/* * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ch.h" #include "hal.h" #include "nanovna.h" #include #include "si4432.h" #include "spi.h" #pragma GCC push_options #pragma GCC optimize ("O2") //#define __USE_FFR_FOR_RSSI__ // Define for use hardware SPI mode #define USE_HARDWARE_SPI_MODE // 10MHz clock #define SI4432_10MHZ 10000000U // !!!! FROM ili9341.c for disable it !!!! //#define LCD_CS_HIGH palSetPad(GPIOB, GPIOB_LCD_CS) // Not use delays for CS #if 1 #define SI_CS_DELAY #define PE_CS_DELAY #define ADF_CS_DELAY #else #define SI_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");} #define PE_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");} #define ADF_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");} #endif #define SI_CS_LOW {palClearLine(LINE_RX_SEL);SI_CS_DELAY;} #define SI_CS_HIGH {SI_CS_DELAY;palSetLine(LINE_RX_SEL);} #define SI_SDN_LOW palClearLine(LINE_RX_SDN); #define SI_SDN_HIGH palSetLine(LINE_RX_SDN); // Hardware or software SPI use #ifdef USE_HARDWARE_SPI_MODE #define SI4432_SPI SPI1 // Check device SPI clock speed #if STM32_PCLK2 > 48000000 // 48 or 72M MCU // On 72M MCU STM32_PCLK2 = 72M, SPI = 72M/4 = 18M #define SI4432_SPI_SPEED SPI_BR_DIV4 #else // On 48M MCU STM32_PCLK2 = 48M, SPI = 48M/2 = 24M #define SI4432_SPI_SPEED SPI_BR_DIV2 #endif //#define ADF_SPI_SPEED SPI_BR_DIV64 //#define ADF_SPI_SPEED SPI_BR_DIV32 #define ADF_SPI_SPEED SPI_BR_DIV2 #define PE_SPI_SPEED SPI_BR_DIV2 static uint32_t old_spi_settings; #else static uint32_t old_port_moder; static uint32_t new_port_moder; #endif #define SPI1_CLK_HIGH palSetPad(GPIOB, GPIOB_SPI_SCLK) #define SPI1_CLK_LOW palClearPad(GPIOB, GPIOB_SPI_SCLK) #define SPI1_SDI_HIGH palSetPad(GPIOB, GPIOB_SPI_MOSI) #define SPI1_SDI_LOW palClearPad(GPIOB, GPIOB_SPI_MOSI) #define SPI1_RESET palClearPort(GPIOB, (1<>GPIOB_SPI_MISO)&1) #define SPI1_portSDO (palReadPort(GPIOB)&(1<CR1; SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED); #else // Init legs mode for software bitbang old_port_moder = GPIOB->MODER; new_port_moder = old_port_moder & ~(PIN_MODE_ANALOG(GPIOB_SPI_SCLK)|PIN_MODE_ANALOG(GPIOB_SPI_MISO)|PIN_MODE_ANALOG(GPIOB_SPI_MOSI)); new_port_moder|= PIN_MODE_OUTPUT(GPIOB_SPI_SCLK)|PIN_MODE_INPUT(GPIOB_SPI_MISO)|PIN_MODE_OUTPUT(GPIOB_SPI_MOSI); GPIOB->MODER = new_port_moder; // Pull down SPI SPI1_SDI_LOW; SPI1_CLK_LOW; #endif } void stop_SI4432_SPI_mode(void){ #ifdef USE_HARDWARE_SPI_MODE SI4432_SPI->CR1 = old_spi_settings; #else // Restore hardware SPI GPIOB->MODER = old_port_moder; #endif } static void shiftOut(uint8_t val) { #ifdef USE_HARDWARE_SPI_MODE while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI)); SPI_WRITE_8BIT(SI4432_SPI, val); while (SPI_IS_BUSY(SI4432_SPI)) // drop rx and wait tx (void)SPI_READ_8BIT(SI4432_SPI); #else SI4432_log(SI4432_Sel); SI4432_log(val); uint8_t i = 0; do { SPI1_SDI_HIGH; SPI1_CLK_HIGH; SPI1_RESET; val<<=1; }while((++i) & 0x07); #endif } static uint8_t shiftIn(void) { #ifdef USE_HARDWARE_SPI_MODE // while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI)); SPI_WRITE_8BIT(SI4432_SPI, 0xFF); while (SPI_RX_IS_EMPTY(SI4432_SPI)) ; // drop rx and wait tx return SPI_READ_8BIT(SI4432_SPI); #else uint32_t value = 0; uint8_t i = 0; do { value<<=1; SPI1_CLK_HIGH; value|=SPI1_portSDO; SPI1_CLK_LOW; }while((++i) & 0x07); return value>>GPIOB_SPI_MISO; #endif } uint32_t SI4432_step_delay = 1500; uint32_t SI4432_offset_delay = 1500; #define MINIMUM_WAIT_FOR_RSSI 280 //------------PE4302 ----------------------------------------------- #ifdef __PE4302__ void PE4302_init(void) { CS_PE_LOW; } static unsigned char old_attenuation = 255; bool PE4302_Write_Byte(unsigned char DATA ) { if (old_attenuation == DATA) return false; old_attenuation = DATA; set_SPI_mode(SPI_MODE_SI); if (SI4432_SPI_SPEED != PE_SPI_SPEED) SPI_BR_SET(SI4432_SPI, PE_SPI_SPEED); #if 1 SPI_WRITE_8BIT(SI4432_SPI, DATA); while (SPI_IS_BUSY(SI4432_SPI)); #else shiftOut(DATA); #endif CS_PE_HIGH; CS_PE_LOW; if (SI4432_SPI_SPEED != PE_SPI_SPEED) SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED); return true; } #endif //------------------------------- ADF4351 ------------------------------------- #define bitRead(value, bit) (((value) >> (bit)) & 0x01) #define bitSet(value, bit) ((value) |= (1UL << (bit))) #define bitClear(value, bit) ((value) &= ~(1UL << (bit))) #define bitWrite(value, bit, bitvalue) ((bitvalue) ? bitSet(value, bit) : bitClear(value, bit)) #define CS_ADF0_HIGH {palSetLine(LINE_LO_SEL);ADF_CS_DELAY;} #define CS_ADF1_HIGH {ADF_CS_DELAY;palSetLine(LINE_LO_SEL);} #define CS_ADF0_LOW {palClearLine(LINE_LO_SEL);ADF_CS_DELAY;} #define CS_ADF1_LOW {ADF_CS_DELAY;palClearLine(LINE_LO_SEL);} #define CS_ADF_LOW(ch) {palClearLine(ch);ADF_CS_DELAY;} #define CS_ADF_HIGH(ch) {ADF_CS_DELAY;palSetLine(ch);} uint32_t registers[6] = {0xC80000, 0x8008011, 0x1800C642, 0x48963,0xA5003C , 0x580005} ; //10 MHz ref uint32_t