/* Copyright (c) 2020, Erik Kaashoek erik@kaashoek.com * All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #define FORM_ICON_WIDTH 16 #define FORM_ICON_HEIGHT 16 static const uint8_t left_icons [] = { #define I_EMPTY (0*16) _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), #define I_HIGH_INPUT (1*16) // +----------------+ _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000001100000), // | ** | _BMP16(0b0000000000111001), // | *** *| _BMP16(0b0000111111111111), // | *************| _BMP16(0b0000000000111001), // | *** *| _BMP16(0b0000000001100000), // | ** | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | // +----------------+ #define I_LOW_INPUT (2*16) // +----------------+ _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000001), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000001100000), // | ** | _BMP16(0b0000000000111001), // | **** *| _BMP16(0b0000111111111111), // | *************| _BMP16(0b0000000000111001), // | **** *| _BMP16(0b0000000001100000), // | ** | _BMP16(0b0000000000000000), // | | _BMP16(0b0000000000000000), // | | // +----------------+ #define I_LOW_OUTPUT (3*16) _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000110000000), _BMP16(0b0000011100000001), _BMP16(0b0000111111111111), _BMP16(0b0000011100000001), _BMP16(0b0000000110000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), #define I_HIGH_OUTPUT (4*16) _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000110000000), _BMP16(0b0000011100000001), _BMP16(0b0000111111111111), _BMP16(0b0000011100000001), _BMP16(0b0000000110000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000001), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), #define I_CONNECT (5*16) _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), _BMP16(0b0000000000110000), _BMP16(0b0000000000111101), _BMP16(0b0000001111111111), _BMP16(0b0000010000111101), _BMP16(0b0000100000110000), _BMP16(0b0001000000000000), _BMP16(0b0001000000000000), _BMP16(0b0000100000110000), _BMP16(0b0000010000111101), _BMP16(0b0000001111111111), _BMP16(0b0000000000111101), _BMP16(0b0000000000110000), _BMP16(0b0000000000000000), _BMP16(0b0000000000000000), }; const uint8_t right_icons [] = { #define I_SA 0 // +----------------+ _BMP16(0b0000000000000000), // | | _BMP16(0b0111111111111111), // | ***************| _BMP16(0b0100000000000001), // | * *| _BMP16(0b1100000000000001), // |** *| _BMP16(0b1100000000000001), // |** * *| _BMP16(0b1100000000000001), // |** * *| _BMP16(0b0100100000000001), // | * * * *| _BMP16(0b0100100000000001), // | * * * *| _BMP16(0b0100101010001001), // | * * * * *| _BMP16(0b0100101010101001), // | * * * * * *| _BMP16(0b1100101010101001), // |** * * * * * *| _BMP16(0b1101111111111101), // |** * * * * * *| _BMP16(0b1100000000000001), // |** *********** *| _BMP16(0b0100000000000001), // | * *| _BMP16(0b0111111111111111), // | ***************| _BMP16(0b0000000000000000), // | | // +----------------+ #define I_GEN 1 // +----------------+ _BMP16(0b0000000000000000), // | | _BMP16(0b0111111111111111), // | ***************| _BMP16(0b0100000000000001), // | * *| _BMP16(0b1100000000000001), // |** *| _BMP16(0b1100111110001101), // |** ***** ** *| _BMP16(0b1100100010001001), // |** * * * *| _BMP16(0b0100100010001001), // | * * * * *| _BMP16(0b0100100010001001), // | * * * * *| _BMP16(0b0100100010001001), // | * * * * *| _BMP16(0b0100100010001001), // | * * * * *| _BMP16(0b1100100010001001), // |** * * * *| _BMP16(0b1101100011111001), // |** ** ***** *| _BMP16(0b1100000000000001), // |** *| _BMP16(0b0100000000000001), // | * *| _BMP16(0b0111111111111111), // | ***************| _BMP16(0b0000000000000000), // | | // +----------------+ #define I_CONFIG 2 _BMP16(0b0000000000000000), _BMP16(0b0111111111111111), _BMP16(0b0100000000000001), _BMP16(0b1100000010000001), _BMP16(0b1100001111000001), _BMP16(0b1100011110001001), _BMP16(0b0100011100011101), _BMP16(0b0100011110111001), _BMP16(0b0100001111111001), _BMP16(0b0100011111110001), _BMP16(0b1100111110000001), _BMP16(0b1101111100000001), _BMP16(0b1100111000000001), _BMP16(0b0100000000000001), _BMP16(0b0111111111111111), _BMP16(0b0000000000000000), #define I_SINUS 3 _BMP16(0b0000000000000000), _BMP16(0b0111111111111111), // 1 _BMP16(0b0100000000000001), // 2 _BMP16(0b1100000000000001), // 3 _BMP16(0b1100000000110001), // 4 _BMP16(0b1100000001001001), // 5 _BMP16(0b0100000010000101), // 6 _BMP16(0b0101000010000101), // 7 _BMP16(0b0101000010000101), // 8 _BMP16(0b0101000010000001), // 9 _BMP16(0b1100100100000001), //10 _BMP16(0b1100011000000001), //11 _BMP16(0b1100000000000001), //12 _BMP16(0b0100000000000001), //13 _BMP16(0b0111111111111111), //14 _BMP16(0b0000000000000000), }; #define KP_X(x) (48*(x) + 2 + (LCD_WIDTH-BUTTON_WIDTH-192)) #define KP_Y(y) (48*(y) + 2) #define KP_PERIOD 10 #define KP_MINUS 11 #define KP_X1 12 #define KP_K 13 #define KP_M 14 #define KP_G 15 #define KP_BS 16 #define KP_INF 17 #define KP_DB 18 #define KP_PLUSMINUS 19 #define KP_KEYPAD 20 #define KP_m 21 #define KP_u 22 #define KP_n 23 #define KP_p 24 #define KP_0 31 #define KP_1 32 #define KP_2 33 #define KP_5 34 #define KP_10 35 #define KP_20 36 #define KP_50 37 #define KP_100 38 #define KP_200 39 #define KP_500 40 typedef struct { uint8_t x:4; uint8_t y:4; int8_t c; } keypads_t; static const keypads_t *keypads; // 7 8 9 G // 4 5 6 M // 1 2 3 k // 0 . < x static const keypads_t keypads_freq[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 3 }, { 0, 1, 4 }, { 1, 1, 5 }, { 2, 1, 6 }, { 0, 0, 7 }, { 1, 0, 8 }, { 2, 0, 9 }, { 3, 0, KP_G }, { 3, 1, KP_M }, { 3, 2, KP_K }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; // 7 8 9 // 4 5 6 // 1 2 3 // 0 . < x static const keypads_t keypads_positive[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 3 }, { 0, 1, 4 }, { 1, 1, 5 }, { 2, 1, 6 }, { 0, 0, 7 }, { 1, 0, 8 }, { 2, 0, 9 }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; // 100 200 500 n // 10 20 50 u // 1 2 5 m // 0 . < x static const keypads_t keypads_pos_unit[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 5 }, { 0, 1, KP_10 }, { 1, 1, KP_20 }, { 2, 1, KP_50 }, { 0, 0, KP_100 }, { 1, 0, KP_200 }, { 2, 0, KP_500 }, { 3, 0, KP_n }, { 3, 1, KP_u }, { 3, 2, KP_m }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; // 7 8 9 m // 4 5 6 u // 1 2 3 - // 0 . < x static const keypads_t keypads_plusmin_unit[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 3 }, { 0, 1, 4 }, { 1, 1, 5 }, { 2, 1, 6 }, { 0, 0, 7 }, { 1, 0, 8 }, { 2, 0, 9 }, { 3, 0, KP_u}, { 3, 1, KP_m}, { 3, 2, KP_MINUS }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; // 7 8 9 // 4 5 6 // 1 2 3 - // 0 . < x static const keypads_t keypads_plusmin[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 3 }, { 0, 1, 4 }, { 1, 1, 5 }, { 2, 1, 6 }, { 0, 0, 7 }, { 1, 0, 8 }, { 2, 0, 9 }, { 3, 0, KP_u}, { 3, 1, KP_m}, { 3, 2, KP_MINUS }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; // 7 8 9 // 4 5 6 // 1 2 3 m // 0 . < x static const keypads_t keypads_time[] = { { 1, 3, KP_PERIOD }, { 0, 3, 0 }, { 0, 2, 1 }, { 1, 2, 2 }, { 2, 2, 3 }, { 0, 1, 4 }, { 1, 1, 5 }, { 2, 1, 6 }, { 0, 0, 7 }, { 1, 0, 8 }, { 2, 0, 9 }, // { 3, 0, KP_n}, // { 3, 1, KP_u}, { 3, 2, KP_m }, { 3, 3, KP_X1 }, { 2, 3, KP_BS }, { 0, 0, -1 } }; enum { KM_START, KM_STOP, KM_CENTER, KM_SPAN, KM_CW, // These must be first to share common help text //#5 KM_REFLEVEL, KM_SCALE, KM_ATTENUATION, KM_ACTUALPOWER, KM_IF, // #10 KM_SAMPLETIME, KM_LOWOUTLEVEL, KM_DECAY, KM_NOISE, #ifdef TINYSA4 KM_30MHZ, #else KM_10MHZ, #endif // #15 KM_REPEAT, KM_EXT_GAIN, KM_TRIGGER, KM_LEVELSWEEP, KM_SWEEP_TIME, // #20 KM_OFFSET_DELAY, KM_FAST_SPEEDUP, KM_GRIDLINES, KM_MARKER, KM_MODULATION, // #25 KM_HIGHOUTLEVEL, #ifdef TINYSA4 KM_COR_AM, KM_COR_WFM, KM_COR_NFM, KM_IF2, // #30 KM_R,KM_MOD,KM_CP, #endif KM_ATTACK, #ifdef TINYSA4 KM_LPF, #endif KM_LEVEL, #ifdef __LIMITS__ KM_LIMIT_FREQ, KM_LIMIT_LEVEL, #endif KM_MARKER_TIME, // #35 KM_NONE // always at enum end }; static const struct { const keypads_t *keypad_type; char * name; } keypads_mode_tbl[KM_NONE] = { {keypads_freq , "START"}, // start {keypads_freq , "STOP"}, // stop {keypads_freq , "CENTER"}, // center {keypads_freq , "SPAN"}, // span {keypads_freq , "FREQ"}, // cw freq {keypads_plusmin_unit, "REF\nLEVEL"}, // reflevel #5 {keypads_pos_unit , "SCALE"}, // scale {keypads_positive , "ATTENUATE"}, // attenuation {keypads_plusmin_unit, "ACTUAL\nPOWER"}, // actual power {keypads_freq , "IF"}, // IF {keypads_positive , "SAMPLE\nDELAY"}, // sample delay #10 {keypads_plusmin , "OUTPUT\nLEVEL"}, // KM_LOWOUTLEVEL {keypads_positive , "DECAY"}, // KM_DECAY {keypads_positive , "NOISE\nLEVEL"}, // KM_NOISE {keypads_freq , "FREQ"}, // KM_30MHz | KM_10MHz {keypads_positive , "SAMPLE\nREPEAT"}, // KM_REPEA #15 {keypads_plusmin , "EXT\nGAIN"}, // KM_EXT_GAIN {keypads_plusmin_unit, "TRIGGER\nLEVEL"}, // KM_TRIGGER {keypads_plusmin , "LEVEL\nSWEEP"}, // KM_LEVELSWEEP {keypads_time , "SWEEP\nSECONDS"}, // KM_SWEEP_TIME {keypads_positive , "OFFSET\nDELAY"}, // KM_OFFSET_DELAY #20 {keypads_positive , "FAST\nSPEEDUP"}, // KM_FAST_SPEEDUP {keypads_positive , "MINIMUM\nGRIDLINES"}, // KM_GRIDLINES {keypads_freq , "MARKER\nFREQ"}, // KM_MARKER {keypads_freq , "MODULATION\nFREQ"}, // KM_MODULATION {keypads_plusmin , "OUTPUT\nLEVEL"}, // KM_HIGHOUTLEVEL #25 #ifdef TINYSA4 {keypads_plusmin , "COR\nAM"}, // KM_COR_AM {keypads_plusmin , "COR\nWFM"}, // KM_COR_WFM {keypads_plusmin , "COR\nNFM"}, // KM_COR_NFM {keypads_freq , "IF2"}, // KM_IF2 {keypads_positive , "R"}, // KM_R #30 {keypads_positive , "MODULO"}, // KM_MOD {keypads_positive , "CP"}, // KM_CP #endif {keypads_positive , "ATTACK"}, // KM_ATTACK #ifdef TINYSA4 {keypads_freq , "ULTRA\nSTART"}, // KM_LPF #endif {keypads_plusmin , "LEVEL"}, // KM_LEVEL #ifdef __LIMITS__ {keypads_freq , "END\nFREQ"}, // KM_LIMIT_FREQ {keypads_plusmin_unit , "LEVEL"}, // KM_LIMIT_LEVEL #endif {keypads_time , "MARKER\nTIME"}, // KM_MARKER_TIME }; #if 0 // Not used enum { SL_GENLOW_FREQ, SL_GENHIGH_FREQ, SL_GENLOW_LEVEL, SL_GENHIGH_LEVEL }; ui_slider_t ui_sliders [] = { { KM_CENTER, true, 0, 1000000, 0, 350000000, M_GENLOW}, { KM_CENTER, true, 0, 1000000, 240000000, 960000000, M_GENHIGH}, { KM_LOWOUTLEVEL, false,0, 1, -76, -6, M_GENLOW}, { KM_HIGHOUTLEVEL, false,0, 1, -38, +6, M_GENHIGH}, }; #endif // ===[MENU CALLBACKS]========================================================= static const menuitem_t menu_lowoutputmode[]; static const menuitem_t menu_highoutputmode[]; static const menuitem_t menu_modulation[]; static const menuitem_t menu_top[]; static const menuitem_t menu_reffer[]; static const menuitem_t menu_sweep_points[]; static const menuitem_t menu_sweep_points_form[]; static const menuitem_t menu_modulation[]; static const menuitem_t menu_limit_modify[]; #ifdef __USE_SERIAL_CONSOLE__ static const menuitem_t menu_connection[]; #endif //static const menuitem_t menu_drive_wide[]; #ifdef TINYSA4 static const menuitem_t menu_settings3[]; static const menuitem_t menu_curve[]; static const menuitem_t menu_curve_confirm[]; #endif static const menuitem_t menu_sweep[]; static const menuitem_t menu_settings[]; extern bool dirty; char