_marker].index);
if (i != -1) {
markers[active_marker].index = i;
interpolate_maximum(active_marker);
// markers[active_marker].frequency = frequencies[i];
}
redraw_marker(active_marker);
}
}
// ex. 10942 -> 10000
// 6791 -> 5000
// 341 -> 200
static freq_t
step_round(freq_t v)
{
// decade step
freq_t x = 1;
for (x = 1; x*10 <= v; x*= 10)
;
// 1-2-5 step
if (x * 2 > v)
return x;
else if (x * 5 > v)
return x * 2;
else
return x * 5;
}
static void
lever_zoom_time(int status)
{
uint32_t time = setting.sweep_time_us; // in uS
if (time < MINIMUM_SWEEP_TIME)
time = MINIMUM_SWEEP_TIME;
if (status & EVT_UP) {
time = time*10/25;
} else if (status & EVT_DOWN) {
time = time*25/10;
}
time = step_round(time);
set_sweep_time_us(time);
}
static void
lever_move(int status, int mode)
{
freq_t freq = get_sweep_frequency(mode);
if (mode == ST_SPAN){
if (uistat.auto_center_marker) {
freq = get_marker_frequency(active_marker);
search_maximum(active_marker, freq, 10 );
if (freq == 0) return;
set_sweep_frequency(ST_CENTER, freq);
return;
}
if (status & EVT_UP ) freq = setting.frequency_var ? (freq + setting.frequency_var) : step_round(freq*4 + 1);
if (status & EVT_DOWN) freq = setting.frequency_var ? (freq - setting.frequency_var) : step_round(freq - 1);
}
else {
freq_t span = setting.frequency_var ? setting.frequency_var : step_round(get_sweep_frequency(ST_SPAN) / 4);
if (status & EVT_UP ) freq+= span;
if (status & EVT_DOWN) freq-= span;
}
if (freq > STOP_MAX || freq < START_MIN) return;
set_sweep_frequency(mode, freq);
}
#define STEPRATIO 0.2
static void
ui_process_normal_lever(void)
{
int status = btn_check();
if (status != 0) {
if (status & EVT_BUTTON_SINGLE_CLICK) {
ui_mode_menu();
} else {
switch (uistat.lever_mode) {
case LM_MARKER: lever_move_marker(status); break;
case LM_SEARCH: lever_search_marker(status); break;
case LM_CENTER: lever_move(status, FREQ_IS_STARTSTOP() ? ST_START : ST_CENTER); break;
case LM_SPAN:
if (FREQ_IS_CW())
lever_zoom_time(status);
else
lever_move(status, FREQ_IS_STARTSTOP() ? ST_STOP : ST_SPAN);
break;
}
}
}
}
#ifdef __LISTEN__
bool
ui_process_listen_lever(void)
{
int status = btn_check();
if (status != 0) {
if (status & EVT_BUTTON_SINGLE_CLICK) {
return false;
} else {
lever_move_marker(status);
}
}
return true;
}
#endif
static void
ui_process_menu_lever(void)
{
// Flag show, can close menu if user come out from it
// if false user must select some thing
const menuitem_t *menu = menu_stack[menu_current_level];
int status = btn_check();
if (status == 0) return;
if (selection >=0 && status & EVT_BUTTON_SINGLE_CLICK) {
menu_invoke(selection);
return;
}
uint16_t count = current_menu_get_count();
do {
uint32_t mask = 1<<selection;
if (status & EVT_UP ) selection++;
if (status & EVT_DOWN) selection--;
// not close if type = form menu
if ((uint16_t)selection >= count && !(menu[0].type & MT_FORM)){
ui_mode_normal();
return;
}
ensure_selection();
draw_menu_mask(mask|(1<<selection));
chThdSleepMilliseconds(100); // Add delay for not move so fast in menu