old_registers[6]; int debug = 0; ioline_t ADF4351_LE[2] = { LINE_LO_SEL, LINE_LO_SEL}; //int ADF4351_Mux = 7; bool ADF4351_frequency_changed = false; //#define DEBUG(X) // Serial.print( X ) //#define DEBUGLN(X) Serial.println( X ) //#define DEBUGFLN(X,Y) Serial.println( X,Y ) //#define DEBUGF(X,Y) Serial.print( X,Y ) #define DEBUG(X) #define DEBUGLN(X) #define XTAL 300000000 uint64_t PFDRFout[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000}; //Reference freq in MHz int64_t ADF4350_modulo = 0, // Linked to spur table!!!!! target_freq; int old_R = 0; void ADF4351_Setup(void) { // palSetPadMode(GPIOA, 1, PAL_MODE_OUTPUT_PUSHPULL ); // palSetPadMode(GPIOA, 2, PAL_MODE_OUTPUT_PUSHPULL ); // SPI3_CLK_HIGH; // SPI3_SDI_HIGH; CS_ADF0_HIGH; // CS_ADF1_HIGH; // bitSet (registers[2], 17); // R set to 8 // bitClear (registers[2], 14); // R set to 8 // while(1) { // ADF4351_R_counter(1); ADF4351_CP(0); ADF4351_fastlock(1); // Fastlock enabled ADF4351_csr(1); //Cycle slip enabled ADF4351_set_frequency(0,200000000); ADF4351_mux(2); // No led // ADF4351_mux(6); // Show lock on led } void ADF4351_WriteRegister32(int channel, const uint32_t value) { // Select chip CS_ADF_LOW(ADF4351_LE[channel]); // Send 32 bit register #if 1 SPI_WRITE_8BIT(SI4432_SPI, (value >> 24)); SPI_WRITE_8BIT(SI4432_SPI, (value >> 16)); SPI_WRITE_8BIT(SI4432_SPI, (value >> 8)); SPI_WRITE_8BIT(SI4432_SPI, (value >> 0)); while (SPI_IS_BUSY(SI4432_SPI)); // drop rx and wait tx #else shiftOut((value >> 24) & 0xFF); shiftOut((value >> 16) & 0xFF); shiftOut((value >> 8) & 0xFF); shiftOut((value >> 0) & 0xFF); #endif // unselect CS_ADF_HIGH(ADF4351_LE[channel]); } void ADF4351_Set(int channel) { #if 0 for (int i = 5; i >= 0; i--) { if (registers[i] != old_registers[i]) goto update; } return; update: #endif set_SPI_mode(SPI_MODE_SI); if (SI4432_SPI_SPEED != ADF_SPI_SPEED) SPI_BR_SET(SI4432_SPI, ADF_SPI_SPEED); for (int i = 5; i >= 0; i--) { #if 0 if (i == 0 || registers[i] != old_registers[i]) #endif ADF4351_WriteRegister32(channel, registers[i]); old_registers[i] = registers[i]; } if (SI4432_SPI_SPEED != ADF_SPI_SPEED) SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED); } static freq_t prev_actual_freq = 0; void ADF4351_force_refresh(void) { prev_actual_freq = 0; for (int i = 5; i >= 0; i--) old_registers[i] = 0; } void ADF4351_modulo(int m) { ADF4350_modulo = m; // ADF4351_set_frequency(0, (uint64_t)prev_actual_freq); } uint64_t ADF4351_set_frequency(int channel, uint64_t freq) // freq / 10Hz { uint64_t actual_freq = ADF4351_prepare_frequency(channel,freq); if (actual_freq != prev_actual_freq) { ADF4351_frequency_changed = true; ADF4351_Set(channel); prev_actual_freq = actual_freq; } return actual_freq; } void ADF4351_spur_mode(int S) { bitWrite(registers[2], 29, S & 1); bitWrite(registers[2], 30, S & 2); ADF4351_Set(0); } void ADF4351_R_counter(int R) { if (R == old_R) return; old_R = R; int dbl = false; if (R < 0) { dbl = true; R = -R; } if (R<1) return; bitWrite(registers[2], 25, dbl); // Reference doubler for (int channel=0; channel < 6; channel++) { PFDRFout[channel] = (config.setting_frequency_30mhz * (dbl?2:1)) / R; } clear_frequency_cache(); // When R changes the possible frequencies will change registers[2] &= ~(((uint32_t)0x3FF) << 14); registers[2] |= (((uint32_t) R) << 14); ADF4351_Set(0); } void ADF4351_recalculate_PFDRFout(void){ int local_r = old_R; old_R = -1; ADF4351_R_counter(local_r); } void ADF4351_mux(int R) { registers[2] &= ~(((uint32_t) 0x7) << 26); registers[2] |= (((uint32_t)R & 0x07) << 26); ADF4351_Set(0); } void ADF4351_csr(int c) { registers[3] &= ~(((uint32_t) 0x1) << 18); registers[3] |= (((uint32_t)c & 0x01) << 18); ADF4351_Set(0); } void ADF4351_fastlock(int c) { registers[3] &= ~(((uint32_t) 0x3) << 15); registers[3] |= (((uint32_t)c & 0x03) << 15); ADF4351_Set(0); } void ADF4351_CP(int p) { registers[2] &= ~(((uint32_t)0xF) << 9); registers[2] |= (((uint32_t) p) << 9); ADF4351_Set(0); } void ADF4351_drive(int p) { p &= 0x03; registers[4] &= ~(((uint32_t)0x3) << 3); registers[4] |= (((uint32_t) p) << 3); ADF4351_Set(0); } void ADF4351_aux_drive(int p) { p &= 0x03; registers[4] &= ~(((uint32_t)0x3) << 6); registers[4] |= (((uint32_t) p) << 6); ADF4351_Set(0); } #if 0 static uint32_t gcd(uint32_t x, uint32_t y) { uint32_t z; while (y != 0) { z = x % y; x = y; y = z; } return x; } #endif uint64_t ADF4351_prepare_frequency(int channel, uint64_t freq) // freq / 10Hz { uint32_t output_divider; target_freq = freq; if (freq >= 2200000000) { output_divider = 1 * FREQ_MULTIPLIER; bitWrite (registers[4], 22, 0); bitWrite (registers[4], 21, 0); bitWrite (registers[4], 20, 0); } else if (freq >= 1100000000) { output_divider = 2 * FREQ_MULTIPLIER; bitWrite (registers[4], 22, 0); bitWrite (registers[4], 21, 0); bitWrite (registers[4], 20, 1); } else if (freq >= 550000000) { output_divider = 4 * FREQ_MULTIPLIER; bitWrite (registers[4], 22, 0); bitWrite (registers[4], 21, 1); bitWrite (registers[4], 20, 0); } else if (freq >= 275000000) { output_divider = 8 * FREQ_MULTIPLIER; bitWrite (registers[4], 22, 0); bitWrite (registers[4], 21, 1); bitWrite (registers[4], 20, 1); } else { // > 137500000 output_divider = 16 * FREQ_MULTIPLIER; bitWrite (registers[4], 22, 1); bitWrite (registers[4], 21, 0); bitWrite (registers[4], 20, 0); } uint32_t PFDR = (uint32_t)PFDRFout[channel]; uint32_t MOD = ADF4350_modulo; if (MOD == 0) MOD = 60; uint32_t MOD_X2 = MOD<<1; uint32_t INTA_F = ((freq * (uint64_t)output_divider) * (uint64_t)MOD_X2/ PFDR) + 1; uint32_t INTA = INTA_F / MOD_X2; uint32_t FRAC = (INTA_F - INTA * MOD_X2)>>1; if (FRAC >= MOD) { FRAC -= MOD; INTA++; } #if 0 // No visible performance improvement uint32_t reduce = gcd(MOD, FRAC); if (reduce>1) { FRAC /= reduce; MOD /= reduce; if (MOD == 1) MOD=2; } #endif uint64_t actual_freq = ((uint64_t)PFDR *(INTA * MOD +FRAC))/output_divider / MOD; #if 0 // Only for debugging int max_delta = PFDRFout[channel]/output_divider/MOD/100; if (actual_freq < freq - max_delta || actual_freq > freq + max_delta ){ while(1) my_microsecond_delay(10); } max_delta = freq - actual_freq; if (max_delta > 200000 || max_delta < -200000 || freq == 0) { while(1) my_microsecond_delay(10); } if (FRAC >= MOD ){ while(1) my_microsecond_delay(10); } #endif bitWrite (registers[4], 10, 1); // Mute till lock detect registers[0] = 0; registers[0] = INTA << 15; // OK registers[0] = registers[0] + (FRAC << 3); if (MOD == 1) MOD = 2; registers[1] = 0; registers[1] = MOD << 3; registers[1] = registers[1] + 1 ; // restore register address "001" bitSet (registers[1], 27); // Prescaler at 8/9 return actual_freq; } void ADF4351_enable(int s) { if (s) bitClear(registers[4], 11); // Inverse logic!!!!! else bitSet(registers[4], 11); ADF4351_Set(0); } void ADF4351_enable_aux_out(int s) { if (s) bitSet(registers[4], 8); else bitClear(registers[4], 8); ADF4351_Set(0); } void ADF4351_enable_out(int s) { if (s) { bitClear(registers[2], 11); // Disable VCO power down bitClear(registers[2], 5); // Disable power down bitSet(registers[4], 5); // Enable output } else { bitClear(registers[4], 5); // Disable output bitSet(registers[2], 5); // Enable power down bitSet(registers[2], 11); // Enable VCO power down } ADF4351_Set(0); } // ------------------------------ SI4468 ------------------------------------- bool SI4463_frequency_changed = false; bool SI4463_offset_changed = false; int SI4463_offset_value = 0; static int SI4463_band = -1; //static freq_t SI4463_prev_freq = 0; //static float SI4463_step_size = 100; // Will be recalculated once used static uint8_t SI4463_channel = 0; static uint8_t SI4463_in_tx_mode = false; int SI4463_R = 5; static int SI4463_output_level = 0x20; static si446x_state_t SI4463_get_state(void); static void SI4463_set_state(si446x_state_t); #define SI4463_READ_CTS (palReadLine(LINE_RX_CTS)) #ifdef __WAIT_CTS_WHILE_SLEEPING__ extern volatile int sleep; #if 0 #define SI4463_WAIT_CTS while (!SI4463_READ_CTS) {\ if (sleep) {\ CS_PE_HIGH;\ __WFI();\ CS_PE_LOW;\ } \ }; #else #define SI4463_WAIT_CTS while (!SI4463_READ_CTS) ; #endif #else #define SI4463_WAIT_CTS while (!SI4463_READ_CTS) ; #endif #if 0 // not used static void SI4463_write_byte(uint8_t ADR, uint8_t DATA) { set_SPI_mode(SPI_MODE_SI); SI_CS_LOW; ADR |= 0x80 ; // RW = 1 shiftOut( ADR ); shiftOut( DATA ); SI_CS_HIGH; } static void SI4463_write_buffer(uint8_t ADR, uint8_t *DATA, int len) { set_SPI_mode(SPI_MODE_SI); SI_CS_LOW; ADR |= 0x80 ; // RW = 1 shiftOut( ADR ); while (len-- > 0) shiftOut( *(DATA++) ); SI_CS_HIGH; } #endif static uint8_t SI4463_read_byte( uint8_t ADR ) { uint8_t DATA ; set_SPI_mode(SPI_MODE_SI); SI_CS_LOW; shiftOut( ADR ); DATA = shiftIn(); SI_CS_HIGH; return DATA ; } #ifdef NOTUSED static uint8_t SI4463_get_response(void* buff, uint8_t len) { uint8_t cts = 0; // set_SPI_mode(SPI_MODE_SI); cts = SI4463_READ_CTS; if (!cts) { return false; } // __disable_irq(); SI_CS_LOW; shiftOut( SI446X_CMD_READ_CMD_BUFF ); cts = (shiftIn() == 0xFF); if (cts) { // Get response data for(uint8_t i=0;i>8), len, (uint8_t)prop }; // Copy values into data, starting at index 4 memcpy(data + 4, values, len); SI4463_do_api(data, len + 4, NULL, 0); } #endif #include "SI446x_cmd.h" #include "radio_config_Si4468_undef.h" #undef RADIO_CONFIGURATION_DATA_ARRAY #include "radio_config_Si4468_default.h" // Used in RBW setting #define GLOBAL_GPIO_PIN_CFG 0x13, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00 #define GLOBAL_CLK_CFG 0x11, 0x00, 0x01, 0x01, 0x00 // ---------------------------------------------------------------------------------------------------- v ------------ RSSI control byte #define GLOBAL_RF_MODEM_RAW_CONTROL 0x11, 0x20, 0x0A, 0x45, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x10, 0x40 //0x11 SI446X_CMD_SET_PROPERTY //0x20 SI446X_PROP_GROUP_MODEM //0x0A 