range_text[20]; static UI_FUNCTION_ADV_CALLBACK(menu_sweep_acb) { (void)data; (void)item; if (b){ if (setting.level_sweep != 0 || get_sweep_frequency(ST_SPAN) != 0) { plot_printf(uistat.text, sizeof uistat.text, "SW:%3.2fMHz %+ddB %.3Fs", get_sweep_frequency(ST_SPAN) / 1000000.0, (int)setting.level_sweep, setting.sweep_time_us/(float)ONE_SECOND_TIME); b->param_1.text = uistat.text; } else b->param_1.text = "SWEEP: OFF"; return; } menu_push_submenu(menu_sweep); } #ifdef __SWEEP_RESTART__ static UI_FUNCTION_ADV_CALLBACK(menu_restart_acb){ (void)item; (void)data; if(b){ if (current_index >= 0 && setting.sweep) { float current_level = setting.level + ((float)current_index)* setting.level_sweep / (float)sweep_points; plot_printf(uistat.text, sizeof uistat.text, "STOP %5.3QHz %+.1fdBm", frequencies[current_index], current_level); b->param_1.text = uistat.text; } else { b->param_1.text = "START SWEEP"; } return; } setting.sweep = !setting.sweep; dirty = true; } #endif #ifdef TINYSA4 float local_actual_level; int current_curve; int current_curve_index; static UI_FUNCTION_ADV_CALLBACK(menu_curve_acb) { (void)item; int old_m; if (b){ plot_printf(uistat.text, sizeof uistat.text, "%8.3QHz %+4.1fdB", config.correction_frequency[current_curve][data], config.correction_value[current_curve][data]); b->param_1.text = uistat.text; return; } switch(current_curve) { case CORRECTION_LOW_OUT: old_m = setting.mode; reset_settings(M_GENLOW); set_level(-35); set_sweep_frequency(ST_CW, config.correction_frequency[current_curve][data]); setting.mute = false; perform(false, 0, config.correction_frequency[current_curve][data], false); perform(false, 1, config.correction_frequency[current_curve][data], false); plot_printf(uistat.text, sizeof uistat.text, "Level of %.3QHz output", config.correction_frequency[current_curve][data]); kp_help_text = uistat.text; kp_buf[0]=0; ui_mode_keypad(KM_LEVEL); if (kp_buf[0] != 0) { float new_offset = (-35.0) - uistat.value + config.correction_value[current_curve][data]; // calculate offset based on difference between measured peak level and known peak level if (new_offset > -25 && new_offset < 25) { config.correction_value[current_curve][data] = new_offset; config_save(); } } reset_settings(old_m); break; case CORRECTION_LNA: reset_settings(M_LOW); setting.extra_lna = true; goto common; case CORRECTION_LOW: reset_settings(M_LOW); common: set_sweep_frequency(ST_SPAN, 1000000); set_sweep_frequency(ST_CENTER, config.correction_frequency[current_curve][data]); setting.step_delay_mode = SD_PRECISE; current_curve_index = data; menu_push_submenu(menu_curve_confirm); break; } } extern float peakLevel; UI_FUNCTION_CALLBACK(menu_curve_confirm_cb) { (void)item; if (data) { float new_offset = local_actual_level - peakLevel + config.correction_value[current_curve][current_curve_index]; // calculate offset based on difference between measured peak level and known peak level if (new_offset > -25 && new_offset < 25) { config.correction_value[current_curve][current_curve_index] = new_offset; config_save(); } } menu_move_back(false); } static UI_FUNCTION_CALLBACK(menu_input_curve_prepare_cb) { (void)item; (void)data; if (config.low_level_offset == 100) return; kp_help_text = "Enter actual input level"; kp_buf[0]=0; ui_mode_keypad(KM_LEVEL); if (kp_buf[0] != 0) { local_actual_level = uistat.value; current_curve = CORRECTION_LOW; menu_push_submenu(menu_curve); } } static UI_FUNCTION_CALLBACK(menu_lna_curve_prepare_cb) { (void)item; (void)data; if (config.low_level_offset == 100) return; kp_help_text = "Enter actual input level"; kp_buf[0]=0; ui_mode_keypad(KM_LEVEL); if (kp_buf[0] != 0) { local_actual_level = uistat.value; current_curve = CORRECTION_LNA; menu_push_submenu(menu_curve); } } static UI_FUNCTION_CALLBACK(menu_output_curve_prepare_cb) { (void)item; (void)data; if (config.low_level_output_offset == 100) return; current_curve = CORRECTION_LOW_OUT; menu_push_submenu(menu_curve); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_output_level_acb) { (void)item; (void)data; if (b){ return; } int old_m = setting.mode; reset_settings(M_GENLOW); set_level(-25); set_sweep_frequency(ST_CW, 30000000); setting.mute = false; perform(false, 0, 30000000, false); perform(false, 1, 30000000, false); kp_buf[0]=0; ui_mode_keypad(KM_LEVEL); if (kp_buf[0] != 0) { float old_offset = config.low_level_output_offset; if (old_offset == 100) old_offset = 0; float new_offset = uistat.value - (-25.0) + old_offset; // calculate offset based on difference between measured peak level and known peak level if (uistat.value == 100) new_offset = 100; if ((new_offset > -5 && new_offset < 5) || new_offset == 100) { config.low_level_output_offset = new_offset; config_save(); } } reset_settings(old_m); } static UI_FUNCTION_ADV_CALLBACK(menu_mode_acb) { (void)data; if (b){ if (item == setting.mode) { b->param_1.text = "Return"; b->bg = LCD_MENU_ACTIVE_COLOR; b->border = BUTTON_BORDER_FALLING | MENU_BUTTON_BORDER; } else b->param_1.text = "Switch"; return; } set_mode(item); // draw_cal_status(); switch (item) { case 0: // if (setting.mode != M_LOW) // set_mode(M_LOW); menu_move_back(true); break; case 1: // if (setting.mode != M_HIGH) // set_mode(M_HIGH); menu_move_back(true); break; case 2: menu_push_submenu(menu_lowoutputmode); break; case 3: menu_push_submenu(menu_highoutputmode); break; } redraw_request |= REDRAW_CAL_STATUS; } static UI_FUNCTION_ADV_CALLBACK(menu_load_preset_acb) { (void)item; if(b){ setting_t *p = caldata_pointer(data); char *t = (char *)spi_buffer; if (p) plot_printf(t, 64, "%.6FHz\n%.6FHz", (float)p->frequency0, (float)p->frequency1);//\n%d-drstx8 else plot_printf(t, 64, "EMPTY %d", (int)data); b->param_1.text = t; return; } if (caldata_recall(data) == -1) { if (data == 0) reset_settings(setting.mode); // Restore factory defaults } menu_move_back(true); } static UI_FUNCTION_ADV_CALLBACK(menu_store_preset_acb) { (void)item; if(b){ b->param_1.u = data; return; } if (data == 100) { reset_settings(M_LOW); // Restore all defaults in Low mode set_refer_output(-1); // setting.mode = -1; data = 0; } caldata_save(data); menu_move_back(true); } UI_FUNCTION_CALLBACK(menu_autosettings_cb) { (void)item; (void)data; reset_settings(setting.mode); active_marker = 0; for (int i = 1; iicon = data == setting.step_delay_mode ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_step_delay(data); // menu_move_back(false); ui_mode_normal(); } #define CONFIG_MENUITEM_TOUCH_CAL 0 #define CONFIG_MENUITEM_TOUCH_TEST 1 #define CONFIG_MENUITEM_SELFTEST 2 #define CONFIG_MENUITEM_VERSION 3 static UI_FUNCTION_CALLBACK(menu_config_cb) { (void)item; switch (data) { case CONFIG_MENUITEM_TOUCH_CAL: touch_cal_exec(); break; case CONFIG_MENUITEM_TOUCH_TEST: touch_draw_test(); break; case CONFIG_MENUITEM_SELFTEST: sweep_mode = 0; // Suspend sweep to save time menu_move_back(true); setting.test = 0; setting.test_argument = 0; sweep_mode = SWEEP_SELFTEST; return; case CONFIG_MENUITEM_VERSION: show_version(); break; } ui_mode_normal(); redraw_frame(); request_to_redraw_grid(); } #ifndef TINYSA4 static UI_FUNCTION_CALLBACK(menu_dfu_cb) { (void)data; (void)item; enter_dfu(); } #endif #ifdef __LISTEN__ static UI_FUNCTION_ADV_CALLBACK(menu_listen_acb) { (void)data; (void)item; if (b){ b->icon = (sweep_mode & SWEEP_LISTEN) ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } if (sweep_mode & SWEEP_LISTEN) { sweep_mode = SWEEP_ENABLE; } else { sweep_mode = SWEEP_LISTEN; } ui_mode_normal(); redraw_frame(); request_to_redraw_grid(); #if 0 if (markers[active_marker].enabled == M_ENABLED) { do { perform(false,0,frequencies[markers[active_marker].index], false); SI4432_Listen(MODE_SELECT(setting.mode)); } while (ui_process_listen_lever()); } #endif } #endif // const int menu_modulation_value[]={MO_NONE,MO_AM, MO_NFM, MO_WFM, MO_EXTERNAL}; const char *menu_modulation_text[]={"None", "AM", "NFM", "WFM", "External"}; static UI_FUNCTION_ADV_CALLBACK(menu_modulation_acb) { (void)item; if (b){ b->icon = data == setting.modulation ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } //Serial.println(item); if (data) { set_sweep_frequency(ST_SPAN, 0); // No other scanning allowed when modulation is on!!!!! set_level_sweep(0); } set_modulation(data); menu_move_back(false); // ui_mode_normal(); // Stay in menu mode // draw_cal_status(); } static UI_FUNCTION_ADV_CALLBACK(menu_smodulation_acb){ (void)item; (void)data; if(b){ if (setting.modulation == MO_NONE || setting.modulation == MO_EXTERNAL) b->param_1.text = menu_modulation_text[setting.modulation]; else { plot_printf(uistat.text, sizeof uistat.text, "%5.3fkHz %s", setting.modulation_frequency / 1000.0, menu_modulation_text[setting.modulation]); b->param_1.text = uistat.text; } return; } menu_push_submenu(menu_modulation); } // 0 1 2 3 4 5 6 7 const char *menu_reffer_text[]={"OFF","30MHz","15MHz","10MHz","4MHz","3MHz","2MHz","1MHz"}; static UI_FUNCTION_ADV_CALLBACK(menu_reffer_acb) { (void)item; if (b){ b->icon = setting.refer == ((int)data-1) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; b->param_1.text = menu_reffer_text[data]; return; } //Serial.println(item); set_refer_output((int)data - 1); menu_move_back(false); // ui_mode_normal(); // Stay in menu mode // draw_cal_status(); } static UI_FUNCTION_ADV_CALLBACK(menu_sreffer_acb){ (void)item; (void)data; if(b){ b->param_1.text = menu_reffer_text[setting.refer+1]; return; } menu_push_submenu(menu_reffer); } #ifdef TINYSA3 static UI_FUNCTION_ADV_CALLBACK(menu_lo_drive_acb) { (void)item; if(b){ b->param_1.i = drive_dBm[data]; b->icon = data == setting.lo_drive ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } //Serial.println(item); set_lo_drive(data); menu_move_back(false); // ui_mode_normal(); // draw_cal_status(); } #else static UI_FUNCTION_ADV_CALLBACK(menu_mixer_drive_acb) { (void)item; if(b){ b->param_1.i = data; b->icon = data == setting.lo_drive ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } //Serial.println(item); set_lo_drive(data); menu_move_back(false); // ui_mode_normal(); // draw_cal_status(); } #endif #if 0 static UI_FUNCTION_ADV_CALLBACK(menu_sdrive_acb){ (void)item; (void)data; if(b){ #ifdef TINYSA4 b->param_1.i = setting.lo_drive; #else b->param_1.i = drive_dBm[setting.lo_drive] + (setting.mode==M_GENHIGH ? setting.external_gain : 0); #endif return; } menu_push_submenu(menu_drive_wide); } #endif #ifdef __SPUR__ static UI_FUNCTION_ADV_CALLBACK(menu_spur_acb) { (void)data; (void)item; if (b){ if (setting.mode == M_LOW) { b->param_1.text = "SPUR\nREMOVAL"; b->icon = AUTO_ICON(setting.spur_removal); } else { b->param_1.text = "MIRROR\nMASKING"; #ifdef TINYSA4 b->icon = AUTO_ICON(setting.mirror_masking ? 