} while ((status = btn_wait_release()) != 0);
return;
}
static int
num_keypad_click(int c)
{
if (c == KP_ENTER) c = KP_X1;
if ((c >= KP_X1 && c <= KP_G) || c == KP_m || c == KP_u || c == KP_n) {
#if 0
float scale = 1.0;
if (c >= KP_X1 && c <= KP_G) {
int n = c - KP_X1;
while (n-- > 0)
scale *= 1000.0;
} else if (c == KP_m) {
scale /= 1000.0;
} else if (c == KP_u) {
scale /= 1000000.0;
} else if (c == KP_n) {
scale /= 1000000000.0;
}
/* numeric input done */
uistat.value = my_atof(kp_buf) * scale;
#else
char modifier = 0;
if (c == KP_K) modifier = 'k';
else if (c == KP_M) modifier = 'M';
else if (c == KP_G) modifier = 'G';
else if (c == KP_m) modifier = 'm';
else if (c == KP_u) modifier = 'u';
else if (c == KP_n) modifier = 'n';
if (modifier) kp_buf[kp_index++] = modifier;
kp_buf[kp_index++] = 0;
uistat.value = my_atof(kp_buf);
uistat.freq_value = my_atoui(kp_buf);
#endif
set_numeric_value();
return KP_DONE;
} else if (c <= 9 && kp_index < NUMINPUT_LEN) {
kp_buf[kp_index++] = '0' + c;
} else if (c>=KP_0) {
kp_buf[kp_index++] = keypad_scale_text[c-KP_0][0];
if (c >=KP_10)
kp_buf[kp_index++] = '0';
if (c >=KP_100)
kp_buf[kp_index++] = '0';
} else if (c == KP_PERIOD && kp_index < NUMINPUT_LEN) {
// check period in former input
int j;
for (j = 0; j < kp_index && kp_buf[j] != '.'; j++)
;
// append period if there are no period
if (kp_index == j)
kp_buf[kp_index++] = '.';
} else if (c == KP_MINUS && kp_index < NUMINPUT_LEN) {
if (kp_index == 0)
kp_buf[kp_index++] = '-';
else {
// always allow sign change, even when not on first position
if (kp_buf[0] == '-') {
kp_index = 0;
do {
kp_buf[kp_index] = kp_buf[kp_index+1];
kp_index++;
} while (kp_buf[kp_index]);
} else {
int j = kp_index;
do {
kp_buf[j+1] = kp_buf[j];
j--;
} while (j >= 0);
kp_buf[0] = '-';
kp_index++;
}
}
} else if (c == KP_BS) {
if (kp_index == 0) {
return KP_CANCEL;
}
--kp_index;
}
kp_buf[kp_index] = '\0';
draw_numeric_input(kp_buf);
return KP_CONTINUE;
}
static int
full_keypad_click(int c)
{
if (c == S_ENTER[0]) { // Enter
return kp_index == 0 ? KP_CANCEL : KP_DONE;
}
if (c == S_LARROW[0]) { // Backspace
if (kp_index == 0)
return KP_CANCEL;
--kp_index;
} else if (kp_index < TXTINPUT_LEN) { // any other text input
kp_buf[kp_index++] = c;
}
kp_buf[kp_index] = '\0';
draw_text_input(kp_buf);
return KP_CONTINUE;
}
static int
keypad_click(int key) {
int c = keypads[key+1].c; // !!! Use key + 1 (zero key index used or size define)
int result = keypads[0].c == NUM_KEYBOARD ? num_keypad_click(c) : full_keypad_click(c);
return result;
}
static int
keypad_apply_touch(void)
{
int touch_x, touch_y;
touch_position(&touch_x, &touch_y);
const keypad_pos_t *p = &key_pos[keypads[0].c];
if (touch_x < p->x_offs || touch_y < p->y_offs) return -1;
// Calculate key position from touch x and y
touch_x-= p->x_offs; touch_x/= p->width;
touch_y-= p->y_offs; touch_y/= p->height;
uint8_t pos = (touch_y & 0x0F) | (touch_x<<4);
for (int i = 0; i < keypads[0].pos; i++) {
if (keypads[i+1].pos != pos) continue;
int old = selection;