10 Count //0x45 Start register //0x03 [0x45] MODEM_RAW_CONTROL //0x00 [0x46] RAWEYE[10:8] //0x00 [0x47] RAWEYE[7:0] //0x01 [0x48] MODEM_ANT_DIV_MODE //0x00 [0x49] MODEM_ANT_DIV_CONTROL //0xFF [0x4A] MODEM_RSSI_THRESH //0x06 [0x4B] MODEM_RSSI_JUMP_THRESH //0x18 [0x4C] MODEM_RSSI_CONTROL //0x10 [0x4D] MODEM_RSSI_CONTROL2 //0x40 [0x4E] MODEM_RSSI_COMP // -----------------------------------------------------------------------------------------------------^ -------------- #define GLOBAL_RF_MODEM_AGC_CONTROL 0x11, 0x20, 0x01, 0x35, 0xF1 // Override AGC gain increase #undef RF_MODEM_AGC_CONTROL_1 #define RF_MODEM_AGC_CONTROL_1 GLOBAL_RF_MODEM_AGC_CONTROL #undef RF_MODEM_AGC_WINDOW_SIZE_12_1 //#define RF_MODEM_AGC_WINDOW_SIZE_12_1 0x11, 0x20, 0x0C, 0x38, 0x11, 0x07, 0x07, 0x80, 0x02, 0x4C, 0xCD, 0x00, 0x27, 0x0C, 0x84, 0x23 #define RF_MODEM_AGC_WINDOW_SIZE_12_1 0x11, 0x20, 0x0C, 0x38, 0x11, 0x07, 0x07, 0x80, 0x1C, 0x4C, 0xCD, 0x00, 0x27, 0x0C, 0x84, 0x23 #undef RF_GPIO_PIN_CFG #define RF_GPIO_PIN_CFG GLOBAL_GPIO_PIN_CFG #undef RF_GLOBAL_CLK_CFG_1 #define RF_GLOBAL_CLK_CFG_1 GLOBAL_CLK_CFG // Remember to change RF_MODEM_AFC_LIMITER_1_3_1 !!!!!!!!! static const uint8_t SI4468_config[] = RADIO_CONFIGURATION_DATA_ARRAY; // Set new state static void SI4463_set_state(si446x_state_t newState) { uint8_t data[] = { SI446X_CMD_CHANGE_STATE, newState }; SI4463_do_api(data, sizeof(data), NULL, 0); } static uint8_t gpio_state[4] = { SI446X_GPIO_MODE_DIV_CLK, SI446X_GPIO_MODE_CTS, SI446X_GPIO_MODE_DONOTHING, SI446X_GPIO_MODE_DONOTHING }; void SI4463_refresh_gpio(void) { uint8_t data2[] = { SI446X_CMD_GPIO_PIN_CFG, gpio_state[0], // GPIO[0] gpio_state[1], // GPIO[1] gpio_state[2], // GPIO[2] gpio_state[3], // GPIO[3] 0, // NIRQ 0, // SDO 0 // GEN_CONFIG }; SI4463_do_api(data2, sizeof(data2), NULL, 0); } void SI4463_set_gpio(int i, int s) { gpio_state[i] = s; #if 0 // debug gpio gpio_state[2] = 3; gpio_state[3] = 2; #endif SI4463_refresh_gpio(); } #if 0 static void SI4463_clear_FIFO(void) { // 'static const' saves 20 bytes of flash here, but uses 2 bytes of RAM static const uint8_t clearFifo[] = { SI446X_CMD_FIFO_INFO, SI446X_FIFO_CLEAR_RX | SI446X_FIFO_CLEAR_TX }; SI4463_do_api((uint8_t*)clearFifo, sizeof(clearFifo), NULL, 0); } #endif void SI4463_set_output_level(int t) { SI4463_output_level = t; if (SI4463_in_tx_mode) { #if 1 { uint8_t data[] = { SI446X_CMD_SET_PROPERTY, 0x22, 0x04, 0x00, // PA_MODE 0x08, // Coarse PA mode and class E PA Fine PA mode = 0x04 (uint8_t)SI4463_output_level, // Level 0x00, // Duty 0x00 // Ramp }; SI4463_do_api(data, sizeof(data), NULL, 0); } #else SI4463_start_tx(0); // Refresh output level #endif } } void SI4463_start_tx(uint8_t CHANNEL) { // si446x_state_t s; #if 0 s = SI4463_get_state(); if (s == SI446X_STATE_RX){ SI4463_set_state(SI446X_STATE_READY); my_microsecond_delay(200); s = SI4463_get_state(); if (s != SI446X_STATE_READY){ my_microsecond_delay(1000); } } #endif #if 1 { uint8_t data[] = { SI446X_CMD_SET_PROPERTY, 0x20, 0x01, 0x00, 0x00, // CW mode }; SI4463_do_api(data, sizeof(data), NULL, 0); } #endif #if 1 { uint8_t data[] = { SI446X_CMD_SET_PROPERTY, 0x22, 0x04, 0x00, // PA_MODE 0x08, // Coarse PA mode and class E PA Fine PA mode = 0x04 (uint8_t)SI4463_output_level, // Level 0x00, // Duty 0x00 // Ramp }; SI4463_do_api(data, sizeof(data), NULL, 0); } #endif // retry: { uint8_t data[] = { SI446X_CMD_ID_START_TX, CHANNEL, 0, // Stay in TX state 0, // TX len 0, // TX len 0,// TX delay 0// Num repeat }; SI4463_do_api(data, sizeof(data), NULL, 0); } SI4463_in_tx_mode = true; my_microsecond_delay(1000); #if 0 // Check state for debugging s = SI4463_get_state(); if (s != SI446X_STATE_TX){ my_microsecond_delay(1000); goto retry; } #endif } void SI4463_start_rx(uint8_t CHANNEL) { si446x_state_t s = SI4463_get_state(); if (s == SI446X_STATE_TX){ SI4463_set_state(SI446X_STATE_READY); } SI4463_refresh_gpio(); #if 0 { uint8_t data[] = { 0x11, 0x10, 0x01, 0x03, 0xf0 }; SI4463_do_api(data, sizeof(data), NULL, 0); // Send PREAMBLE_CONFIG_STD_2 for long timeout } { uint8_t data[] = { 0x11, 0x20, 0x01, 0x00, 0x09, // Restore OOK mode }; SI4463_do_api(data, sizeof(data), NULL, 0); } #endif uint8_t data[] = { SI446X_CMD_ID_START_RX, CHANNEL, 0, 0, 0, #ifdef __USE_FFR_FOR_RSSI__ SI446X_CMD_START_RX_ARG_NEXT_STATE1_RXTIMEOUT_STATE_ENUM_RX, #else SI446X_CMD_START_RX_ARG_NEXT_STATE1_RXTIMEOUT_STATE_ENUM_NOCHANGE, #endif SI446X_CMD_START_RX_ARG_NEXT_STATE2_RXVALID_STATE_ENUM_RX, SI446X_CMD_START_RX_ARG_NEXT_STATE3_RXINVALID_STATE_ENUM_RX }; //retry: SI4463_do_api(data, sizeof(data), NULL, 0); #if 0 // Get state for debugging si446x_state_t s = SI4463_get_state(); if (s != SI446X_STATE_RX) { my_microsecond_delay(1000); goto retry; } #endif #if 0 { uint8_t data2[] = { 0x11, 0x20, 0x01, 0x58, 0x10 }; // set FAST_DELAY to 0x10, SI4463_do_api(data2, sizeof(data2), NULL, 0); } #endif SI4463_in_tx_mode = false; } void