1 : 0); // mirror_masking does not yet have an auto mode so this is never an auto icon #else b->icon = setting.mirror_masking == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; #endif } return; } if (setting.mode == M_LOW) { toggle_spur(); } else toggle_mirror_masking(); // menu_move_back(false); ui_mode_normal(); } #endif #ifdef TINYSA4 static UI_FUNCTION_ADV_CALLBACK(menu_extra_lna_acb) { (void)data; (void)item; if (b){ b->icon = setting.extra_lna == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } toggle_extra_lna(); // menu_move_back(false); ui_mode_normal(); } static UI_FUNCTION_ADV_CALLBACK(menu_adf_out_acb) { (void)data; (void)item; if (b){ b->icon = config.high_out_adf4350 == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } toggle_high_out_adf4350(); // menu_move_back(false); ui_mode_normal(); } static UI_FUNCTION_ADV_CALLBACK(menu_ultra_acb) { (void)data; (void)item; if (b){ b->icon = config.ultra == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } if (!config.ultra) { kp_help_text = "Ultra unlock code"; ui_mode_keypad(KM_CENTER); if (uistat.value != 4321) return; } config.ultra = !config.ultra; config_save(); reset_settings(M_LOW); if (config.ultra){ set_sweep_frequency(ST_START, 0); set_sweep_frequency(ST_STOP, 3000000000ULL); } // menu_move_back(false); ui_mode_normal(); } #ifdef __WAIT_CTS_WHILE_SLEEPING__ volatile int sleep = 0; static UI_FUNCTION_ADV_CALLBACK(menu_sleep_acb) { (void)data; (void)item; if (b){ b->icon = sleep == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } sleep = !sleep; } #endif static UI_FUNCTION_ADV_CALLBACK(menu_debug_avoid_acb) { (void)data; (void)item; if (b){ b->icon = debug_avoid == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } toggle_debug_avoid(); // menu_move_back(); ui_mode_normal(); } static UI_FUNCTION_ADV_CALLBACK(menu_debug_freq_acb) { (void)data; (void)item; if (b){ b->icon = debug_frequencies == 0 ? BUTTON_ICON_NOCHECK : BUTTON_ICON_CHECK; return; } debug_frequencies = ! debug_frequencies; // menu_move_back(); ui_mode_normal(); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_measure_acb) { (void)item; if (b){ b->icon = data == setting.measurement ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } menu_move_back(false); #ifdef __MEASURE__ if ((data != M_OFF && setting.measurement != M_OFF) || data == M_OFF ) { // reset_settings(setting.mode); if (0) { no_measurement: data = M_OFF; } if (setting.measurement == M_LINEARITY) { TRACE_DISABLE(TRACE_STORED_FLAG); } for (int i = 0; i< MARKERS_MAX; i++) { markers[i].enabled = M_DISABLED; markers[i].mtype = M_NORMAL; } markers[0].enabled = M_ENABLED; markers[0].mtype = M_REFERENCE | M_TRACKING; set_average(AV_OFF); } switch(data) { case M_OFF: // Off // set_measurement(M_OFF); break; case M_IMD: // IMD reset_settings(setting.mode); for (int i = 0; i< MARKERS_MAX; i++) { markers[i].enabled = M_ENABLED; markers[i].mtype = M_DELTA | M_TRACKING; } markers[0].mtype = M_REFERENCE | M_TRACKING; kp_help_text = "Frequency of fundamental"; ui_mode_keypad(KM_CENTER); set_sweep_frequency(ST_START, 0); #ifdef TINYSA4 #define IMD_RANGE 10 #else #define IMD_RANGE 5 #endif set_sweep_frequency(ST_STOP, uistat.value*IMD_RANGE); set_average(AV_4); // set_measurement(M_IMD); break; case M_OIP3: // OIP3 reset_settings(setting.mode); for (int i = 0; i< MARKERS_MAX; i++) { markers[i].enabled = M_ENABLED; markers[i].mtype = M_DELTA; } markers[0].mtype = M_REFERENCE | M_TRACKING; markers[1].mtype = M_TRACKING; kp_help_text = "Frequency of left signal"; ui_mode_keypad(KM_CENTER); int left = uistat.value; kp_help_text = "Right signal"; ui_mode_keypad(KM_CENTER); int right = uistat.value; set_sweep_frequency(ST_CENTER, (left+right)/2); set_sweep_frequency(ST_SPAN, (right - left)*5); set_average(AV_4); // set_measurement(M_OIP3); break; case M_PHASE_NOISE: // Phase noise reset_settings(setting.mode); for (int i = 0; i< MARKERS_MAX; i++) { markers[i].enabled = M_DISABLED; markers[i].mtype = M_NORMAL; } markers[0].enabled = M_ENABLED; markers[0].mtype = M_REFERENCE | M_TRACKING; markers[1].enabled = M_ENABLED; markers[1].mtype = M_DELTA | M_NOISE; kp_help_text = "Frequency of signal"; ui_mode_keypad(KM_CENTER); kp_help_text = "Frequency offset"; ui_mode_keypad(KM_SPAN); set_sweep_frequency(ST_SPAN, uistat.value*4); // set_measurement(M_PHASE_NOISE); set_average(AV_4); break; case M_STOP_BAND: // STop band measurement reset_settings(setting.mode); markers[1].enabled = M_ENABLED; markers[1].mtype = M_DELTA; markers[2].enabled = M_ENABLED; markers[2].mtype = M_DELTA; kp_help_text = "Frequency of signal"; ui_mode_keypad(KM_CENTER); kp_help_text = "Width of signal"; ui_mode_keypad(KM_SPAN); set_sweep_frequency(ST_SPAN, uistat.value*4); // set_measurement(M_STOP_BAND); // SetAverage(4); break; case M_PASS_BAND: // pass band measurement // reset_settings(setting.mode); markers[0].enabled = M_ENABLED; markers[0].mtype = M_REFERENCE | M_TRACKING; markers[1].enabled = M_ENABLED; markers[1].mtype = M_DELTA; markers[2].enabled = M_ENABLED; markers[2].mtype = M_DELTA; // kp_help_text = "Frequency of signal"; // ui_mode_keypad(KM_CENTER); // kp_help_text = "Width of signal"; // ui_mode_keypad(KM_SPAN); // set_sweep_frequency(ST_SPAN, uistat.value*2); set_measurement(M_PASS_BAND); // SetAverage(4); break; #ifdef __LINEARITY__ case M_LINEARITY: TRACE_ENABLE(TRACE_STORED_FLAG); // set_measurement(M_LINEARITY); break; #endif case M_AM: // AM reset_settings(setting.mode); for (int i = 0; i< 3; i++) { markers[i].enabled = M_ENABLED; #ifdef TINYSA4 markers[i].mtype = M_DELTA| M_TRACKING; #else markers[i].mtype = M_DELTA;// | M_TRACKING; #endif } #ifdef TINYSA4 freq_t span; markers[0].mtype = M_REFERENCE | M_TRACKING; #else freq_t center, span; markers[0].mtype = M_REFERENCE;// | M_TRACKING; #endif kp_help_text = "Frequency of signal"; ui_mode_keypad(KM_CENTER); #ifdef TINYSA3 center = uistat.value; #endif kp_help_text = "Modulation frequency: 3 .. 10kHz"; ui_mode_keypad(KM_SPAN); // if (uistat.value < 3000) // break; span = uistat.value; #ifdef TINYSA4 set_RBW((span * 5 / 50) / 100); #endif set_sweep_frequency(ST_SPAN, span * 5); // update_frequencies(); // To ensure markers are positioned right!!!!!! // set_measurement(M_AM); #ifndef TINYSA4 set_marker_frequency(0, center); set_marker_frequency(1, center-span); set_marker_frequency(2, center+span); #endif set_average(AV_4); break; case M_FM: // FM reset_settings(setting.mode); for (int i = 0; i< 3; i++) { markers[i].enabled = M_ENABLED; markers[i].mtype = M_DELTA; } markers[0].mtype = M_REFERENCE; kp_help_text = "Frequency of signal"; ui_mode_keypad(KM_CENTER); set_marker_frequency(0, uistat.value); #ifdef TINYSA4 kp_help_text = "Modulation frequency: 1 .. 10kHz"; ui_mode_keypad(KM_SPAN); if (uistat.value < 1000 || uistat.value > 10000) goto no_measurement; set_RBW(uistat.value/300); #else kp_help_text = "Modulation frequency: 1 .. 2.5kHz"; ui_mode_keypad(KM_SPAN); if (uistat.value < 1000 || uistat.value > 2500) goto no_measurement; set_RBW(uistat.value/100); #endif // actual_rbw_x10 kp_help_text = "Frequency deviation: 3 .. 500kHz"; ui_mode_keypad(KM_SPAN); if (uistat.value < 12000) uistat.value = 12000; // minimum span set_sweep_frequency(ST_SPAN, uistat.value*4); // set_measurement(M_FM); break; case M_THD: set_average(AV_4); // set_measurement(M_THD); break; #ifdef __CHANNEL_POWER__ case M_CP: // channel power reset_settings(setting.mode); markers[0].enabled = M_DISABLED; kp_help_text = "Channel frequency"; ui_mode_keypad(KM_CENTER); kp_help_text = "Channel width"; ui_mode_keypad(KM_SPAN); set_sweep_frequency(ST_SPAN, uistat.value*3); // set_measurement(M_CP); break; #endif } set_measurement(data); #endif // selection = -1; ui_mode_normal(); // draw_cal_status(); } static UI_FUNCTION_ADV_CALLBACK(menu_atten_acb) { (void)item; (void)data; if(b){ b->icon = setting.auto_attenuation ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_auto_attenuation(); menu_move_back(true); } static UI_FUNCTION_ADV_CALLBACK(menu_atten_high_acb) { (void)item; if(b){ b->icon = (setting.atten_step*30 == data) ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } setting.auto_attenuation = false; set_attenuation(data); menu_move_back(true); } static UI_FUNCTION_ADV_CALLBACK(menu_reflevel_acb) { (void)item; (void)data; if(b){ b->icon = setting.auto_reflevel ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_auto_reflevel(true); menu_move_back(true); } static UI_FUNCTION_ADV_CALLBACK(menu_storage_acb) { (void)item; if(b){ if (data == 0 && setting.show_stored) b->icon = BUTTON_ICON_CHECK; if (setting.subtract_stored){ if (data == 2 && setting.show_stored) b->icon = BUTTON_ICON_CHECK; if (data == 3 && !setting.show_stored) b->icon = BUTTON_ICON_CHECK; } return; } switch(data) { case 0: set_storage(); break; case 1: set_clear_storage(); break; case 2: set_subtract_storage(); break; case 3: toggle_normalize(); if (setting.subtract_stored) { kp_help_text = "Ref level"; ui_mode_keypad(KM_REFLEVEL); // setting.normalize_level = uistat.value; } else set_auto_reflevel(true); break; #ifdef TINYSA4 case 4: save_to_sd(1+2); // frequencies + actual break; case 5: save_to_sd(1+4); // frequencies + stored break; #endif } ui_mode_normal(); // draw_cal_status(); } static UI_FUNCTION_ADV_CALLBACK(menu_waterfall_acb){ (void)item; (void)data; if (b){ b->icon = setting.waterfall ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } setting.waterfall++; if (setting.waterfall>W_BIG)setting.waterfall = W_OFF; toggle_waterfall(); ui_mode_normal(); } static UI_FUNCTION_ADV_CALLBACK(menu_average_acb) { (void)item; if (b){ b->icon = setting.average == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_average(data); ui_mode_normal(); // menu_move_back(true); } extern const menuitem_t menu_marker_modify[]; static UI_FUNCTION_ADV_CALLBACK(menu_marker_select_acb) { (void)item; if(b){ b->icon = markers[data-1].enabled ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; b->param_1.i = data; return; } markers[data-1].enabled = true; // interpolate_maximum(data-1); // possibly not a maximum markers[data-1].frequency = frequencies[markers[data-1].index]; active_marker_select(data-1); menu_push_submenu(menu_marker_modify); redraw_marker(active_marker); } #ifdef __LIMITS__ uint8_t active_limit = 0; static UI_FUNCTION_ADV_CALLBACK(menu_limit_select_acb) { (void)item; if(b){ b->icon = setting.limits[data-1].enabled ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; b->param_1.i = data; return; } active_limit = data -1; setting.limits[active_limit].enabled = true; limits_update(); menu_push_submenu(menu_limit_modify); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_marker_modify_acb) { (void)item; if (active_marker == MARKER_INVALID) return; if(b){ if (markers[active_marker].enabled == M_ENABLED) { b->icon = BUTTON_ICON_NOCHECK; if (data & markers[active_marker].mtype) b->icon = BUTTON_ICON_CHECK; else if (data==markers[active_marker].mtype) // This catches the M_NORMAL case b->icon = BUTTON_ICON_CHECK; } return; } if (markers[active_marker].enabled == M_ENABLED) { if (data == M_NORMAL) { markers[active_marker].mtype = M_NORMAL; } if (data == M_REFERENCE) { for (int i = 0; i=0){ markers[active_marker].enabled = false; markmap_all_markers(); menu_move_back(false); } } #ifdef __LIMITS__ static UI_FUNCTION_CALLBACK(menu_limit_disable_cb) { (void)item; (void)data; if (active_limitparam_1.text = rbwsel_text[data]; #else b->param_1.u = rbwsel_x10[data]/10; #endif b->icon = setting.rbw_x10 == rbwsel_x10[data] ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_RBW(rbwsel_x10[data]); menu_move_back(true); } #ifdef __VBW__ static UI_FUNCTION_ADV_CALLBACK(menu_vbw_acb) { (void)item; if (b){ b->param_1.text = vbwsel_text[data]; b->icon = setting.vbw_x10 == vbwsel_x10[data] ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_VBW(vbwsel_x10[data]); menu_move_back(true); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_unit_acb) { (void)item; if (b){ b->icon = data == setting.unit ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } set_unit(data); menu_move_back(true); } #if 0 enum { S_20,S_10,S_5,S_2,S_1,S_P5,S_P2,S_P1,S_P05,S_P02,S_P01 }; static const float menu_scale_per_value[11]={20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01}; static UI_FUNCTION_ADV_CALLBACK(menu_scale_per_acb) { (void)item; if(b){ return; } set_scale(menu_scale_per_value[data]); menu_move_back(true); } #endif const char *mode_text[] = {"PRE","POST","MID"}; static UI_FUNCTION_ADV_CALLBACK(menu_trigger_acb) { (void)item; if(b){ if (data == T_MODE) { b->param_1.text = mode_text[setting.trigger_mode - T_PRE]; } else if (data == T_UP || data == T_DOWN) b->icon = setting.trigger_direction == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; else b->icon = setting.trigger == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } if (data == T_MODE) { setting.trigger_mode += 1; if (setting.trigger_mode > T_MID) setting.trigger_mode = T_PRE; set_trigger(setting.trigger_mode); } else if (data != T_DONE) { set_trigger(data); // menu_move_back(false); ui_mode_normal(); } completed = true; } #if 0 static void choose_active_trace(void) { int i; if (trace[uistat.current_trace].enabled) // do nothing return; for (i = 0; i < TRACE_COUNT ; i++) if (trace[i].enabled) { uistat.current_trace = i; return; } } #endif static void choose_active_marker(void) { int i; for (i = 0; i < MARKER_COUNT; i++) if (markers[i].enabled == M_ENABLED) { active_marker = i; return; } active_marker = MARKER_INVALID; } #ifdef __HARMONIC__ static UI_FUNCTION_ADV_CALLBACK(menu_harmonic_acb) { (void)item; if(b){ b->icon = setting.harmonic == data ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } set_harmonic(data); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_settings_agc_acb){ (void)item; (void)data; if(b){ #if 0 if (S_IS_AUTO(setting.agc)) b->icon = BUTTON_ICON_CHECK_AUTO; else b->icon = setting.agc ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; #else b->icon = AUTO_ICON(setting.agc); #endif return; } toggle_AGC(); } static UI_FUNCTION_ADV_CALLBACK(menu_settings_lna_acb){ (void)item; (void)data; if(b){ if (S_IS_AUTO(setting.lna)) b->icon = BUTTON_ICON_CHECK_AUTO; else b->icon = setting.lna ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_LNA(); } static UI_FUNCTION_ADV_CALLBACK(menu_settings_bpf_acb){ (void)item; (void)data; if(b){ b->icon = setting.tracking ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_tracking(); } #ifdef __LCD_BRIGHTNESS__ static UI_FUNCTION_CALLBACK(menu_brightness_cb) { (void)item; (void)data; int16_t value = config._brightness; ili9341_set_foreground(LCD_MENU_TEXT_COLOR); ili9341_set_background(LCD_MENU_COLOR); ili9341_fill(LCD_WIDTH/2-80, LCD_HEIGHT/2-20, 160, 40); ili9341_drawstring_7x13("BRIGHTNESS", LCD_WIDTH/2-35, LCD_HEIGHT/2-13); ili9341_drawstring_7x13(S_LARROW" USE LEVELER BUTTON "S_RARROW, LCD_WIDTH/2-72, LCD_HEIGHT/2+2); while (TRUE) { int status = btn_check(); if (status & (EVT_UP|EVT_DOWN)) { do { if (status & EVT_UP ) value+=5; if (status & EVT_DOWN) value-=5; if (value < 0) value = 0; if (value > 100) value = 100; lcd_setBrightness(value); status = btn_wait_release(); } while (status != 0); } if (status == EVT_BUTTON_SINGLE_CLICK) break; } config._brightness = (uint8_t)value; lcd_setBrightness(value); redraw_request|= REDRAW_AREA; ui_mode_normal(); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_settings_pulse_acb){ (void)item; (void)data; if(b){ b->icon = setting.pulse ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_pulse(); } #ifdef __HAM_BAND__ static UI_FUNCTION_ADV_CALLBACK(menu_settings_ham_bands){ (void)item; (void)data; if(b){ b->icon = config.hambands ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_hambands(); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_settings_below_if_acb){ (void)item; (void)data; if(b){ if (S_IS_AUTO(setting.below_IF)) b->icon = BUTTON_ICON_CHECK_AUTO; else b->icon = setting.below_IF ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_below_IF(); } #if 0 static UI_FUNCTION_ADV_CALLBACK(menu_settings_ultra_acb){ (void)item; (void)data; if(b){ if (S_IS_AUTO(setting.ultra)) b->icon = BUTTON_ICON_CHECK_AUTO; else b->icon = setting.ultra ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_ultra(); } #endif static UI_FUNCTION_ADV_CALLBACK(menu_lo_output_acb){ (void)item; (void)data; if(b){ b->icon = setting.tracking_output ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_tracking_output(); } static UI_FUNCTION_ADV_CALLBACK(menu_pause_acb) { (void) data; (void) item; if (b){ b->icon = is_paused() ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } toggle_sweep(); // menu_move_back(true); // draw_cal_status(); } static UI_FUNCTION_ADV_CALLBACK(menu_shift_acb) { (void) data; (void) item; if (b){ b->icon = setting.frequency_offset != FREQUENCY_SHIFT ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } if (setting.frequency_offset != FREQUENCY_SHIFT) { setting.frequency_offset = FREQUENCY_SHIFT; } else { if (FREQ_IS_STARTSTOP()) { freq_t old_start = get_sweep_frequency(ST_START); freq_t old_stop = get_sweep_frequency(ST_STOP); kp_help_text = "Actual start frequency"; ui_mode_keypad(KM_START); setting.frequency_offset = uistat.value - old_start + FREQUENCY_SHIFT; set_sweep_frequency(ST_START, old_start); set_sweep_frequency(ST_STOP, old_stop); } else { freq_t old_center = get_sweep_frequency(ST_CENTER); freq_t old_span = get_sweep_frequency(ST_SPAN); kp_help_text = "Actual center frequency"; ui_mode_keypad(KM_CENTER); setting.frequency_offset = uistat.value - old_center + FREQUENCY_SHIFT; set_sweep_frequency(ST_CENTER, old_center); set_sweep_frequency(ST_SPAN, old_span); } } ui_mode_normal(); // menu_move_back(true); // draw_cal_status(); } #ifdef __REMOTE_DESKTOP__ #if 0 // Not used in UI static UI_FUNCTION_ADV_CALLBACK(menu_send_display_acb) { (void) data; (void) item; if (b){ b->icon = auto_capture ? BUTTON_ICON_CHECK : BUTTON_ICON_NOCHECK; return; } auto_capture = ! auto_capture; // Update all screen to CPU if (auto_capture) redraw_request|=REDRAW_AREA|REDRAW_BATTERY|REDRAW_FREQUENCY|REDRAW_CAL_STATUS; } #endif #endif static UI_FUNCTION_ADV_CALLBACK(menu_outputmode_acb) { (void) data; (void) item; if(b){ b->param_1.text = setting.mute ? "OFF" : "ON"; return; } toggle_mute(); } static UI_FUNCTION_ADV_CALLBACK(menu_enter_marker_acb) { (void) data; (void) item; if(b){ b->param_1.text = FREQ_IS_CW() ? "TIME" : "FREQUENCY"; return; } if (FREQ_IS_CW()) ui_mode_keypad(KM_MARKER_TIME); else ui_mode_keypad(KM_MARKER); } #ifdef TINYSA4 static const uint16_t points_setting[] = {51, 101, 201, 290, 450}; #else static const uint16_t points_setting[] = {51, 101, 145, 290}; #endif static UI_FUNCTION_ADV_CALLBACK(menu_points_acb){ (void)item; if(b){ b->icon = points_setting[data] == sweep_points ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; b->param_1.i = points_setting[data]; return; } set_sweep_points(points_setting[data]); } #ifdef __USE_SERIAL_CONSOLE__ static UI_FUNCTION_ADV_CALLBACK(menu_serial_speed_acb) { static const uint32_t usart_speed[] = {19200, 38400, 57600, 115200, 230400, 460800, 921600, 1843200, 2000000, 3000000}; (void)item; uint32_t speed = usart_speed[data]; if (b){ b->icon = config._serial_speed == speed ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; b->param_1.u = speed; return; } config._serial_speed = speed; shell_update_speed(); } static UI_FUNCTION_ADV_CALLBACK(menu_connection_acb) { (void)item; if (b){ b->icon = (config._mode&_MODE_CONNECTION_MASK) == data ? BUTTON_ICON_GROUP_CHECKED : BUTTON_ICON_GROUP; return; } config._mode&=~_MODE_CONNECTION_MASK; config._mode|=data; config_save(); shell_reset_console(); } #endif // ===[MENU DEFINITION]========================================================= #if 0 static const menuitem_t menu_store_preset_high[8] = { { MT_ADV_CALLBACK, 0, "STORE\nSTARTUP", menu_store_preset_acb}, { MT_ADV_CALLBACK, 5, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 6, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 7, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 8, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 100,"FACTORY\nDEFAULTS",menu_store_preset_acb}, { MT_CANCEL, 255, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_load_preset_high[] = { { MT_ADV_CALLBACK, 0, "LOAD\nSTARTUP",menu_load_preset_acb}, { MT_ADV_CALLBACK, 5, "LOAD %s", menu_load_preset_acb}, { MT_ADV_CALLBACK, 6, "LOAD %s", menu_load_preset_acb}, { MT_ADV_CALLBACK, 7, "LOAD %s", menu_load_preset_acb}, { MT_ADV_CALLBACK, 8, "LOAD %s", menu_load_preset_acb}, { MT_SUBMENU, 0, "STORE" , menu_store_preset_high}, { MT_CANCEL, 255, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_store_preset[] = { { MT_ADV_CALLBACK, 0, "STORE AS\nSTARTUP",menu_store_preset_acb}, { MT_ADV_CALLBACK, 1, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 2, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 3, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 4, "STORE %d", menu_store_preset_acb}, { MT_ADV_CALLBACK, 100,"FACTORY\nDEFAULTS",menu_store_preset_acb}, { MT_CANCEL, 255, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_load_preset[] = { { MT_ADV_CALLBACK, 0, "LOAD\nSTARTUP",menu_load_preset_acb}, { MT_ADV_CALLBACK, 1, "%s" , menu_load_preset_acb}, { MT_ADV_CALLBACK, 2, "%s" , menu_load_preset_acb}, { MT_ADV_CALLBACK, 3, "%s" , menu_load_preset_acb}, { MT_ADV_CALLBACK, 4, "%s" , menu_load_preset_acb}, { MT_SUBMENU, 0, "STORE" , menu_store_preset}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef TINYSA4 static const menuitem_t menu_mixer_drive[] = { { MT_ADV_CALLBACK, 5, "Auto", menu_mixer_drive_acb}, { MT_ADV_CALLBACK, 3, "%+ddBm", menu_mixer_drive_acb}, { MT_ADV_CALLBACK, 2, "%+ddBm", menu_mixer_drive_acb}, { MT_ADV_CALLBACK, 1, "%+ddBm", menu_mixer_drive_acb}, { MT_ADV_CALLBACK, 0, "%+ddBm", menu_mixer_drive_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #else static const menuitem_t menu_lo_drive[] = { { MT_ADV_CALLBACK, 15, "%+ddBm", menu_lo_drive_acb}, { MT_ADV_CALLBACK, 14, "%+ddBm", menu_lo_drive_acb}, { MT_ADV_CALLBACK, 13, "%+ddBm", menu_lo_drive_acb}, { MT_ADV_CALLBACK, 12, "%+ddBm", menu_lo_drive_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_modulation[] = { { MT_FORM | MT_TITLE, 0, "MODULATION",NULL}, { MT_FORM | MT_ADV_CALLBACK, MO_NONE, "None", menu_modulation_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_LOW, MO_AM, "AM", menu_modulation_acb}, { MT_FORM | MT_ADV_CALLBACK, MO_NFM, "Narrow FM", menu_modulation_acb}, { MT_FORM | MT_ADV_CALLBACK, MO_WFM, "Wide FM", menu_modulation_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_LOW, MO_EXTERNAL, "External", menu_modulation_acb}, { MT_FORM | MT_KEYPAD, KM_MODULATION, "FREQ: %s", "50Hz..6kHz"}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK",NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_sweep[] = { { MT_FORM | MT_KEYPAD, KM_SPAN, "SPAN: %s", VARIANT("0..350MHz", range_text)}, { MT_FORM | MT_KEYPAD | MT_LOW, KM_LEVELSWEEP,"LEVEL CHANGE: %s", VARIANT("-70..70","-90..90")}, { MT_FORM | MT_KEYPAD, KM_SWEEP_TIME, "SWEEP TIME: %s", "0..600 seconds"}, { MT_FORM | MT_SUBMENU, 0, "SWEEP POINTS", menu_sweep_points_form}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK",NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; char low_level_help_text[12] = "-76..