draw_keypad_button(selection = i); // draw new focus
draw_keypad_button(old); // Erase old focus
touch_wait_release();
selection = -1;
draw_keypad_button(i); // erase new focus
return i; // Process input;
}
return -1;
}
static void
ui_process_keypad(void)
{
int status;
kp_index = 0;
int keypads_last_index = keypads[0].pos - 1;
while (TRUE) {
status = btn_check();
if (status & (EVT_UP|EVT_DOWN)) {
do {
int old = selection;
if ((status & EVT_DOWN) && --selection < 0)
selection = keypads_last_index;
if ((status & EVT_UP) && ++selection > keypads_last_index)
selection = 0;
draw_keypad_button(old);
draw_keypad_button(selection);
chThdSleepMilliseconds(100);
} while ((status = btn_wait_release()) != 0);
}
if (status == EVT_BUTTON_SINGLE_CLICK) {
if (selection >= 0 && keypad_click(selection))
/* exit loop on done or cancel */
break;
}
if (touch_check() == EVT_TOUCH_PRESSED) {
int key = keypad_apply_touch();
if (key >= 0 && keypad_click(key))
/* exit loop on done or cancel */
break;
}
}
kp_help_text = NULL;
redraw_frame();
if (current_menu_is_form()) {
ui_mode_menu(); //Reactivate menu after keypad
selection = -1;
} else {
ui_mode_normal();
}
//redraw_all();
}
static void
ui_process_lever(void)
{
switch (ui_mode) {
case UI_NORMAL:
ui_process_normal_lever();
break;
case UI_MENU:
ui_process_menu_lever();
break;
// case UI_KEYPAD:
// ui_process_keypad();
// break;
#ifdef __SD_FILE_BROWSER__
case UI_BROWSER:
ui_process_browser_lever();
break;
#endif
}
}
static void
drag_marker(int t, int m)
{
/* wait touch release */
do {
int touch_x, touch_y;
int index;
touch_position(&touch_x, &touch_y);
touch_x -= OFFSETX;
touch_y -= OFFSETY;
index = search_nearest_index(touch_x, touch_y, t);
if (index >= 0) {
markers[m].index = index;
markers[m].frequency = getFrequency(index);
redraw_marker(m);
}
} while (touch_check()!= EVT_TOUCH_RELEASED);
}
static int
touch_pickup_marker(int touch_x, int touch_y)
{
int m, t;
touch_x -= OFFSETX;
touch_y -= OFFSETY;
int i = MARKER_INVALID, mt;
int min_dist = MARKER_PICKUP_DISTANCE * MARKER_PICKUP_DISTANCE;
// Search closest marker to touch position
for (t = 0; t < TRACES_MAX; t++) {
if (IS_TRACE_DISABLE(t))
continue;
for (m = 0; m < MARKERS_MAX; m++) {
if (!markers[m].enabled)
continue;
// Get distance to marker from touch point
int dist = distance_to_index(t, markers[m].index, touch_x, touch_y);
if (dist < min_dist) {
min_dist = dist;
i = m;
mt = t;
}
}
}
// Marker not found
if (i == MARKER_INVALID)
return FALSE;
// Marker found, set as active and start drag it
if (active_marker != i) {
previous_marker = active_marker;
active_marker = i;
}
// Disable tracking
markers[i].mtype &= ~M_TRACKING; // Disable tracking when dragging marker
// Leveler mode = marker move
select_lever_mode(LM_MARKER);
// select trace
uistat.current_trace = mt;
// drag marker until release
drag_marker(mt, i);
return TRUE;
}
static int touch_quick_menu(int touch_x, int touch_y)
{
if (touch_x <OFFSETX)
{
touch_wait_release();
return invoke_quick_menu(touch_y);
}
return FALSE;
