/* * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * The software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #pragma GCC push_options #pragma GCC optimize ("Os") uint32_t xtoi(char *t); static int VFO = 0; static int points = 101; // For 's' and 'm' commands VNA_SHELL_FUNCTION(cmd_mode) { static const char cmd_low_high[] = "low|high"; static const char cmd_in_out[] = "input|output"; if (argc != 2) { usage: shell_printf("usage: mode %s %s\r\n", cmd_low_high,cmd_in_out); return; } int lh = get_str_index(argv[0], cmd_low_high); int io = get_str_index(argv[1], cmd_in_out); if (lh<0 || io<0) goto usage; menu_move_top(); switch(lh+io*2) { case 0: set_mode(M_LOW); ui_mode_normal(); break; case 1: set_mode(M_HIGH); ui_mode_normal(); break; case 2: set_mode(M_GENLOW); menu_push_lowoutput(); break; case 3: set_mode(M_GENHIGH); menu_push_highoutput(); break; } } VNA_SHELL_FUNCTION(cmd_modulation ) { static const char cmd_mod[] = "off|am|nfm|wfm|extern|freq"; if (argc < 1) { usage: shell_printf("usage: modulation %s 100..6000\r\n", cmd_mod); return; } static const int cmd_mod_val[] = { MO_NONE, MO_AM, MO_NFM, MO_WFM, MO_EXTERNAL, -1}; int m = get_str_index(argv[0], cmd_mod); if (m<0) goto usage; if (cmd_mod_val[m] >=0) set_modulation(cmd_mod_val[m]); else { if (argc != 2) goto usage; int a = my_atoi(argv[1]); set_modulation_frequency(a); } } int generic_option_cmd( const char *cmd, const char *cmd_list, int argc, char *argv) { if (argc != 1) { usage: shell_printf("usage: %s %s\r\n", cmd, cmd_list); return -1; } int m = get_str_index(argv, cmd_list); if (m < 0) goto usage; return m; } VNA_SHELL_FUNCTION(cmd_spur) { // static const char cmd[] = "off|on"; // if (argc != 1) { // usage: // shell_printf("usage: spur %s\r\n", cmd); // return; // } int m = generic_option_cmd("spur", "off|on|auto", argc, argv[0]); if (m>=0) { set_spur(m); redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA; } } VNA_SHELL_FUNCTION(cmd_lna) { // static const char cmd[] = "off|on"; // if (argc != 1) { // usage: // shell_printf("usage: spur %s\r\n", cmd); // return; // } int m = generic_option_cmd("lna", "off|on", argc, argv[0]); if (m>=0) { set_extra_lna(m); redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA; } } VNA_SHELL_FUNCTION(cmd_ultra) { // static const char cmd[] = "off|on"; // if (argc != 1) { // usage: // shell_printf("usage: spur %s\r\n", cmd); // return; // } int m = generic_option_cmd("ultra", "off|on", argc, argv[0]); if (m>=0) { config.ultra = m; update_min_max_freq(); } } VNA_SHELL_FUNCTION(cmd_output) { #if 0 if (argc != 1) { usage: shell_printf("usage: output on|off\r\n"); return; } if (strcmp(argv[0],"on") == 0) { setting.mute = false; } else if (strcmp(argv[0],"off") == 0) { setting.mute = true; } else goto usage; #endif int m = generic_option_cmd("output", "on|off", argc, argv[0]); if (m>=0) { setting.mute = m; dirty = true; } } VNA_SHELL_FUNCTION(cmd_load) { if (argc != 1) { usage: shell_printf("usage: load 0..4\r\n"); return; } int a = my_atoi(argv[0]); if (0 <= a && a <= 4) { caldata_recall(a); } else goto usage; } VNA_SHELL_FUNCTION(cmd_attenuate) { if (argc != 1) { // usage: shell_printf("usage: attenuate 0..31|auto\r\n"); return; } if (strcmp(argv[0],"auto") == 0) { if (!setting.auto_attenuation) set_auto_attenuation(); } else { int a = my_atoi(argv[0]); // if (a < 0 || a>31) // goto usage; if (get_attenuation() != a) set_attenuation(a); } redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA; } VNA_SHELL_FUNCTION(cmd_level) { if (argc != 1) { if (setting.mode==M_GENLOW) shell_printf("usage: level -76..