-6"; char center_text[18] = "FREQ: %s"; static const menuitem_t menu_lowoutputmode[] = { { MT_FORM | MT_ADV_CALLBACK, 0, "LOW OUTPUT %s", menu_outputmode_acb}, // { MT_FORM | MT_ADV_CALLBACK, 0, "MOD: %s", menu_smodulation_acb}, { MT_FORM | MT_KEYPAD, KM_CENTER, center_text, VARIANT("10kHz..350MHz","10kHz..850MHz")}, { MT_FORM | MT_KEYPAD, KM_LOWOUTLEVEL, "LEVEL: %s", low_level_help_text}, { MT_FORM | MT_ADV_CALLBACK, 0, "MOD: %s", menu_smodulation_acb}, { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_sweep_acb}, #ifdef __SWEEP_RESTART__ { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_restart_acb}, #endif { MT_FORM | MT_KEYPAD, KM_EXT_GAIN, "EXTERNAL GAIN: %s", "-100..+100"}, #ifdef TINYSA4 { MT_FORM | MT_SUBMENU, 255, S_RARROW" Settings", menu_settings}, #endif { MT_FORM | MT_CANCEL, 0, "MODE", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_highoutputmode[] = { { MT_FORM | MT_ADV_CALLBACK, 0, "HIGH OUTPUT %s", menu_outputmode_acb}, { MT_FORM | MT_KEYPAD, KM_CENTER, center_text, VARIANT("240MHz..960MHz",range_text)}, { MT_FORM | MT_KEYPAD, KM_HIGHOUTLEVEL, "LEVEL: %s", low_level_help_text /* "-76..-6" */}, { MT_FORM | MT_ADV_CALLBACK, 0, "MOD: %s", menu_smodulation_acb}, { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_sweep_acb}, #ifdef __SWEEP_RESTART__ { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_restart_acb}, #endif { MT_FORM | MT_KEYPAD, KM_EXT_GAIN, "EXTERNAL GAIN: %s", "-100..+100"}, #ifdef TINYSA4 { MT_FORM | MT_SUBMENU, 255, S_RARROW" Settings", menu_settings3}, #endif { MT_FORM | MT_CANCEL, 0, "MODE", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_average[] = { { MT_ADV_CALLBACK, 0, "OFF", menu_average_acb}, { MT_ADV_CALLBACK, 1, "MIN\nHOLD", menu_average_acb}, { MT_ADV_CALLBACK, 2, "MAX\nHOLD", menu_average_acb}, { MT_ADV_CALLBACK, 3, "MAX\nDECAY", menu_average_acb}, { MT_ADV_CALLBACK, 4, "AVER 4", menu_average_acb}, { MT_ADV_CALLBACK, 5, "AVER 16", menu_average_acb}, #ifdef __QUASI_PEAK__ { MT_ADV_CALLBACK, 6, "QUASI\nPEAK", menu_average_acb}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_rbw[] = { { MT_ADV_CALLBACK, 0, " AUTO", menu_rbw_acb}, #ifdef TINYSA4 { MT_ADV_CALLBACK, 1, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 2, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 3, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 4, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 5, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 6, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 7, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 8, "%sHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 9, "%sHz", menu_rbw_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel #else { MT_ADV_CALLBACK, 1, "%4dkHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 2, "%4dkHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 3, "%4dkHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 4, "%4dkHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 5, "%4dkHz", menu_rbw_acb}, { MT_ADV_CALLBACK, 6, "%4dkHz", menu_rbw_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel #endif }; #ifdef __VBW__ static const menuitem_t menu_vbw[] = { { MT_ADV_CALLBACK, 0, " AUTO", menu_vbw_acb}, { MT_ADV_CALLBACK, 1, "%s RBW", menu_vbw_acb}, { MT_ADV_CALLBACK, 2, "%s RBW", menu_vbw_acb}, { MT_ADV_CALLBACK, 3, "%s RBW", menu_vbw_acb}, { MT_ADV_CALLBACK, 4, "%s RBW", menu_vbw_acb}, { MT_ADV_CALLBACK, 5, "%s RBW", menu_vbw_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif #if 0 static const menuitem_t menu_scale_per2[] = { { MT_ADV_CALLBACK, 6, "0.1 /", menu_scale_per_acb}, { MT_ADV_CALLBACK, 7, "0.2 /", menu_scale_per_acb}, { MT_ADV_CALLBACK, 8, "0.05/", menu_scale_per_acb}, { MT_ADV_CALLBACK, 9, "0.02/", menu_scale_per_acb}, { MT_ADV_CALLBACK,10, "0.01/", menu_scale_per_acb}, //{ MT_ADV_CALLBACK,11, "0.005/", menu_scale_per_acb}, //{ MT_SUBMENU, 0, S_RARROW" MORE", menu_scale_per2}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_scale_per[] = { { MT_ADV_CALLBACK, 0, " 20/", menu_scale_per_acb}, { MT_ADV_CALLBACK, 1, " 10/", menu_scale_per_acb}, { MT_ADV_CALLBACK, 2, " 5/", menu_scale_per_acb}, { MT_ADV_CALLBACK, 3, " 2/", menu_scale_per_acb}, { M_ADVT_CALLBACK, 4, " 1/", menu_scale_per_acb}, { MT_ADV_CALLBACK, 5, "0.5/", menu_scale_per_acb}, { MT_SUBMENU, 0, S_RARROW" MORE", menu_scale_per2}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif #if 0 static const menuitem_t menu_reffer2[] = { { MT_FORM | MT_ADV_CALLBACK, 5, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 6, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 7, "%s", menu_reffer_acb}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_reffer[] = { { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 1, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 2, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 3, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 4, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 6, "%s", menu_reffer_acb}, { MT_FORM | MT_ADV_CALLBACK, 7, "%s", menu_reffer_acb}, //{ MT_FORM | MT_SUBMENU, 0, S_RARROW" MORE", menu_reffer2}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_atten[] = { { MT_ADV_CALLBACK | MT_LOW, 0, "AUTO", menu_atten_acb}, { MT_KEYPAD | MT_LOW, KM_ATTENUATION, "MANUAL", "0 - 30dB"}, { MT_ADV_CALLBACK | MT_HIGH,0, "0dB", menu_atten_high_acb}, { MT_ADV_CALLBACK | MT_HIGH,30, "22.5 - 40dB", menu_atten_high_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_reflevel[] = { { MT_ADV_CALLBACK,0, "AUTO", menu_reflevel_acb}, { MT_KEYPAD, KM_REFLEVEL, "MANUAL", NULL}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; const menuitem_t menu_marker_search[] = { { MT_CALLBACK, 4, "PEAK\n SEARCH", menu_marker_search_cb }, { MT_CALLBACK, 0, "MIN\n" S_LARROW" LEFT", menu_marker_search_cb }, { MT_CALLBACK, 1, "MIN\n" S_RARROW" RIGHT", menu_marker_search_cb }, { MT_CALLBACK, 2, "MAX\n" S_LARROW" LEFT", menu_marker_search_cb }, { MT_CALLBACK, 3, "MAX\n" S_RARROW" RIGHT", menu_marker_search_cb }, { MT_ADV_CALLBACK, 0, "ENTER\n%s", menu_enter_marker_acb}, { MT_ADV_CALLBACK, M_TRACKING, "TRACKING",menu_marker_modify_acb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; const menuitem_t menu_marker_modify[] = { { MT_ADV_CALLBACK, M_REFERENCE, "REFER", menu_marker_modify_acb}, { MT_ADV_CALLBACK, M_DELTA, "DELTA", menu_marker_modify_acb}, { MT_ADV_CALLBACK, M_NOISE, "NOISE", menu_marker_modify_acb}, { MT_ADV_CALLBACK, M_TRACKING, "TRACKING", menu_marker_modify_acb}, { MT_ADV_CALLBACK, M_STORED, "STORED", menu_marker_modify_acb}, { MT_SUBMENU, 0, "SEARCH", menu_marker_search}, { MT_CALLBACK, M_DELETE, "DELETE", menu_marker_delete_cb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef __LIMITS__ static const menuitem_t menu_limit_modify[] = { { MT_KEYPAD, KM_LIMIT_FREQ, "END\nFREQUENCY", "End frequency"}, { MT_KEYPAD, KM_LIMIT_LEVEL, "LEVEL", "Limit level"}, { MT_CALLBACK, 0, "DISABLE", menu_limit_disable_cb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; const menuitem_t menu_limit_select[] = { { MT_ADV_CALLBACK, 1, "LIMIT %d", menu_limit_select_acb }, { MT_ADV_CALLBACK, 2, "LIMIT %d", menu_limit_select_acb }, { MT_ADV_CALLBACK, 3, "LIMIT %d", menu_limit_select_acb }, { MT_ADV_CALLBACK, 4, "LIMIT %d", menu_limit_select_acb }, { MT_ADV_CALLBACK, 5, "LIMIT %d", menu_limit_select_acb }, { MT_ADV_CALLBACK, 6, "LIMIT %d", menu_limit_select_acb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif #if 0 const menuitem_t menu_marker_sel[] = { { MT_CALLBACK, 1, "MARKER %d", menu_marker_sel_cb }, { MT_CALLBACK, 2, "MARKER %d", menu_marker_sel_cb }, { MT_CALLBACK, 3, "MARKER %d", menu_marker_sel_cb }, { MT_CALLBACK, 4, "MARKER %d", menu_marker_sel_cb }, // { MT_CALLBACK, 0, "ALL OFF", menu_marker_sel_cb }, { MT_CALLBACK, 0, "DELTA", menu_marker_sel_cb }, { MT_CALLBACK, 0, "NOISE", menu_marker_sel_cb }, { MT_CALLBACK, 0, "TRACKING", menu_marker_sel_cb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif const menuitem_t menu_marker_select[] = { { MT_ADV_CALLBACK, 1, "MARKER %d", menu_marker_select_acb }, { MT_ADV_CALLBACK, 2, "MARKER %d", menu_marker_select_acb }, { MT_ADV_CALLBACK, 3, "MARKER %d", menu_marker_select_acb }, { MT_ADV_CALLBACK, 4, "MARKER %d", menu_marker_select_acb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; const menuitem_t menu_marker_ops[] = { { MT_CALLBACK, ST_START, S_RARROW" START", menu_marker_op_cb }, { MT_CALLBACK, ST_STOP, S_RARROW" STOP", menu_marker_op_cb }, { MT_CALLBACK, ST_CENTER, S_RARROW" CENTER", menu_marker_op_cb }, { MT_CALLBACK, ST_SPAN, S_RARROW" SPAN", menu_marker_op_cb }, { MT_CALLBACK, 4, S_RARROW" REF LEVEL",menu_marker_op_cb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_marker[] = { // { MT_SUBMENU, 0, "SELECT\nMARKER", menu_marker_sel}, { MT_SUBMENU, 0, "MODIFY\nMARKERS", menu_marker_select}, { MT_SUBMENU, 0, "MARKER\nOPS", menu_marker_ops}, { MT_SUBMENU, 0, "SEARCH\nMARKER", menu_marker_search}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifndef TINYSA4 static const menuitem_t menu_dfu[] = { { MT_FORM | MT_CALLBACK, 0, "ENTER DFU", menu_dfu_cb}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; #endif #ifdef __HARMONIC__ static const menuitem_t menu_harmonic[] = { { MT_ADV_CALLBACK, 0, "OFF", menu_harmonic_acb}, { MT_ADV_CALLBACK, 2, "2", menu_harmonic_acb}, { MT_ADV_CALLBACK, 3, "3", menu_harmonic_acb}, { MT_ADV_CALLBACK, 4, "4", menu_harmonic_acb}, { MT_ADV_CALLBACK, 5, "5", menu_harmonic_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_scanning_speed[] = { // { MT_ADV_CALLBACK, SD_NORMAL, "NORMAL", menu_scanning_speed_acb}, // order must match definition of enum // { MT_ADV_CALLBACK, SD_PRECISE, PRECISE", menu_scanning_speed_acb}, // { MT_ADV_CALLBACK | MT_LOW,SD_FAST, "FAST", menu_scanning_speed_acb}, // { MT_KEYPAD | MT_LOW,KM_FAST_SPEEDUP, "FAST\nSPEEDUP", "2..20"}, { MT_KEYPAD, KM_SAMPLETIME, "SAMPLE\nDELAY", "250..10000, 0=auto"}, // This must be item 4 to match highlighting { MT_KEYPAD, KM_OFFSET_DELAY, "OFFSET\nDELAY", "250..10000, 0=auto"}, // This must be item 5 to match highlighting { MT_CANCEL, 0, "\032 BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_sweep_points[] = { { MT_ADV_CALLBACK, 0, "%3d point", menu_points_acb }, { MT_ADV_CALLBACK, 1, "%3d point", menu_points_acb }, { MT_ADV_CALLBACK, 2, "%3d point", menu_points_acb }, { MT_ADV_CALLBACK, 3, "%3d point", menu_points_acb }, #ifdef TINYSA4 { MT_ADV_CALLBACK, 4, "%3d point", menu_points_acb }, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_sweep_points_form[] = { { MT_FORM | MT_ADV_CALLBACK, 0, "%3d point", menu_points_acb }, { MT_FORM | MT_ADV_CALLBACK, 1, "%3d point", menu_points_acb }, { MT_FORM | MT_ADV_CALLBACK, 2, "%3d point", menu_points_acb }, { MT_FORM | MT_ADV_CALLBACK, 3, "%3d point", menu_points_acb }, #ifdef TINYSA4 { MT_FORM | MT_ADV_CALLBACK, 4, "%3d point", menu_points_acb }, #endif { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_sweep_speed[] = { { MT_ADV_CALLBACK, SD_NORMAL, "NORMAL", menu_scanning_speed_acb}, // order must match definition of enum { MT_ADV_CALLBACK, SD_PRECISE, "PRECISE", menu_scanning_speed_acb}, #ifdef TINYSA4 { MT_ADV_CALLBACK, SD_FAST, "FAST", menu_scanning_speed_acb}, #else { MT_ADV_CALLBACK | MT_LOW,SD_FAST, "FAST", menu_scanning_speed_acb}, #endif { MT_KEYPAD, KM_SWEEP_TIME, "SWEEP\nTIME", "0..600s, 0=disable"}, // This must be item 3 to match highlighting { MT_SUBMENU, 0, "SWEEP\nPOINTS", menu_sweep_points}, #ifdef TINYSA4 { MT_KEYPAD, KM_FAST_SPEEDUP,"FAST\nSPEEDUP", "2..20, 0=disable"}, #else { MT_KEYPAD | MT_LOW,KM_FAST_SPEEDUP,"FAST\nSPEEDUP", "2..20, 0=disable"}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef TINYSA4 static const menuitem_t menu_settings4[]; #endif static const menuitem_t menu_settings3[] = { #ifdef TINYSA4 // { MT_KEYPAD, KM_GRIDLINES, "MINIMUM\nGRIDLINES", "Enter minimum horizontal grid divisions"}, { MT_ADV_CALLBACK, 0, "ADF OUT", menu_adf_out_acb}, { MT_ADV_CALLBACK, 0, "ENABLE\nULTRA", menu_ultra_acb}, { MT_KEYPAD, KM_LPF, "ULTRA\nSTART", "Enter ULTRA mode start freq"}, // { MT_KEYPAD | MT_LOW, KM_IF2, "IF2 FREQ", "Set to zero for no IF2"}, { MT_KEYPAD, KM_R, "R", "Set R"}, { MT_KEYPAD, KM_MOD, "MODULO", "Set MODULO"}, { MT_KEYPAD, KM_CP, "CP", "Set CP"}, #ifdef __WAIT_CTS_WHILE_SLEEPING__ { MT_ADV_CALLBACK, 0, "SLEEP\nWAIT", menu_sleep_acb}, #endif // { MT_ADV_CALLBACK | MT_LOW, 0, "ULTRA\nMODE", menu_settings_ultra_acb}, #ifdef __HAM_BAND__ { MT_ADV_CALLBACK, 0, "HAM\nBANDS", menu_settings_ham_bands}, #endif { MT_SUBMENU, 0, S_RARROW" MORE", menu_settings4}, #else { MT_KEYPAD, KM_10MHZ, "CORRECT\nFREQUENCY", "Enter actual l0MHz frequency"}, { MT_KEYPAD, KM_GRIDLINES, "MINIMUM\nGRIDLINES", "Enter minimum horizontal grid divisions"}, { MT_ADV_CALLBACK, 0, "PULSE\nHIGH", menu_settings_pulse_acb}, #ifdef __USE_SERIAL_CONSOLE__ { MT_SUBMENU, 0, "CONNECTION", menu_connection}, #endif #ifdef __HAM_BAND__ { MT_ADV_CALLBACK, 0, "HAM\nBANDS", menu_settings_ham_bands}, #endif #endif // TINYSA4 { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef TINYSA4 static const menuitem_t menu_settings4[] = { { MT_ADV_CALLBACK, 0, "DEBUG\nFREQ", menu_debug_freq_acb}, { MT_ADV_CALLBACK, 0, "DEBUG\nAVOID", menu_debug_avoid_acb}, #if 1 // only used during development { MT_KEYPAD, KM_COR_AM, "COR\nAM", "Enter AM modulation correction"}, { MT_KEYPAD, KM_COR_WFM, "COR\nWFM", "Enter WFM modulation correction"}, { MT_KEYPAD, KM_COR_NFM, "COR\nNFM", "Enter NFM modulation correction"}, #endif #ifdef __HARMONIC__ { MT_SUBMENU,0, "HARMONIC", menu_harmonic}, #endif // { MT_SUBMENU, 0, S_RARROW" MORE", menu_settings3}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_settings2[] = { { MT_ADV_CALLBACK, 0, "AGC", menu_settings_agc_acb}, { MT_ADV_CALLBACK, 0, "LNA", menu_settings_lna_acb}, { MT_ADV_CALLBACK | MT_LOW, 0, "BPF", menu_settings_bpf_acb}, { MT_ADV_CALLBACK | MT_LOW, 0, "BELOW IF", menu_settings_below_if_acb}, { MT_KEYPAD, KM_DECAY, "DECAY", "0..1000000ms or sweeps"}, #ifdef __QUASI_PEAK__ { MT_KEYPAD, KM_ATTACK, "ATTACK", "0..100000ms"}, #else { MT_KEYPAD, KM_NOISE, "NOISE\nLEVEL", "2..20 dB"}, #endif #ifdef TINYSA4 { MT_KEYPAD, KM_30MHZ, "ACTUAL\n30MHz", "Enter actual 30MHz frequency"}, #endif { MT_SUBMENU, 0, S_RARROW" MORE", menu_settings3}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef TINYSA4 static const menuitem_t menu_curve3[] = { { MT_FORM | MT_ADV_CALLBACK, 14, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 15, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 16, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 17, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 18, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 19, "%s", menu_curve_acb }, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_curve2[] = { { MT_FORM | MT_ADV_CALLBACK, 7, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 8, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 9, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 10, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 11, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 12, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 13, "%s", menu_curve_acb }, { MT_FORM | MT_SUBMENU, 0, S_RARROW" MORE", menu_curve3}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_curve[] = { { MT_FORM | MT_ADV_CALLBACK, 0, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 1, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 2, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 3, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 4, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 5, "%s", menu_curve_acb }, { MT_FORM | MT_ADV_CALLBACK, 6, "%s", menu_curve_acb }, { MT_FORM | MT_SUBMENU, 0, S_RARROW" MORE", menu_curve2}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_curve_confirm[] = { { MT_CALLBACK, 1, "OK", menu_curve_confirm_cb }, { MT_CALLBACK, 0, "CANCEL", menu_curve_confirm_cb }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif static const menuitem_t menu_actual_power[] = { { MT_KEYPAD, KM_ACTUALPOWER, "INPUT\nLEVEL", "dBm"}, { MT_ADV_CALLBACK, 0, "OUTPUT\nLEVEL", menu_output_level_acb}, #ifdef TINYSA4 { MT_CALLBACK, 0, "INPUT\nCURVE", menu_input_curve_prepare_cb}, { MT_CALLBACK, 0, "LNA\nCURVE", menu_lna_curve_prepare_cb}, { MT_CALLBACK, 0, "OUTPUT\nCURVE", menu_output_curve_prepare_cb}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_settings[] = { { MT_ADV_CALLBACK | MT_LOW, 0,"LO OUTPUT", menu_lo_output_acb}, { MT_SUBMENU, 0, "LEVEL\nCORRECTION", menu_actual_power}, { MT_KEYPAD | MT_LOW, KM_IF, "IF FREQ", "0=auto IF"}, { MT_SUBMENU,0, "SCAN SPEED", menu_scanning_speed}, #ifndef TINYSA4 { MT_KEYPAD, KM_REPEAT, "SAMPLE\nREPEAT", "1..100"}, #endif #ifdef TINYSA4 { MT_SUBMENU | MT_LOW,0, "MIXER\nDRIVE", menu_mixer_drive}, { MT_ADV_CALLBACK, 0, "PULSE\nHIGH", menu_settings_pulse_acb}, #ifdef __USE_SERIAL_CONSOLE__ { MT_SUBMENU, 0, "CONNECTION", menu_connection}, #endif #else { MT_SUBMENU | MT_LOW,0, "MIXER\nDRIVE", menu_lo_drive}, #endif { MT_SUBMENU, 0, S_RARROW" MORE", menu_settings2}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_measure2[] = { { MT_ADV_CALLBACK, M_AM, "AM", menu_measure_acb}, { MT_ADV_CALLBACK, M_FM, "FM", menu_measure_acb}, { MT_ADV_CALLBACK, M_THD, "THD", menu_measure_acb}, #ifdef __CHANNEL_POWER__ { MT_ADV_CALLBACK, M_CP, "CHANNEL\nPOWER",menu_measure_acb}, #endif #ifdef __LINEARITY__ { MT_ADV_CALLBACK | MT_LOW, M_LINEARITY, "LINEAR", menu_measure_acb}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_measure[] = { { MT_ADV_CALLBACK, M_OFF, "OFF", menu_measure_acb}, { MT_ADV_CALLBACK, M_IMD, "HARMONIC", menu_measure_acb}, { MT_ADV_CALLBACK, M_OIP3, "OIP3", menu_measure_acb}, { MT_ADV_CALLBACK, M_PHASE_NOISE,"PHASE\nNOISE", menu_measure_acb}, { MT_ADV_CALLBACK, M_STOP_BAND, "SNR", menu_measure_acb}, { MT_ADV_CALLBACK, M_PASS_BAND, "-3dB\nWIDTH", menu_measure_acb}, { MT_SUBMENU, 0, S_RARROW" MORE", menu_measure2}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #ifdef __CALIBRATE__ static const menuitem_t menu_calibrate[] = { { MT_FORM | MT_TITLE, 0, "Connect HIGH and LOW", NULL}, { MT_FORM | MT_CALLBACK, 0, "CALIBRATE", menu_calibrate_cb}, { MT_FORM | MT_CALLBACK, 0, "RESET CALBRATION", menu_calibrate_cb}, { MT_FORM | MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; #endif #ifdef __USE_SERIAL_CONSOLE__ const menuitem_t menu_serial_speed[] = { { MT_ADV_CALLBACK, 0, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 1, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 2, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 3, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 4, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 5, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 6, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 7, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 8, "%u", menu_serial_speed_acb }, { MT_ADV_CALLBACK, 9, "%u", menu_serial_speed_acb }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_connection[] = { { MT_ADV_CALLBACK, _MODE_USB, "USB", menu_connection_acb }, { MT_ADV_CALLBACK, _MODE_SERIAL, "SERIAL", menu_connection_acb }, { MT_SUBMENU, 0, "SERIAL\nSPEED", menu_serial_speed }, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; #endif const menuitem_t menu_touch[] = { { MT_CALLBACK, CONFIG_MENUITEM_TOUCH_CAL, "TOUCH CAL", menu_config_cb}, { MT_CALLBACK, CONFIG_MENUITEM_TOUCH_TEST, "TOUCH TEST", menu_config_cb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_config[] = { { MT_SUBMENU, 0, "TOUCH", menu_touch}, { MT_CALLBACK, CONFIG_MENUITEM_SELFTEST, "SELF TEST", menu_config_cb}, #ifdef __CALIBRATE__ { MT_SUBMENU, 0, "LEVEL CAL", menu_calibrate}, #endif { MT_CALLBACK, CONFIG_MENUITEM_VERSION, "VERSION", menu_config_cb}, #ifdef __SPUR__ { MT_ADV_CALLBACK,0, "%s", menu_spur_acb}, #endif #ifdef TINYSA4 { MT_KEYPAD, KM_REPEAT, "SAMPLE\nREPEAT", "1..100"}, #endif { MT_SUBMENU, 0, "EXPERT\nCONFIG", menu_settings}, #ifndef TINYSA4 { MT_SUBMENU, 0, S_RARROW" DFU", menu_dfu}, #endif #ifdef __LCD_BRIGHTNESS__ { MT_CALLBACK, 0, "BRIGHTHESS", menu_brightness_cb}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_storage[] = { { MT_ADV_CALLBACK,0, "STORE\nTRACE", menu_storage_acb}, { MT_ADV_CALLBACK,1, "CLEAR\nSTORED", menu_storage_acb}, { MT_ADV_CALLBACK,2, "SUBTRACT\nSTORED",menu_storage_acb}, { MT_ADV_CALLBACK,3, "NORMALIZE", menu_storage_acb}, #ifdef TINYSA4 { MT_ADV_CALLBACK,4, "ACTUAL\n"S_RARROW"SD", menu_storage_acb}, { MT_ADV_CALLBACK,5, "STORED\n"S_RARROW"SD", menu_storage_acb}, #endif { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_display[] = { { MT_ADV_CALLBACK,0, "PAUSE\nSWEEP", menu_pause_acb}, { MT_SUBMENU, 0, "CALC", menu_average}, { MT_SUBMENU, 0, "STORAGE", menu_storage}, // { MT_ADV_CALLBACK,0, "STORE\nTRACE", menu_storage_acb}, // { MT_ADV_CALLBACK,1, "CLEAR\nSTORED", menu_storage_acb}, // { MT_ADV_CALLBACK,2, "SUBTRACT\nSTORED",menu_storage_acb}, #ifdef __VBW__ { MT_SUBMENU, 0, "VBW", menu_vbw}, #endif #ifdef __LIMITS__ { MT_SUBMENU, 0, "LIMITS", menu_limit_select}, #endif { MT_ADV_CALLBACK,4, "WATER\nFALL", menu_waterfall_acb}, { MT_SUBMENU, 0, "SWEEP\nSETTINGS", menu_sweep_speed}, //#ifdef __REMOTE_DESKTOP__ // { MT_ADV_CALLBACK,0, "SEND\nDISPLAY", menu_send_display_acb}, //#endif // { MT_KEYPAD, KM_SWEEP_TIME, "SWEEP\nTIME", NULL}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_unit[] = { { MT_ADV_CALLBACK,U_DBM, "dBm", menu_unit_acb}, { MT_ADV_CALLBACK,U_DBMV, "dBmV", menu_unit_acb}, { MT_ADV_CALLBACK,U_DBUV, "dB"S_MICRO"V", menu_unit_acb}, { MT_ADV_CALLBACK,U_VOLT, "Volt", menu_unit_acb}, //{ MT_ADV_CALLBACK,U_UVOLT, S_MICRO"Volt", menu_unit_acb}, { MT_ADV_CALLBACK,U_WATT, "Watt", menu_unit_acb}, //{ MT_ADV_CALLBACK,U_UWATT, S_MICRO"Watt", menu_unit_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_trigger[] = { { MT_ADV_CALLBACK, T_AUTO, "AUTO", menu_trigger_acb}, { MT_ADV_CALLBACK, T_NORMAL, "NORMAL", menu_trigger_acb}, { MT_ADV_CALLBACK, T_SINGLE, "SINGLE", menu_trigger_acb}, // { MT_ADV_CALLBACK, T_DONE, "READY", menu_trigger_acb}, { MT_KEYPAD, KM_TRIGGER, "TRIGGER\nLEVEL", NULL}, { MT_ADV_CALLBACK, T_UP, "UP\nEDGE", menu_trigger_acb}, { MT_ADV_CALLBACK, T_DOWN, "DOWN\nEDGE", menu_trigger_acb}, { MT_ADV_CALLBACK, T_MODE, "%s\nTRIGGER", menu_trigger_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_level[] = { { MT_SUBMENU, 0, "REF LEVEL", menu_reflevel}, //{ MT_SUBMENU, 0, "SCALE/DIV", menu_scale_per}, { MT_KEYPAD, KM_SCALE, "SCALE/DIV", NULL}, { MT_SUBMENU, 0, "ATTENUATE", menu_atten}, // { MT_SUBMENU,0, "CALC", menu_average}, { MT_SUBMENU, 0, "UNIT", menu_unit}, { MT_KEYPAD, KM_EXT_GAIN, "EXTERNAL\nGAIN",NULL}, #ifdef TINYSA4 { MT_ADV_CALLBACK | MT_LOW ,0,"LNA", menu_extra_lna_acb}, #endif { MT_SUBMENU, 0, "TRIGGER", menu_trigger}, #ifdef __LISTEN__ { MT_ADV_CALLBACK, 0, "LISTEN", menu_listen_acb}, #endif { MT_CANCEL, 0, S_LARROW" BACK",NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_stimulus[] = { { MT_KEYPAD, KM_START, "START", NULL}, { MT_KEYPAD, KM_STOP, "STOP", NULL}, { MT_KEYPAD, KM_CENTER, "CENTER", NULL}, { MT_KEYPAD, KM_SPAN, "SPAN", NULL}, { MT_KEYPAD, KM_CW, "ZERO SPAN", NULL}, { MT_SUBMENU,0, "RBW", menu_rbw}, { MT_ADV_CALLBACK,0, "SHIFT\nFREQ", menu_shift_acb}, { MT_CANCEL, 0, S_LARROW" BACK", NULL }, { MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_mode[] = { // { MT_FORM | MT_TITLE, 0, "tinySA MODE", NULL}, { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_INPUT+I_SA, "%s to LOW in", menu_mode_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_HIGH_INPUT+I_SA, "%s to HIGH in", menu_mode_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_LOW_OUTPUT+I_SINUS, "%s to LOW out", menu_mode_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_HIGH_OUTPUT+I_GEN, "%s to HIGH out", menu_mode_acb}, { MT_FORM | MT_ADV_CALLBACK | MT_ICON, I_CONNECT+I_GEN, "Cal. output: %s", menu_sreffer_acb}, // { MT_SUBMENU, 0, "EXPERT\nCONFIG", menu_settings3}, // { MT_FORM | MT_CANCEL, 0, S_RARROW" BACK", NULL }, { MT_FORM | MT_NONE, 0, NULL, NULL } // sentinel }; static const menuitem_t menu_top[] = { { MT_SUBMENU, 0, "PRESET", menu_load_preset}, { MT_SUBMENU, 0, "FREQUENCY", menu_stimulus}, { MT_SUBMENU, 0, "LEVEL", menu_level}, { MT_SUBMENU, 0, "DISPLAY", menu_display}, { MT_SUBMENU, 0, "MARKER", menu_marker}, { MT_SUBMENU, 0, "MEASURE", menu_measure}, { MT_SUBMENU, 0, "CONFIG", menu_config}, { MT_SUBMENU, 0, "MODE", menu_mode}, { MT_NONE, 0, NULL, NULL } // sentinel, // MENUITEM_CLOSE, }; // ===[MENU DEFINITION END]====================================================== #define ACTIVE_COLOR RGBHEX(0x007FFF) static bool menu_is_form(const menuitem_t *menu) { #if 1 // Not good set only one item as form and others as normal return menu[0].type & MT_FORM; #else int i; for (i = 0; MT_MASK(menu[i].type) != MT_NONE; i++) if (menu[i].type & MT_FORM) return (true); return(false); #endif } static void menu_item_modify_attribute( const menuitem_t *menu, int item, ui_button_t *button) { if (menu == menu_settings) { if (item == 2) button->icon = setting.auto_IF ? BUTTON_ICON_CHECK_AUTO : BUTTON_ICON_CHECK_MANUAL; } else if (menu == menu_scanning_speed) { if (item == 0) button->icon = setting.step_delay > 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO; else if (item == 1) button->icon =setting.offset_delay > 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO; } else if (menu == menu_sweep_speed) { if (item == 3) button->icon = setting.sweep_time_us != 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO; else if (item == 5) button->icon = setting.fast_speedup != 0 ? BUTTON_ICON_CHECK_MANUAL : BUTTON_ICON_CHECK_AUTO; } else if (menu == menu_reflevel) { if (item == 1) button->icon = setting.auto_reflevel ? BUTTON_ICON_GROUP: BUTTON_ICON_GROUP_CHECKED; } else if (menu == menu_atten) { if (item == 1) button->icon = setting.auto_attenuation ? BUTTON_ICON_GROUP: BUTTON_ICON_GROUP_CHECKED; } } static void fetch_numeric_target(void) { switch (keypad_mode) { case KM_START: uistat.freq_value = get_sweep_frequency(ST_START) + (setting.frequency_offset - FREQUENCY_SHIFT); plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; case KM_STOP: uistat.freq_value = get_sweep_frequency(ST_STOP) + (setting.frequency_offset - FREQUENCY_SHIFT); plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; case KM_CENTER: uistat.freq_value = get_sweep_frequency(ST_CENTER) + (setting.frequency_offset - FREQUENCY_SHIFT); plot_printf(uistat.text, sizeof uistat.text, "%QHz", uistat.freq_value); break; case KM_SPAN: uistat.freq_value = get_sweep_frequency(ST_SPAN); plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; case KM_CW: uistat.freq_value = get_sweep_frequency(ST_CW) + (setting.frequency_offset - FREQUENCY_SHIFT); plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; case KM_SCALE: uistat.value = setting.scale; plot_printf(uistat.text, sizeof uistat.text, "%f/", uistat.value); break; case KM_REFLEVEL: uistat.value = setting.reflevel; plot_printf(uistat.text, sizeof uistat.text, "%f", uistat.value); break; case KM_ATTENUATION: uistat.value = get_attenuation(); plot_printf(uistat.text, sizeof uistat.text, "%ddB", ((int32_t)uistat.value)); break; case KM_ACTUALPOWER: uistat.value = get_level_offset(); plot_printf(uistat.text, sizeof uistat.text, "%ddB", ((int32_t)uistat.value)); break; case KM_IF: uistat.freq_value = setting.frequency_IF; plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; #ifdef TINYSA4 case KM_IF2: uistat.freq_value = config.frequency_IF2; plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); break; case KM_R: uistat.value = SI4463_R; plot_printf(uistat.text, sizeof uistat.text, "%3d", uistat.value); break; case KM_MOD: uistat.value = ADF4350_modulo; plot_printf(uistat.text, sizeof uistat.text, "%4d", uistat.value); break; #endif case KM_SAMPLETIME: uistat.value = setting.step_delay; plot_printf(uistat.text, sizeof uistat.text, "%3dus", ((int32_t)uistat.value)); break; case KM_REPEAT: uistat.value = setting.repeat; plot_printf(uistat.text, sizeof uistat.text, "%2d", ((int32_t)uistat.value)); break; case KM_LOWOUTLEVEL: uistat.value = get_level(); // compensation for dB offset during low output mode float end_level = ((int32_t)uistat.value)+setting.level_sweep; if (end_level < level_min()) end_level = level_min(); if (end_level > level_max()) end_level = level_max(); uistat.value += setting.external_gain; end_level += setting.external_gain; if (setting.level_sweep != 0) plot_printf(uistat.text, sizeof uistat.text, "%.1f to %.1fdBm", uistat.value, end_level); else plot_printf(uistat.text, sizeof uistat.text, "%.1fdBm", uistat.value); break; case KM_HIGHOUTLEVEL: uistat.value = get_level(); // compensation for dB offset during low output mode uistat.value += setting.external_gain; plot_printf(uistat.text, sizeof uistat.text, "%.1fdBm", uistat.value); break; case KM_DECAY: uistat.value = setting.decay; plot_printf(uistat.text, sizeof uistat.text, "%5d", ((int32_t)uistat.value)); break; #ifdef __QUASI_PEAK__ case KM_ATTACK: uistat.value = setting.attack; plot_printf(uistat.text, sizeof uistat.text, "%5d", ((int32_t)uistat.value)); break; #endif #ifdef TINYSA4 case KM_LPF: uistat.freq_value = config.ultra_threshold; plot_printf(uistat.text, sizeof uistat.text, "%3.6fMHz", uistat.freq_value / 1000000.0); break; #endif #ifdef __LIMITS__ case KM_LIMIT_FREQ: uistat.freq_value = setting.limits[active_limit].frequency; plot_printf(uistat.text, sizeof uistat.text, "%3.6fMHz", uistat.freq_value / 1000000.0); break; case KM_LIMIT_LEVEL: uistat.value = setting.limits[active_limit].level; plot_printf(uistat.text, sizeof uistat.text, "%.1f", uistat.value); break; #endif case KM_NOISE: uistat.value = setting.noise; plot_printf(uistat.text, sizeof uistat.text, "%3d", ((int32_t)uistat.value)); break; #ifdef TINYSA4 case KM_30MHZ: uistat.freq_value = config.setting_frequency_30mhz; plot_printf(uistat.text, sizeof uistat.text, "%3.6fMHz", uistat.freq_value / 1000000.0); break; #else case KM_10MHZ: uistat.freq_value = config.setting_frequency_10mhz; plot_printf(uistat.text, sizeof uistat.text, "%3.6fMHz", uistat.freq_value / 1000000.0); break; #endif case KM_EXT_GAIN: uistat.value = setting.external_gain; plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value); break; case KM_LEVELSWEEP: uistat.value = setting.level_sweep; plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value); break; case KM_SWEEP_TIME: // if (setting.sweep_time_us < calc_min_sweep_time_us()) // uistat.value = calc_min_sweep_time_us(); // else uistat.value = setting.sweep_time_us; uistat.value /= (float)ONE_SECOND_TIME; plot_printf(uistat.text, sizeof uistat.text, "%.3Fs", uistat.value); break; case KM_TRIGGER: uistat.value = setting.trigger_level; plot_printf(uistat.text, sizeof uistat.text, "%.1fdB", uistat.value); break; case KM_MARKER: if (active_marker >=0) { uistat.freq_value = markers[active_marker].frequency; plot_printf(uistat.text, sizeof uistat.text, "%3.3fMHz", uistat.freq_value / 1000000.0); } break; case KM_MODULATION: if (active_marker >=0) { uistat.value = setting.modulation_frequency; plot_printf(uistat.text, sizeof uistat.text, "%7.0fHz", uistat.value); } break; } { freq_t x = uistat.value; int n = 0; for (; x >= 10 && n < 9; n++) x /= 10; uistat.digit = n; } // uistat.previous_value = uistat.value; } static void set_numeric_value(void) { switch (keypad_mode) { case KM_START: set_sweep_frequency(ST_START, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)); break; case KM_STOP: set_sweep_frequency(ST_STOP, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)); break; case KM_CENTER: set_sweep_frequency(ST_CENTER, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)); break; case KM_SPAN: setting.modulation = MO_NONE; set_sweep_frequency(ST_SPAN, uistat.freq_value); break; case KM_CW: set_sweep_frequency(ST_CW, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)); break; case KM_SCALE: user_set_scale(uistat.value); break; case KM_REFLEVEL: user_set_reflevel(uistat.value); break; case KM_ATTENUATION: setting.auto_attenuation = false; set_attenuation(uistat.value); break; case KM_ACTUALPOWER: set_actual_power(uistat.value); config_save(); break; case KM_IF: setting.auto_IF = false; set_IF(uistat.freq_value); // config_save(); break; #ifdef TINYSA4 case KM_IF2: set_IF2(uistat.freq_value); // config_save(); break; case KM_R: set_R(uistat.value); // config_save(); break; case KM_MOD: set_modulo(uistat.value); break; case KM_CP: ADF4351_CP((int)uistat.value); // config_save(); break; #endif case KM_SAMPLETIME: set_step_delay(uistat.value); break; case KM_OFFSET_DELAY: set_offset_delay(uistat.value); break; case KM_FAST_SPEEDUP: set_fast_speedup(uistat.value); break; case KM_REPEAT: set_repeat(uistat.value); break; case KM_LOWOUTLEVEL: set_level(uistat.value - setting.external_gain); break; case KM_HIGHOUTLEVEL: set_level(uistat.value - setting.external_gain); break; case