}
#ifdef __USE_SD_CARD__
// Create file name from current time
static FRESULT sa_create_file(char *fs_filename)
{
// shell_printf("S file\r\n");
FRESULT res = f_mount(fs_volume, "", 1);
// shell_printf("Mount = %d\r\n", res);
if (res != FR_OK)
return res;
res = f_open(fs_file, fs_filename, FA_CREATE_ALWAYS | FA_READ | FA_WRITE);
// shell_printf("Open %s, = %d\r\n", fs_filename, res);
return res;
}
static void sa_save_file(uint8_t format) {
uint16_t *buf_16;
int i, y;
UINT size;
char fs_filename[FF_LFN_BUF];
#ifdef __DISABLE_HOT_INSERT__
if (!sd_card_inserted_at_boot) {
drawMessageBox("Warning:", "Restart tinySA to use SD card", 2000);
return;
}
#endif
// Prepare filename and open for write
if (config._mode & _MODE_AUTO_FILENAME) { // Auto name, use date / time
#if FF_USE_LFN >= 1
uint32_t tr = rtc_get_tr_bcd(); // TR read first
uint32_t dr = rtc_get_dr_bcd(); // DR read second
plot_printf(fs_filename, FF_LFN_BUF, "SA_%06x_%06x.%s", dr, tr, file_ext[format]);
#else
plot_printf(fs_filename, FF_LFN_BUF, "%08x.%s", rtc_get_FAT(), file_ext[format]);
#endif
}
else {
ui_mode_keypad(KM_FILENAME);
if (kp_index == 0) return;
plot_printf(fs_filename, FF_LFN_BUF, "%s.%s", kp_buf, file_ext[format]);
}
// For screenshot need back to normal mode and redraw screen before capture!!
// Redraw use spi_buffer so need do it before any file ops
if (format == FMT_BMP_FILE && (ui_mode != UI_NORMAL || !(config._mode & _MODE_AUTO_FILENAME))){
ui_mode_normal();
draw_all(false);
}
// UINT total_size = 0;
// systime_t time = chVTGetSystemTimeX();
// Prepare filename = .bmp / .csv and open for write
FRESULT res = sa_create_file(fs_filename);
if (res == FR_OK) {
switch(format) {
/*
* Save bitmap file (use v4 format allow set RGB mask)
*/
case FMT_BMP_FILE:
buf_16 = spi_buffer;
res = f_write(fs_file, bmp_header_v4, BMP_HEAD_SIZE, &size); // Write header struct
// total_size+=size;
ili9341_set_background(LCD_SWEEP_LINE_COLOR);
for (y = LCD_HEIGHT-1; y >= 0 && res == FR_OK; y--) {
ili9341_read_memory(0, y, LCD_WIDTH, 1, buf_16);
swap_bytes(buf_16, LCD_WIDTH);
res = f_write(fs_file, buf_16, LCD_WIDTH*sizeof(uint16_t), &size);
// total_size+=size;
ili9341_fill(LCD_WIDTH-1, y, 1, 1);
}
break;
case FMT_CSV_FILE:
for (i = 0; i < sweep_points && res == FR_OK; i++) {
char *buf = (char *)spi_buffer;
if (file_mask & 1) buf += plot_printf(buf, 100, "%U, ", getFrequency(i));
if (file_mask & 2) buf += plot_printf(buf, 100, "%f ", value(measured[TRACE_ACTUAL][i]));
if (file_mask & 4) buf += plot_printf(buf, 100, "%f ", value(measured[TRACE_STORED][i]));
if (file_mask & 8) buf += plot_printf(buf, 100, "%f ", value(measured[TRACE_STORED2][i]));
if (file_mask & 16) buf += plot_printf(buf, 100, "%f", value(measured[TRACE_TEMP][i]));
buf += plot_printf(buf, 100, "\r\n");
res = f_write(fs_file, (char *)spi_buffer, buf - (char *)spi_buffer, &size);
}
break;
#ifdef __SD_CARD_DUMP_FIRMWARE__
/*
* Dump firmware to SD card as bin file image
*/
case FMT_BIN_FILE:
{
const char *src = (const char*)FLASH_START_ADDRESS;