-6\r\n"); if (setting.mode==M_GENHIGH) shell_printf("usage: level -38..13\r\n"); return; } float f = my_atof(argv[0]); set_level(f); } VNA_SHELL_FUNCTION(cmd_sweeptime) { if (argc != 1) { shell_printf("usage: sweeptime 0.003..60\r\n"); return; } float f = my_atof(argv[0]); set_sweep_time_us(f*ONE_SECOND_TIME); } VNA_SHELL_FUNCTION(cmd_offset) { if (argc != 1) { shell_printf("usage: offset -100.0..+100.0\r\n"); return; } float o = my_atof(argv[0]); set_offset(o); } VNA_SHELL_FUNCTION(cmd_levelchange) { if (argc != 1) { shell_printf("usage: levelchange -70..+70\r\n"); return; } float f = my_atof(argv[0]); set_level_sweep(f); } VNA_SHELL_FUNCTION(cmd_leveloffset) { if (argc == 0) { shell_printf("leveloffset low %.1f\r\n", config.low_level_offset); shell_printf("leveloffset high %.1f\r\n", config.high_level_offset); return; } else if (argc == 2) { float v = my_atof(argv[1]); if (strcmp(argv[0],"low") == 0) config.low_level_offset = v; else if (strcmp(argv[0],"high") == 0) config.high_level_offset = v; else goto usage; } else { usage: shell_printf("leveloffset [low|high] []\r\n"); } } VNA_SHELL_FUNCTION(cmd_deviceid) { if (argc == 0) { shell_printf("deviceid %d\r\n", config.deviceid); return; } else if (argc == 1) { float v = my_atoui(argv[0]); config.deviceid = v; } else { shell_printf("usage: deviceid []\r\n"); } } VNA_SHELL_FUNCTION(cmd_rbw) { if (argc != 1) { usage: shell_printf("usage: rbw 0.3..600|auto\r\n"); return; } if (get_str_index(argv[0], "auto|0")>=0) { if (setting.rbw_x10 != 0) set_RBW(0); } else { float a = my_atof(argv[0]); if (a < 0.2 || a>900) goto usage; if (setting.rbw_x10 != a*10) set_RBW((int) ( a*10)); } } VNA_SHELL_FUNCTION(cmd_if) { if (argc != 1) { usage: shell_printf("usage: if {433M..435M}\r\n%qHz\r\n", setting.frequency_IF); return; } else { freq_t a = (freq_t)my_atoi(argv[0]); if (a!= 0 &&( a < (DEFAULT_IF - (freq_t)2000000) || a>(DEFAULT_IF + (freq_t)2000000))) goto usage; setting.auto_IF = false; set_IF(a); } } VNA_SHELL_FUNCTION(cmd_ultra_start) { if (argc != 1) { shell_printf("usage: ultra_start {0..4290M}\r\n%qHz\r\n", config.ultra_threshold); return; } else { freq_t a = (freq_t)my_atoi(argv[0]); config.ultra_threshold = a; config_save(); } } VNA_SHELL_FUNCTION(cmd_if1) { if (argc != 1) { usage: shell_printf("usage: if1 {975M..979M}\r\n%qHz\r\n", config.frequency_IF1); return; } else { freq_t a = (freq_t)my_atoi(argv[0]); if (a!= 0 &&( a < (DEFAULT_IF - (freq_t)80000000) || a>(DEFAULT_IF + (freq_t)80000000))) goto usage; config.frequency_IF1 = a; config_save(); } } VNA_SHELL_FUNCTION(cmd_trigger) { if (argc == 0) goto usage; if (( '0' <= argv[0][0] && argv[0][0] <= '9') || argv[0][0] == '-') { float t = my_atof(argv[0]); if (setting.trigger == T_AUTO ) set_trigger(T_NORMAL); set_trigger_level(to_dBm(t)); goto update; } static const char cmd_trigger_list[] = "auto|normal|single"; if (argc == 1) { int type = get_str_index(argv[0], cmd_trigger_list); if (type >= 0) { set_trigger(type); goto update; } goto usage; } update: redraw_request |= REDRAW_CAL_STATUS | REDRAW_AREA; completed = true; return; usage: shell_printf("trigger {value}\r\n"\ "trigger {%s}\r\n" , cmd_trigger_list); } VNA_SHELL_FUNCTION(cmd_v) { if (argc != 1) { shell_printf("%d\r\n", VFO); return; } VFO = my_atoi(argv[0]) > 0 ? 