KM_DECAY: set_decay(uistat.value); break; #ifdef __QUASI_PEAK__ case KM_ATTACK: set_attack(uistat.value); break; #endif #ifdef TINYSA4 case KM_LPF: config.ultra_threshold = uistat.value; config_save(); ultra_threshold = config.ultra_threshold; break; #endif case KM_LEVEL: break; #ifdef __LIMITS__ case KM_LIMIT_FREQ: setting.limits[active_limit].frequency = uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT); limits_update(); break; case KM_LIMIT_LEVEL: setting.limits[active_limit].level = uistat.value; limits_update(); break; #endif case KM_NOISE: set_noise(uistat.value); break; #ifdef TINYSA4 case KM_30MHZ: set_30mhz(uistat.freq_value); break; #else case KM_10MHZ: set_10mhz(uistat.freq_value); break; #endif case KM_EXT_GAIN: set_external_gain(uistat.value); break; case KM_LEVELSWEEP: setting.modulation = MO_NONE; set_level_sweep(uistat.value); break; case KM_SWEEP_TIME: set_sweep_time_us(uistat.value*ONE_SECOND_TIME); update_grid(); break; case KM_TRIGGER: if (setting.trigger == T_AUTO ) set_trigger(T_NORMAL); set_trigger_level(to_dBm(uistat.value)); completed = true; break; case KM_GRIDLINES: set_gridlines(uistat.value); break; case KM_MARKER: set_marker_frequency(active_marker, uistat.freq_value - (setting.frequency_offset - FREQUENCY_SHIFT)); break; case KM_MARKER_TIME: set_marker_time(active_marker, uistat.value); break; case KM_MODULATION: set_modulation_frequency((int)uistat.value); break; #ifdef TINYSA4 case KM_COR_AM: config.cor_am = -(int)uistat.value; config_save(); dirty = true; break; case KM_COR_WFM: config.cor_wfm = -(int)uistat.value; config_save(); dirty = true; break; case KM_COR_NFM: config.cor_nfm = -(int)uistat.value; config_save(); dirty = true; break; #endif } } void menu_move_top(void) { while (menu_current_level > 0) menu_move_back(false); } // -------------------------- CAL STATUS --------------------------------------------- const char * const averageText[] = { "OFF", "MIN", "MAX", "MAXD", " A 4", "A 16","QUASI"}; const char * const dBText[] = { "1dB/", "2dB/", "5dB/", "10dB/", "20dB/"}; const int refMHz[] = { 30, 15, 10, 4, 3, 2, 1 }; float my_round(float v) { float m = 1; int sign = 1; if (v < 0) { sign = -1; v = -v; } while (v < 100) { v = v * 10; m = m / 10; } while (v > 1000) { v = v / 10; m = m * 10; } v = (int)(v+0.5); v = v * m; if (sign == -1) { v = -v; } return v; } const char * const unit_string[] = { "dBm", "dBmV", "dB"S_MICRO"V", "V", "W", "dBc", "dBc", "dBc", "Vc", "Wc" }; // unit + 5 is delta unit static const float scale_value[]={50000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002, 0.001,0.0005,0.0002, 0.0001}; static const char * const scale_vtext[]= {"50000", "20000", "10000", "5000", "2000", "1000", "500", "200", "100", "50", "20","10","5","2","1","0.5","0.2","0.1","0.05","0.02","0.01", "0.005","0.002","0.001", "0.0005","0.0002","0.0001"}; // Quick menu #define MAX_QUICK_MENU 20 #define MAX_ITEM_SPACE 2 static uint16_t quick_menu_y[MAX_QUICK_MENU]; static menuitem_t *quick_menu[MAX_QUICK_MENU]; static uint8_t max_quick_menu = 0; static uint8_t item_space = 0; // int invoke_quick_menu(int y) { int i; for (i = 0; i < max_quick_menu;i++) { if (y < quick_menu_y[i]) { if ((uint32_t)quick_menu[i] < KM_NONE) { ui_mode_keypad((int)quick_menu[i]); } else { selection = -1; menu_current_level = 0; menu_push_submenu(quick_menu[i]); } return TRUE; } } return FALSE; } #define YSTEP 8 int add_quick_menu(char *buf, int x, int y, menuitem_t *menu) { ili9341_drawstring(buf, x, y); y += YSTEP*item_space/2 + YSTEP; if (max_quick_menu 0.9 && t < 1.1){ plot_printf(buf, BLEN, "%s%c/",scale_vtext[i],unit_scale_text[setting.unit_scale_index]); break; } i++; } #else plot_printf(buf, BLEN, "%.2F/",setting.scale); #endif y = add_quick_menu(buf, x, y, (menuitem_t *)KM_SCALE); // Trigger status if (is_paused()) { color = LCD_BRIGHT_COLOR_GREEN; ili9341_set_foreground(color); ili9341_drawstring("PAUSED", x, y); y += YSTEP + YSTEP/2 ; } if (setting.trigger == T_SINGLE || setting.trigger == T_NORMAL ) { color = LCD_BRIGHT_COLOR_GREEN; ili9341_set_foreground(color); ili9341_drawstring("ARMED", x, y); y += YSTEP + YSTEP/2 ; } // AM warning if (signal_is_AM) { color = LCD_BRIGHT_COLOR_RED; ili9341_set_foreground(color); ili9341_drawstring("AM", x, y); y += YSTEP + YSTEP/2 ; } quick_menu_y[max_quick_menu] = y; quick_menu[max_quick_menu++] = (menuitem_t *)NULL; // if (setting.mode == M_LOW) { // Attenuation if (setting.auto_attenuation) color = LCD_FG_COLOR; else color = LCD_BRIGHT_COLOR_GREEN; ili9341_set_foreground(color); ili9341_drawstring("Atten:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%.2FdB", get_attenuation()); y = add_quick_menu(buf, x, y, (menuitem_t *)menu_atten); // } // Calc if (setting.average>0) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); ili9341_drawstring("Calc:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%s",averageText[setting.average]); y = add_quick_menu(buf, x, y, (menuitem_t *)menu_average); } // Spur #ifdef __SPUR__ if (setting.spur_removal != S_OFF) { if (setting.spur_removal == S_ON) color = LCD_BRIGHT_COLOR_GREEN; else color = LCD_FG_COLOR; ili9341_set_foreground(color); ili9341_drawstring("Spur:", x, y); y += YSTEP; if (S_IS_AUTO(setting.spur_removal)) y = add_quick_menu("AUTO", x, y, (menuitem_t *)menu_stimulus); else y = add_quick_menu("ON", x, y, (menuitem_t *)menu_stimulus); } if (setting.mirror_masking) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); ili9341_drawstring("Mask:", x, y); y += YSTEP; y = add_quick_menu("ON", x, y, (menuitem_t *)menu_stimulus); } #endif if (setting.subtract_stored) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); y = add_quick_menu("Norm.", x, y, (menuitem_t *)menu_storage); } // RBW if (setting.rbw_x10) color = LCD_BRIGHT_COLOR_GREEN; else color = LCD_FG_COLOR; ili9341_set_foreground(color); if (dirty) update_rbw(); ili9341_drawstring("RBW:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%.1FHz", actual_rbw_x10*100.0); y = add_quick_menu(buf, x, y,(menuitem_t *)menu_rbw); #ifdef __VBW__ // VBW if (setting.frequency_step > 0) { int vbw = setting.vbw_x10; if (vbw != 0) color = LCD_BRIGHT_COLOR_GREEN; else { color = LCD_FG_COLOR; vbw = 10; } ili9341_set_foreground(color); ili9341_drawstring("VBW:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%.1FHz", actual_rbw_x10*100.0 *vbw/10.0); y = add_quick_menu(buf, x, y,(menuitem_t *)menu_vbw); } #endif // Sweep time if (setting.step_delay != 0) color = LCD_BRIGHT_COLOR_GREEN; else color = LCD_FG_COLOR; ili9341_set_foreground(color); buf[0] = ' '; strcpy(&buf[1],"Scan:"); if (setting.step_delay_mode == SD_PRECISE) buf[0] = 'P'; else if (setting.step_delay_mode == SD_FAST) buf[0] = 'F'; else strcpy(&buf[0],"Scan:"); ili9341_drawstring(buf, x, y); if (dirty) { calculate_step_delay(); setting.actual_sweep_time_us = calc_min_sweep_time_us(); } #if 0 // Activate for sweep time debugging y += YSTEP; plot_printf(buf, BLEN, "%5.3Fs", (float)setting.sweep_time_us/ONE_SECOND_TIME); ili9341_drawstring(buf, x, y); #endif y += YSTEP; plot_printf(buf, BLEN, "%5.3Fs", (float)setting.actual_sweep_time_us/ONE_SECOND_TIME); y = add_quick_menu(buf, x, y, (menuitem_t *)menu_sweep_speed); #if 0 // Activate for sweep time debugging y += YSTEP; update_rbw(); // To ensure the calc_min_sweep time shown takes the latest delay into account calculate_step_delay(); uint32_t t = calc_min_sweep_time_us(); plot_printf(buf, BLEN, "%5.3Fs", (float)t/ONE_SECOND_TIME); ili9341_drawstring(buf, x, y); y += YSTEP; plot_printf(buf, BLEN, "%5.3Fs", (float)setting.additional_step_delay_us/ONE_SECOND_TIME); ili9341_drawstring(buf, x, y); y += YSTEP + YSTEP/2 ; #endif #ifdef TINYSA4 if (setting.extra_lna){ ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); y = add_quick_menu("LNA:ON", x, y, (menuitem_t *)menu_level); y += YSTEP; } #endif // Cal output if (setting.refer >= 0) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); ili9341_drawstring("Ref:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%dMHz",reffer_freq[setting.refer]/1000000); buf[6]=0; y = add_quick_menu(buf, x, y,(menuitem_t *)menu_reffer); } // Offset if (setting.external_gain != 0.0) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); ili9341_drawstring("Amp:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%.1fdB",setting.external_gain); y = add_quick_menu(buf, x, y,(menuitem_t *)KM_EXT_GAIN); } // Repeat if (setting.repeat != 1) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); ili9341_drawstring("Repeat:", x, y); y += YSTEP; plot_printf(buf, BLEN, "%d",setting.repeat); buf[6]=0; y = add_quick_menu(buf, x, y,(menuitem_t *)KM_REPEAT); } // Trigger if (setting.trigger != T_AUTO) { if (is_paused() || setting.trigger == T_NORMAL) { ili9341_set_foreground(LCD_BRIGHT_COLOR_GREEN); } else { ili9341_set_foreground(LCD_BRIGHT_COLOR_RED); } ili9341_drawstring("TRIG:", x, y); y += YSTEP; if (rounding) plot_printf(buf, BLEN, "%4f", value(setting.trigger_level)); else plot_printf(buf, BLEN, "%.4F", value(setting.trigger_level)); // plot_printf(buf, BLEN, "%4f", value(setting.trigger_level)/setting.unit_scale); y = add_quick_menu(buf, x, y,(menuitem_t *)menu_trigger); } // Mode if (level_is_calibrated()) color = LCD_BRIGHT_COLOR_GREEN; else color = LCD_BRIGHT_COLOR_RED; ili9341_set_foreground(color); ili9341_drawstring_7x13(MODE_LOW(setting.mode) ? "LOW" : "HIGH", x, y); // Compact status string // ili9341_set_background(LCD_FG_COLOR); ili9341_set_foreground(LCD_FG_COLOR); y += YSTEP + YSTEP/2 ; strncpy(buf," ",BLEN-1); if (setting.auto_attenuation) buf[0] = 'a'; else buf[0] = 'A'; if (setting.auto_IF) buf[1] = 'f'; else buf[1] = 'F'; if (setting.auto_reflevel) buf[2] = 'r'; else buf[2] = 'R'; if (S_IS_AUTO(setting.agc)) buf[3] = 'g'; else if (S_STATE(setting.agc)) buf[3] = 'G'; if (S_IS_AUTO(setting.lna)) buf[4] = 'n'; else if (S_STATE(setting.lna)) buf[4] = 'N'; if (S_IS_AUTO(setting.below_IF)) buf[5] = 'b'; else if (S_STATE(setting.below_IF)) buf[5] = 'B'; ili9341_drawstring(buf, x, y); // Version y += YSTEP + YSTEP/2 ; #ifdef TINYSA4 strncpy(buf,&TINYSA_VERSION[9], BLEN+1); #else strncpy(buf,&TINYSA_VERSION[8], BLEN+1); #endif if (buf[7]=='-') { buf[3] = buf[4]; buf[4] = buf[5]; buf[5] = buf[6]; } buf[6] = 0; ili9341_drawstring(buf, x, y); if (y >= BATTERY_START && item_space > 0) { item_space--; // Reduce item spacing goto redraw_cal_status; } if ((y + (max_quick_menu+1) * YSTEP/2) < BATTERY_START && item_space < MAX_ITEM_SPACE) { item_space++; // Increase item spacing goto redraw_cal_status; } // ili9341_set_background(LCD_BG_COLOR); if (!setting.waterfall) { // Do not draw bottom level if in waterfall mode // Bottom level y = area_height + OFFSETY; if (rounding) plot_printf(buf, BLEN, "%4d", (int)(yMax - setting.scale * NGRIDY)); else plot_printf(buf, BLEN, "%+4.3F", ((yMax - setting.scale * NGRIDY)/setting.unit_scale)); // buf[5]=0; if (level_is_calibrated()) if (setting.auto_reflevel) color = LCD_FG_COLOR; else color = LCD_BRIGHT_COLOR_GREEN; else color = LCD_BRIGHT_COLOR_RED; ili9341_set_foreground(color); y = add_quick_menu(buf, x, y,(menuitem_t *)menu_average); // ili9341_drawstring(buf, x, y); } }