const uint32_t total = FLASH_TOTAL_SIZE;
res = f_write(fs_file, src, total, &size);
}
break;
#endif
/*
* Dump preset to SD card as prs file
*/
case FMT_PRS_FILE:
{
uint16_t *src = (uint16_t*)&setting;
int total = sizeof(setting_t);
setting.magic = CONFIG_MAGIC;
setting.checksum = 0x12345678;
setting.checksum = checksum(
&setting,
// (sizeof (setting)) - sizeof setting.checksum
(void *)&setting.checksum - (void *) &setting
);
res = f_write(fs_file, src, total, &size);
}
break;
}
f_close(fs_file);
// shell_printf("Close = %d\r\n", res);
// testLog();
// time = chVTGetSystemTimeX() - time;
// shell_printf("Total time: %dms (write %d byte/sec)\r\n", time/10, total_size*10000/time);
}
drawMessageBox("SD CARD SAVE", res == FR_OK ? fs_filename : " Fail write ", 2000);
redraw_request|= REDRAW_AREA|REDRAW_FREQUENCY;
ui_mode_normal();
}
static void save_csv(uint8_t mask) {
file_mask = mask;
menu_sdcard_cb(0, FMT_CSV_FILE);
}
static bool
made_screenshot(int touch_x, int touch_y) {
if (touch_y < SD_CARD_START || touch_y > SD_CARD_START + 20 || touch_x > OFFSETX)
return FALSE;
ili9341_set_background(LCD_BG_COLOR);
ili9341_fill(4, SD_CARD_START, 16, 16);
touch_wait_release();
menu_sdcard_cb(0, FMT_BMP_FILE);
return TRUE;
}
#endif
static int
touch_lever_mode_select(int touch_x, int touch_y)
{
if (touch_y > HEIGHT) {
touch_wait_release();
// Touch on left frequency field side
if (touch_x < FREQUENCIES_XPOS2 - 50) {
if (uistat.lever_mode == LM_CENTER){
ui_mode_keypad(FREQ_IS_CENTERSPAN() ? KM_CENTER : KM_START);
return TRUE;
}
}
else if (touch_x < FREQUENCIES_XPOS2 + 50) {
// toggle frequency mode start/stop <=> center/span
setting.freq_mode^= FREQ_MODE_CENTER_SPAN;
redraw_request |= REDRAW_FREQUENCY;
return true;
}
else if (uistat.lever_mode == LM_SPAN) {
ui_mode_keypad(FREQ_IS_CW() ? KM_SWEEP_TIME : (FREQ_IS_CENTERSPAN() ? KM_SPAN : KM_STOP));
return TRUE;
}
select_lever_mode(touch_x < FREQUENCIES_XPOS2 ? LM_CENTER : LM_SPAN);
return TRUE;
}
if (touch_x < OFFSETX)
{
return invoke_quick_menu(touch_y);
}
else if (touch_y < 25) {
#ifdef __VNA__
if (touch_x < FREQUENCIES_XPOS2 && get_electrical_delay() != 0.0) {
select_lever_mode(LM_EDELAY);
} else {
#endif
select_lever_mode(LM_MARKER);
#ifdef __VNA__
}
#endif
return TRUE;
}
return FALSE;
}
static int
touch_marker_select(int touch_x, int touch_y)
{
int selected_marker = 0;
if (current_menu_is_form() || touch_x > LCD_WIDTH-MENU_BUTTON_WIDTH || touch_x < 25 || touch_y > 30)
return FALSE;
if (touch_y > 15)
selected_marker = 2;
selected_marker += (touch_x >150 ? 1 : 0);
for (int i = 0; i < MARKERS_MAX; i++) {
if (markers[i].enabled) {
if (selected_marker == 0) {
if (active_marker == i) {
extern const menuitem_t menu_marker_modify[];
touch_wait_release();
selection = -1;
menu_current_level = 0;
menu_push_submenu(menu_marker_modify);
break;
}
active_marker = i;
redraw_marker(active_marker);
break;
}
selected_marker --;
}
}
if (touch_y < 25) {
#ifdef __VNA__
if (touch_x < FREQUENCIES_XPOS2 && get_electrical_delay() != 0.0) {