SI4463_short_start_rx(void) { uint8_t data[] = { SI446X_CMD_ID_START_RX, }; SI4463_do_api(data, sizeof(data), NULL, 0); SI4463_in_tx_mode = false; } void SI4463_clear_int_status(void) { uint8_t data[9] = { SI446X_CMD_ID_GET_INT_STATUS }; SI4463_do_api(data, 1, data, SI446X_CMD_REPLY_COUNT_GET_INT_STATUS); } void set_calibration_freq(int ref) { if (ref >= 0) { SI4463_set_gpio(0, SI446X_GPIO_MODE_DIV_CLK); // GPIO 0 is clock out uint8_t data2[5] = { // GLOBAL_CLK_CFG Clock config SI446X_CMD_SET_PROPERTY, SI446X_PROP_GROUP_GLOBAL, 0x01, 0x01, 0x40|(ref<<3)// DIVIDED_CLK_EN = 1, DIVIDED_CLK_SEL = ref, CLK_32K_SEL = 0 }; SI4463_do_api(data2, 5, NULL, 0); } else { SI4463_set_gpio(0, SI446X_GPIO_MODE_TRISTATE); // stop clock out } } si446x_info_t SI4463_info; void Si446x_getInfo(si446x_info_t* info) { uint8_t data[8] = {SI446X_CMD_PART_INFO}; SI4463_do_api(data, 1, data, 8); info->chipRev = data[0]; info->part = (data[1]<<8) | data[2]; info->partBuild = data[3]; info->id = (data[4]<<8) | data[5]; info->customer = data[6]; info->romId = data[7]; data[0] = SI446X_CMD_FUNC_INFO; SI4463_do_api(data, 1, data, 6); info->revExternal = data[0]; info->revBranch = data[1]; info->revInternal = data[2]; info->patch = (data[3]<<8) | data[4]; info->func = data[5]; } float old_temp = -100; #define TEMP_HISTERESE 0.5 float Si446x_get_temp(void) { uint8_t data[8] = { SI446X_CMD_GET_ADC_READING, 0x10, 0 }; SI4463_do_api(data, 3, data, 8); float t = (data[4] << 8) + data[5]; t = (899.0 * t /4096.0) - 293.0; if (t > old_temp - TEMP_HISTERESE && t < old_temp + TEMP_HISTERESE) { return(old_temp); } old_temp = t; return t; } #ifdef notused static uint8_t SI4463_get_device_status(void) { uint8_t data[2] = { SI446X_CMD_ID_REQUEST_DEVICE_STATE, 0 }; SI4463_do_api(data, 1, data, SI446X_CMD_REPLY_COUNT_REQUEST_DEVICE_STATE); return(data[0]); } #endif // Read a fast response register uint8_t getFRR(uint8_t reg) { set_SPI_mode(SPI_MODE_SI); // SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED); return SI4463_read_byte(reg); } // Get current radio state static si446x_state_t SI4463_get_state(void) { #if 0 #if 0 uint8_t data[2] = { SI446X_CMD_REQUEST_DEVICE_STATE }; SI4463_do_api(data, 1, data, 2); uint8_t state = data[0] & 0x0F; #endif uint8_t state = SI4463_get_device_status(); #else //again: // SI4463_wait_for_cts(); uint8_t state = getFRR(SI446X_CMD_READ_FRR_B); #endif #if 0 // Only for debugging if (state == 255) { my_microsecond_delay(100); goto again; } #endif if(state == SI446X_STATE_TX_TUNE) state = SI446X_STATE_TX; else if(state == SI446X_STATE_RX_TUNE) state = SI446X_STATE_RX; else if(state == SI446X_STATE_READY2) state = SI446X_STATE_READY; else state = state; return (si446x_state_t)state; } void set_RSSI_comp(void) { // Set properties: RF_MODEM_RSSI_COMP_1 // Number of properties: 1 // Group ID: 0x20 // Start ID: 0x4E // Default values: 0x40, // Descriptions: // MODEM_RSSI_COMP - RSSI compensation value. // // #define RF_MODEM_RSSI_COMP_1 0x11, 0x20, 0x01, 0x4E, 0x40 uint8_t data[5] = { SI446X_CMD_SET_PROPERTY, SI446X_PROP_GROUP_MODEM, 0x01, 0x4E, // MODEM_RSSI_COMP set as 0x40 // RSSI_COMP }; SI4463_do_api(data, sizeof(data), NULL, 0); } static bool SI4463_offset_active = false; static void SI4463_set_offset(int16_t offset){ // Set properties: MODEM_FREQ_OFFSET // Number of properties: 2 // Group ID: 0x20 // Start ID: 0x0d // Default values: 0x00, 0x00 // Descriptions: // MODEM_FREQ_OFFSET1 - High byte of the offset // MODEM_FREQ_OFFSET2 - Low byte of the offset // uint8_t data[] = { SI446X_CMD_SET_PROPERTY, SI446X_PROP_GROUP_MODEM, 0x02, 0x0d, // MODEM_FREQ_OFFSET (uint8_t) ((offset>>8) & 0xff), (uint8_t) ((offset) & 0xff) }; SI4463_do_api(data, sizeof(data), NULL, 0); SI4463_offset_changed = true; SI4463_offset_active = (offset != 0); } // Set offset for frequency void si_set_offset(int16_t offset) { SI4463_offset_value = offset; SI4463_set_offset(offset); } // Set additional offset for fm modulation output void si_fm_offset(int16_t offset) { SI4463_set_offset(offset + SI4463_offset_value); } #ifdef __FAST_SWEEP__ extern deviceRSSI_t age[POINTS_COUNT]; static int buf_index = 0; static bool buf_read = false; static char Si446x_readRSSI(void){ char rssi; #ifdef __USE_FFR_FOR_RSSI__ #if 0 // Restart RX, not needed as modem stays in RX mode SI4463_WAIT_CTS; // Wait for CTS SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_ID_START_RX); while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx SPI_READ_8BIT(SI4432_SPI); // Skip command byte response #endif while (SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes do { SI_CS_LOW; SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_FRR_A); SPI_WRITE_8BIT(SI4432_SPI, 0xFF); // read FRR_A while (SPI_IS_BUSY(SI4432_SPI)); // wait SPI_READ_8BIT(SI4432_SPI); rssi = SPI_READ_8BIT(SI4432_SPI); // get last byte as FRR_A (rssi) SI_CS_HIGH; } while (rssi == 0); // Wait for latch