1 : 0; shell_printf("VFO %d\r\n", VFO); } VNA_SHELL_FUNCTION(cmd_y) { if (argc < 1) { shell_printf("usage: y {addr(0-FF)} [value(0-FF)]+\r\n"); return; } #ifdef __SI4432__ int lvalue = 0; int rvalue; rvalue = xtoi(argv[0]); SI4432_Sel = VFO; if (argc == 2){ lvalue = my_atoui(argv[1]); SI4432_Write_Byte(rvalue, lvalue); } else { lvalue = SI4432_Read_Byte(rvalue); shell_printf("%x\r\n", lvalue); } #endif #ifdef __SI4463__ uint8_t data[16]; data[0] = xtoi(argv[0]); for (int i=1; i < argc; i++) { data[i] = xtoi(argv[i]); } SI4463_do_api(data, argc, data, 16); for (int i=0; i<16; i++) shell_printf("%02x ", data[i]); shell_printf("\r\n"); #endif } #if 0 // not used VNA_SHELL_FUNCTION(cmd_z) { static const char cmd_z_list[] = "t|r|i"; if (argc != 1) { shell_printf("usage: z %s\r\n", cmd_z_list); return; } if (argc == 1) { #ifdef __SI4432__ SI4432_Sel = VFO; int type = get_str_index(argv[0], cmd_z_list); switch(type) { case 0: SI4432_Transmit(3); break; case 1: SI4432_Receive(); break; case 2: SI4432_Reset(); break; } #endif } } #endif VNA_SHELL_FUNCTION(cmd_selftest) { if (argc < 1 || argc > 2) { shell_printf("usage: selftest (1-3) [arg]\r\n"); return; } setting.test = my_atoi(argv[0]); if (argc == 1) setting.test_argument = 0; else setting.test_argument = my_atoi(argv[1]); sweep_mode = SWEEP_SELFTEST; } #ifdef __ADF4351__ uint32_t xtoi(char *t) { uint32_t v=0; while (*t) { if ('0' <= *t && *t <= '9') v = v*16 + *t - '0'; else if ('a' <= *t && *t <= 'f') v = v*16 + *t - 'a' + 10; else if ('A' <= *t && *t <= 'F') v = v*16 + *t - 'A' + 10; else return v; t++; } return v; } VNA_SHELL_FUNCTION(cmd_x) { uint32_t reg; if (argc != 1) { shell_printf("usage: x value(0-FFFFFFFF)\r\n"); return; } reg = xtoi(argv[0]); if ((reg & 7) == 5) { if (reg & (1<<22)) VFO = 1; else VFO = 0; reg &= ~0xc00000; // Force led to show lock reg |= 0x400000; } ADF4351_WriteRegister32(VFO, reg); shell_printf("x=%x\r\n", reg); } #endif VNA_SHELL_FUNCTION(cmd_i) { (void)argc; (void)argv; return; // Don't use!!!! #ifdef __SI4432__ int rvalue; SI4432_Init(); shell_printf("SI4432 init done\r\n"); if (argc == 1) { rvalue = my_atoui(argv[0]); set_switches(rvalue); set_mode(rvalue); shell_printf("SI4432 mode %d set\r\n", rvalue); } #endif } VNA_SHELL_FUNCTION(cmd_o) { (void) argc; freq_t value = my_atoi(argv[0]); if (VFO == 0) setting.frequency_IF = value; set_freq(VFO, value); } VNA_SHELL_FUNCTION(cmd_d) { (void) argc; (void) argv; int32_t a = my_atoi(argv[0]); int32_t d; if (argc == 2) d = my_atoi(argv[1]); else { d = a; a = 2; } switch (a) { case 1: SI4463_set_output_level(d); break; case 2: ADF4351_drive (d); break; case 3: ADF4351_aux_drive(d); break; } // setting.lo_drive=a; // dirty = true; } #if 0 extern int16_t adc_buf_read(uint16_t *result, uint32_t count); VNA_SHELL_FUNCTION(cmd_g) { (void) argc; (void) argv; int32_t a = my_atoi(argv[0]); systime_t start_of_read = chVTGetSystemTimeX(); adc_buf_read(spi_buffer, 256); systime_t time_of_read = chVTGetSystemTimeX() - start_of_read; shell_printf("Time: %d\r\n", time_of_read); for (int i=0;i<20;i++) shell_printf("[%d] = %d\r\n", (int)i, (int)(spi_buffer[i])); } #endif VNA_SHELL_FUNCTION(cmd_a) { (void)argc; if (argc != 1) { shell_printf("a=%Lu\r\n", frequencyStart); return; } freq_t value = my_atoui(argv[0]); frequencyStart = value; } VNA_SHELL_FUNCTION(cmd_b) { (void)argc; if (argc != 1) { shell_printf("b=%Lu\r\n", frequencyStop); return; } freq_t value = my_atoui(argv[0]); frequencyStop = value; } VNA_SHELL_FUNCTION(cmd_t) { (void)argc; (void)argv; } VNA_SHELL_FUNCTION(cmd_e) { (void)argc; if (argc != 1) { shell_printf("e=%d\r\n", setting.tracking); return; } setting.tracking = my_atoi(argv[0]); if (setting.tracking == -1) setting.tracking = false; else setting.tracking = true; if (argc >1) frequencyExtra = my_atoi(argv[1]); } VNA_SHELL_FUNCTION(cmd_s) { (void)argc; if (argc != 