select_lever_mode(LM_EDELAY);
} else {
#endif
select_lever_mode(LM_MARKER);
#ifdef __VNA__
}
#endif
return TRUE;
}
return FALSE;
}
static
void ui_process_touch(void)
{
int touch_x, touch_y;
int status = touch_check();
if (status == EVT_TOUCH_PRESSED || status == EVT_TOUCH_DOWN) {
touch_position(&touch_x, &touch_y);
switch (ui_mode) {
case UI_NORMAL:
#ifdef __USE_SD_CARD__
if (made_screenshot(touch_x, touch_y))
break;
#endif
if (touch_quick_menu(touch_x, touch_y))
break;
// Try drag marker
if (touch_pickup_marker(touch_x, touch_y))
break;
if (touch_marker_select(touch_x, touch_y))
break;
// Try select lever mode (top and bottom screen)
if (touch_lever_mode_select(touch_x, touch_y)) {
// touch_wait_release();
break;
}
// switch menu mode after release
touch_wait_release();
selection = -1; // hide keyboard mode selection
ui_mode_menu();
break;
case UI_MENU:
menu_apply_touch(touch_x, touch_y);
break;
#ifdef __SD_FILE_BROWSER__
case UI_BROWSER:
browser_apply_touch(touch_x, touch_y);
break;
#endif
}
}
}
static uint16_t previous_button_state = 0;
void
ui_process(void)
{
int button_state = READ_PORT() & BUTTON_MASK;
if (ui_mode == UI_NORMAL && current_menu_is_form()) { // Force into menu mode
selection = -1; // hide keyboard mode selection
ui_mode_menu();
}
if ((operation_requested&OP_LEVER) || previous_button_state != button_state) {
ui_process_lever();
previous_button_state = button_state;
operation_requested = OP_NONE;
}
if (operation_requested&OP_TOUCH) {
ui_process_touch();
operation_requested = OP_NONE;
}
touch_start_watchdog();
}
/* Triggered when the button is pressed or released. The LED4 is set to ON.*/
static void extcb1(EXTDriver *extp, expchannel_t channel)
{
(void)extp;
(void)channel;
#ifdef __USE_SD_CARD__
if (channel == 12)
SD_PowerOff();
#endif
if (channel < 9)
operation_requested|=OP_LEVER;
// cur_button = READ_PORT() & BUTTON_MASK;
}
static const EXTConfig extcfg = {
{
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA, extcb1},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
#ifdef __WAIT_CTS_WHILE_SLEEPING__
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOB, extcb1},
#else
{EXT_CH_MODE_DISABLED, NULL},
#endif
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
#ifdef __USE_SD_CARD__
{EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOB, extcb1},
#else
{EXT_CH_MODE_DISABLED, NULL},
#endif
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL},
{EXT_CH_MODE_DISABLED, NULL}
}
};
void
handle_touch_interrupt(void)
{
operation_requested|= OP_TOUCH;
}
void
ui_init()
{
adc_init();
// Activates the EXT driver 1.
extStart(&EXTD1, &extcfg);
// Init touch subsystem
touch_init();
}
void wait_user(void)
{
touch_wait_released();
#if 0
operation_requested = OP_NONE;
while (true) {
if (operation_requested & OP_TOUCH)
break;
if (operation_requested & OP_LEVER)
break;
}
#endif
}
int check_touched(void)
{
int touched = false;
if (touch_check() == EVT_TOUCH_RELEASED)
touched = true;
return touched;
}
#pragma GCC pop_options

Powered by TurnKey Linux.