to happen #elif 0 SI_CS_LOW; SI4463_WAIT_CTS; // Wait for CTS SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_GET_MODEM_STATUS); while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx SI_CS_HIGH; while (SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes SI4463_WAIT_CTS; // Wait for CTS SI_CS_LOW; SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_CMD_BUFF); // read answer while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx SPI_READ_8BIT(SI4432_SPI); // Drop SI446X_CMD_READ_CMD_BUFF read SPI_WRITE_16BIT(SI4432_SPI, 0xFFFF); // begin read 2 bytes SPI_WRITE_16BIT(SI4432_SPI, 0xFFFF); // next read 2 bytes while (SPI_IS_BUSY(SI4432_SPI)); // wait tx SPI_READ_8BIT(SI4432_SPI); // read CMD_ COMPLETE SPI_READ_8BIT(SI4432_SPI); // MODEM_PEND SPI_READ_8BIT(SI4432_SPI); // MODEM_STATUS rssi = SPI_READ_8BIT(SI4432_SPI); // CURR_RSSI // SPI_WRITE_8BIT(SI4432_SPI, 0xFF); // while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx // rssi = SPI_READ_8BIT(SI4432_SPI); // LATCH_RSSI SI_CS_HIGH; #else uint8_t data[4]; data[0] = SI446X_CMD_GET_MODEM_STATUS; SI4463_do_api(data, 1, data, 3); rssi = data[2]; #endif return rssi; } void SI446x_Fill(int s, int start) { (void)s; set_SPI_mode(SPI_MODE_SI); #if 0 // Only for testing uint8_t data2[] = { 0x11, 0x20, 0x01, 0x4C, 0x03 // set RSSI control }; SI4463_do_api(data2, sizeof(data2), NULL, 0); uint8_t data[] = { 0x12, 0x20, 0x01, 0x4C // get RSSI control }; SI4463_do_api(data, sizeof(data), data, 1); #endif // SPI_BR_SET(SI4432_SPI, SI4432_SPI_FASTSPEED); uint32_t t = setting.additional_step_delay_us; static uint32_t old_t = 0; if (t < old_t +100 && t + 100 > old_t) { // avoid oscillation t = (t + old_t) >> 1; } old_t = t; systime_t measure = chVTGetSystemTimeX(); int i = start; // For SI446X_CMD_READ_FRR_A need drop Rx buffer #ifdef __USE_FFR_FOR_RSSI__ SI4463_WAIT_CTS; // Wait for CTS while(SPI_RX_IS_NOT_EMPTY(SI4432_SPI)) (void)SPI_READ_8BIT(SI4432_SPI); // Remove lingering bytes // Get first point data pureRSSI_t last; do{ SI_CS_LOW; SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_FRR_A); SPI_WRITE_8BIT(SI4432_SPI, 0xFF); // begin read 1 bytes while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx SPI_READ_8BIT(SI4432_SPI); // Skip command byte response last = SPI_READ_8BIT(SI4432_SPI); // Get FRR A SI_CS_HIGH; } while (last == 0); #endif __disable_irq(); do { #ifndef __USE_FFR_FOR_RSSI__ if (t) my_microsecond_delay(t); age[i] = Si446x_readRSSI(); if (++i >= sweep_points) break; #else // DEBUG!! restart SI_CS_LOW; SPI_WRITE_8BIT(SI4432_SPI, SI446X_CMD_READ_FRR_A); SPI_WRITE_8BIT(SI4432_SPI, 0xFF); // begin read 1 bytes while (SPI_IS_BUSY(SI4432_SPI)) ; // wait tx SPI_READ_8BIT(SI4432_SPI); // Skip command byte response age[i] = SPI_READ_8BIT(SI4432_SPI); // Get FRR A SI_CS_HIGH; // latched RSSI reset for next measure - use last known data, for stable measure time if (age[i] == 0) age[i] = last; last = age[i]; if (t) my_microsecond_delay(t); if (++i >= sweep_points) break; #endif } while(1); __enable_irq(); setting.measure_sweep_time_us = sa_ST2US(chVTGetSystemTimeX() - measure); buf_index = (start<=0 ? 0 : start); // Is used to skip 1st entry during level triggering buf_read = true; } #endif #ifdef __LISTEN__ const uint8_t dBm_to_volt [] = { 255, 225, 198, 175, 154, 136, 120, 106, 93, 82, 72, 64, 56, 50, 44, 39, 34, 30, 26, 23, 21, 18, 16, 14, 12, 11, 10, 8, 7, 7, 6, 5, 5, }; static int32_t RSSI_RAW = 0; void SI4432_Listen(int s) { (void) s; uint8_t max = 0; uint16_t count = 0; operation_requested = OP_NONE; // SI4463_WAIT_CTS; // Wait for CTS do { uint8_t v = Si446x_readRSSI(); if (max < v) // Peak max = v; if (count > 1000) { // Decay max -= 1; count = 0; } else count++; v = max - v; dacPutChannelX(&DACD1, 0, dBm_to_volt[v] << 4); } while(operation_requested == OP_NONE); count = 0; // dacPutChannelX(&DACD2, 0, 0); } #endif int16_t Si446x_RSSI(void) { #ifdef __FAST_SWEEP__ if (buf_read) { if (buf_index == sweep_points-1) buf_read = false; return DEVICE_TO_PURE_RSSI(age[buf_index++]); } #endif int i = setting.repeat; if (setting.exp_aver == 1) RSSI_RAW = 0; // SI4463_WAIT_CTS; // Wait for CTS do{ // if (MODE_INPUT(setting.mode) && RSSI_R #define SAMPLE_COUNT 1 int j = SAMPLE_COUNT; //setting.repeat; int RSSI_RAW_ARRAY[3]; do{ if (setting.step_delay) my_microsecond_delay(setting.step_delay); RSSI_RAW_ARRAY[--j] = Si446x_readRSSI(); if (j == 0) break; // my_microsecond_delay(20); }while(1); #if SAMPLE_COUNT == 3 int t; if (RSSI_RAW_ARRAY[0] > RSSI_RAW_ARRAY[1]) { t = RSSI_RAW_ARRAY[1]; RSSI_RAW_ARRAY[1] = RSSI_RAW_ARRAY[0]; RSSI_RAW_ARRAY[0] = t; } if (RSSI_RAW_ARRAY[1] > RSSI_RAW_ARRAY[2]) { t = RSSI_RAW_ARRAY[2]; RSSI_RAW_ARRAY[2] = RSSI_RAW_ARRAY[1]; RSSI_RAW_ARRAY[1] = t; } if (RSSI_RAW_ARRAY[0] > RSSI_RAW_ARRAY[1]) { t = RSSI_RAW_ARRAY[1]; RSSI_RAW_ARRAY[1] = RSSI_RAW_ARRAY[0]; RSSI_RAW_ARRAY[0] = t; } RSSI_RAW += DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[1]); #else #ifdef TINYSA4 if (setting.exp_aver == 1) RSSI_RAW += DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[0]); else RSSI_RAW = ((setting.exp_aver-1) * RSSI_RAW + DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[0]))/setting.exp_aver; #else RSSI_RAW += DEVICE_TO_PURE_RSSI(RSSI_RAW_ARRAY[0]); #endif #endif if (--i <= 0) break; // if (setting.repeat > 3) // my_microsecond_delay(30); }while(1); if (setting.repeat > 1 && setting.exp_aver == 1) RSSI_RAW = RSSI_RAW / setting.repeat; return RSSI_RAW; } void SI446x_set_AGC_LNA(uint8_t v) { uint8_t data[2] = { 0xd0, // AGC_OVERRIDE v }; SI4463_do_api(data, sizeof(data), NULL, 0); #if 0 if (v == 0) { data[0] = 0xd1; // Read AGC?????? NO SI4463_do_api(data, 1, data, 1); } #endif } #ifdef notused // Do an ADC conversion static uint16_t getADC(uint8_t adc_en, uint8_t adc_cfg, uint8_t part) { uint8_t data[6] = { SI446X_CMD_GET_ADC_READING, adc_en, adc_cfg }; SI4463_do_api(data, 3, data, 6); return (data[part]<<8 | data[part + 1]); } #endif // -------------- 0.2 kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_200Hz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_02kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 1kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_1kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_1kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 3 kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_3kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_3kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 10 kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_10kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_10kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 30 kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_30kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_30kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 100kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_100kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_100kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 300kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_300kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_300kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 600kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_600kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_600kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // -------------- 850kHz ---------------------------- #include "radio_config_Si4468_undef.h" #include "radio_config_Si4468_850kHz.h" #include "radio_config_Si4468_short.h" static const uint8_t SI4463_RBW_850kHz[] = RADIO_CONFIGURATION_DATA_ARRAY; // User asks for an RBW of WISH, go through table finding the last triple // for which WISH is greater than the first entry, use those values, // Return the first entry of the following triple for the RBW actually achieved #define IF_BW(dwn3, ndec, filset) (((dwn3)<<7)|((ndec)<<4)|(filset)) typedef struct { const uint8_t *reg; // IF_BW(dwn3, ndec, filset) int16_t RSSI_correction_x_10; // Correction * 10 int16_t RBWx10; // RBW in kHz int16_t noise_correction_x10; // Noise marker correction * 10 }RBW_t; // sizeof(RBW_t) = 8 bytes static const RBW_t RBW_choices[] = { // BW register corr freq {SI4463_RBW_02kHz, 21,3, 26}, {SI4463_RBW_1kHz, 26,10, 10}, {SI4463_RBW_3kHz, 22,30, 8}, {SI4463_RBW_10kHz, 12,100, 9}, {SI4463_RBW_30kHz, 12,300, 12}, {SI4463_RBW_100kHz, 7,1000, 10}, {SI4463_RBW_300kHz, 8,3000, 7}, {SI4463_RBW_600kHz, 8,6000, 15}, {SI4463_RBW_850kHz,18,8500, 15}, }; const uint8_t SI4432_RBW_count = ((int)(sizeof(RBW_choices)/sizeof(RBW_t))); static pureRSSI_t SI4463_RSSI_correction = float_TO_PURE_RSSI(-120); bool SI4463_RSSI_correction_enabled = true; int16_t SI4463_noise_correction_x10; static int prev_band = -1; pureRSSI_t getSI4463_RSSI_correction(void){ return SI4463_RSSI_correction; }; void switch_SI4463_RSSI_correction(bool enabled){ SI4463_RSSI_correction_enabled = enabled; }; uint16_t force_rbw(int f) { if (SI4463_in_tx_mode) return(0); SI4463_set_state(SI446X_STATE_READY); const uint8_t *config = RBW_choices[f].reg; uint16_t i=0; while(config[i] != 0) { SI4463_do_api((void *)&config[i+1], config[i], NULL, 0); i += config[i]+1; } SI4463_clear_int_status(); SI4463_short_start_rx(); // This can cause recalibration // SI4463_wait_for_cts(); set_RSSI_comp(); // prev_band = -1; SI4463_RSSI_correction = ( SI4463_RSSI_correction_enabled ? float_TO_PURE_RSSI(RBW_choices[f].RSSI_correction_x_10 - 1200)/10 : float_TO_PURE_RSSI(-120) ) ; // Set RSSI correction SI4463_noise_correction_x10 = RBW_choices[f].noise_correction_x10; return RBW_choices[f].RBWx10; // RBW achieved by SI4463 in kHz * 10 } uint16_t set_rbw(uint16_t WISH) { int i; for (i=0; i < (int)(sizeof(RBW_choices)/sizeof(RBW_t)) - 1; i++) if (WISH <= RBW_choices[i].RBWx10) break; return force_rbw(i); } #define Npresc 1 // 0=low / 1=High performance mode freq_t SI4463_set_freq(freq_t freq) { uint32_t output_divider; // SI4463_set_gpio(3,SI446X_GPIO_MODE_DRIVE1); // For measuring duration of set_freq int S = 4 ; // Approx 100 Hz channels SI4463_channel = 0; if (freq >= 822000000 && freq <= 1130000000) { // 822 to 1130MHz SI4463_band = 0; output_divider = 4 * FREQ_MULTIPLIER; } else if (freq >= 411000000 && freq <= 566000000) { // 411 to 568MHz SI4463_band = 2; output_divider = 8 * FREQ_MULTIPLIER ; } else if (freq >= 329000000 && freq <= 454000000) { // 329 to 454MHz SI4463_band = 1; output_divider = 10 * FREQ_MULTIPLIER; } else if (freq >= 274000000 && freq <= 378000000) { // 274 to 378 SI4463_band = 3; output_divider = 12 * FREQ_MULTIPLIER; } else if (freq >= 137000000 && freq <= 189000000){ // 137 to 189 SI4463_band = 5; output_divider = 24 * FREQ_MULTIPLIER; #if 0 // Band 4, 6 and 7 do not function } else if (freq >= 137000000 && freq <= 189000000){ // 220 to 266 SI4463_band = 4; output_divider = 12; #endif } else return 0; if (SI4463_offset_active) { si_set_offset(0); SI4463_offset_active = false; } uint32_t R = (freq * output_divider) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz) - 1; // R between 0x00 and 0x7f (127) uint64_t MOD = 524288; // = 2^19 uint32_t F = ((freq * output_divider*MOD) / (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)) - R*MOD; freq_t actual_freq = (R*MOD + F) * (Npresc ? 2*config.setting_frequency_30mhz : 4*config.setting_frequency_30mhz)/ output_divider/MOD; #if 0 // Only for debugging int delta = freq - actual_freq; if (delta < -100 || delta > 100 ){ while(1) my_microsecond_delay(10); } if (F < MOD || F >= MOD*2){ while(1) my_microsecond_delay(10); } #endif #if 0 // Hopping is fast but frequency setting is not yet reliable !!!!! if (SI4463_band == prev_band) { int vco = 2091 + ((((freq / 4 ) * output_divider - 850000000)/1000) * 492) / 200000; if (SI4463_in_tx_mode) { uint8_t data[] = { SI446X_CMD_ID_TX_HOP, (uint8_t) R, // R data[4] (uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7] (vco>>8) & 0xff, vco & 0xff, 0x00, 0x32 }; SI4463_do_api(data, sizeof(data), NULL, 0); } else { uint8_t data[] = { SI446X_CMD_ID_RX_HOP, (uint8_t) R, // R data[4] (uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7] (vco>>8) & 0xff, vco & 0xff }; SI4463_do_api(data, sizeof(data), NULL, 0); } SI4463_frequency_changed = true; // SI4463_set_gpio(3,SI446X_GPIO_MODE_DRIVE0); // For measuring duration of set_freq return actual_freq; } #endif SI4463_set_state(SI446X_STATE_READY); /* // Set properties: RF_FREQ_CONTROL_INTE_8 // Number of properties: 8 // Group ID: 0x40 // Start ID: 0x00 // Default values: 0x3C, 0x08, 0x00, 0x00, 0x00, 0x00, 0x20, 0xFF, // Descriptions: // FREQ_CONTROL_INTE - Frac-N PLL Synthesizer integer divide number. // FREQ_CONTROL_FRAC_2 - Frac-N PLL fraction number. // FREQ_CONTROL_FRAC_1 - Frac-N PLL fraction number. // FREQ_CONTROL_FRAC_0 - Frac-N PLL fraction number. // FREQ_CONTROL_CHANNEL_STEP_SIZE_1 - EZ Frequency Programming channel step size. // FREQ_CONTROL_CHANNEL_STEP_SIZE_0 - EZ Frequency Programming channel step size. // FREQ_CONTROL_W_SIZE - Set window gating period (in number of crystal reference clock cycles) for counting VCO frequency during calibration. // FREQ_CONTROL_VCOCNT_RX_ADJ - Adjust target count for VCO calibration in RX mode. */ // #define RF_FREQ_CONTROL_INTE_8_1 0x11, 0x40, 0x08, 0x00, 0x41, 0x0D, 0xA9, 0x5A, 0x4E, 0xC5, 0x20, 0xFE uint8_t data[] = { 0x11, 0x40, 0x06, 0x00, (uint8_t) R, // R data[4] (uint8_t) ((F>>16) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F>> 8) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((F ) & 255), // F2,F1,F0 data[5] .. data[7] (uint8_t) ((S>> 8) & 255), // Step size data[8] .. data[9] (uint8_t) ((S ) & 255), // Step size data[8] .. data[9] #if 1 0x20, // Window gate 0xFF, // Adj count #endif }; SI4463_do_api(data, sizeof(data), NULL, 0); if (SI4463_band != prev_band) { /* // Set properties: RF_MODEM_CLKGEN_BAND_1 // Number of properties: 1 // Group ID: 0x20 // Start ID: 0x51 // Default values: 0x08, // Descriptions: // MODEM_CLKGEN_BAND - Select PLL Synthesizer output divider ratio as a function of frequency band. */ // #define RF_MODEM_CLKGEN_BAND_1 0x11, 0x20, 0x01, 0x51, 0x0A uint8_t data2[] = { 0x11, 0x20, 0x01, 0x51, 0x10 + (uint8_t)(SI4463_band + (Npresc ? 0x08 : 0)) // 0x08 for high performance mode, 0x10 to skip recal }; SI4463_do_api(data2, sizeof(data2), NULL, 0); prev_band = SI4463_band; } if (SI4463_in_tx_mode) SI4463_start_tx(0); else { SI4463_start_rx(SI4463_channel); } // SI4463_set_gpio(3,SI446X_GPIO_MODE_DRIVE0); // For measuring duration of set_freq SI4463_frequency_changed = true; return actual_freq; } void SI4463_init_rx(void) { // reset: SI_SDN_LOW; my_microsecond_delay(100); SI_SDN_HIGH; my_microsecond_delay(1000); SI_SDN_LOW; my_microsecond_delay(1000); for(uint16_t i=0;i