1) { shell_printf("s=%d\r\n", points); return; } points = my_atoi(argv[0]); } void sweep_remote(void) { uint32_t i; uint32_t step = (points - 1); freq_t span = frequencyStop - frequencyStart; freq_t delta = span / step; freq_t error = span % step; freq_t f = frequencyStart - setting.frequency_IF, df = step>>1; freq_t old_step = setting.frequency_step; setting.frequency_step = delta; streamPut(shell_stream, '{'); dirty = true; for (i = 0; i <= step; i++, f+=delta) { if (operation_requested) break; int val = perform(false, i, f, false) + float_TO_PURE_RSSI(EXT_ZERO_LEVEL); streamPut(shell_stream, 'x'); streamPut(shell_stream, (uint8_t)(val & 0xFF)); streamPut(shell_stream, (uint8_t)((val>>8) & 0xFF)); df+=error;if (df >=step) {f++;df -= step;} } streamPut(shell_stream, '}'); setting.frequency_step = old_step; sweep_mode = 0; } VNA_SHELL_FUNCTION(cmd_m) { (void)argc; (void)argv; // set_mode(0); // setting.tracking = false; //Default test setup // setting.step_atten = false; // set_attenuation(0); // set_reflevel(-10); // set_sweep_frequency(ST_START,frequencyStart - setting.frequency_IF ); // set_sweep_frequency(ST_STOP, frequencyStop - setting.frequency_IF); // draw_cal_status(); pause_sweep(); // update_rbw(); chThdSleepMilliseconds(10); sweep_mode = SWEEP_REMOTE; // update_rbw(); } VNA_SHELL_FUNCTION(cmd_p) { (void)argc; int p = my_atoi(argv[0]); SI4463_set_output_level(p); return; int a = my_atoi(argv[1]); if (p==5) set_attenuation(-a); if (p==6) set_mode(a); if (p==1) if (get_refer_output() != a) set_refer_output(a); } VNA_SHELL_FUNCTION(cmd_g) { (void)argc; int p = my_atoi(argv[0]); int a = my_atoi(argv[1]); SI4463_set_gpio(p,a); } VNA_SHELL_FUNCTION(cmd_w) { (void)argc; int p = my_atoi(argv[0]); return; set_RBW(p*10); } VNA_SHELL_FUNCTION(cmd_f) { (void)argc; setting.test = 5; setting.test_argument = my_atoi(argv[0]);; sweep_mode = SWEEP_SELFTEST; } VNA_SHELL_FUNCTION(cmd_correction) { (void)argc; if (argc == 0) { shell_printf("index frequency value\r\n"); for (int i=0; i 3) { shell_printf("usage: scanraw {start(Hz)} {stop(Hz)} [points]\r\n"); return; } start = my_atoui(argv[0]); stop = my_atoui(argv[1]); if (start > stop) { shell_printf("frequency range is invalid\r\n"); return; } if (argc == 3) { points = my_atoi(argv[2]); } // if (get_waterfall()) // disable_waterfall(); // display dma hangs when waterfall is enabled freq_t old_step = setting.frequency_step; float f_step = (stop-start)/ points; setting.frequency_step = (freq_t)f_step; streamPut(shell_stream, '{'); static freq_t old_start=0, old_stop=0; static uint32_t old_points=0; if (old_start != start || old_stop != stop || old_points != points) { // To prevent dirty for every sweep dirty = true; old_start = start; old_stop = stop; old_points = points; } operation_requested = false; dirty = true; for (uint32_t i = 0; i>8) & 0xFF)); if ((i & 0x07) == 0) { // if required int pos = i * (WIDTH+1) / points; ili9341_set_background(LCD_SWEEP_LINE_COLOR); ili9341_fill(OFFSETX, CHART_BOTTOM+1, pos, 1); // update sweep progress bar ili9341_set_background(LCD_BG_COLOR); ili9341_fill(OFFSETX+pos, CHART_BOTTOM+1, WIDTH-pos, 1); } } ili9341_set_background(LCD_BG_COLOR); ili9341_fill(OFFSETX, CHART_BOTTOM+1, WIDTH, 1); streamPut(shell_stream, '}'); setting.frequency_step = old_step; dirty = true; redraw_request = 0; // disable screen update in this mode } VNA_SHELL_FUNCTION(cmd_caloutput) { static const char cmd[] = "off|30|15|10|4|3|2|1"; if (argc != 1) { shell_printf("usage: caloutput %s\r\n", cmd); return; } int m = get_str_index(argv[0], cmd); if (m != -1) set_refer_output(m - 1); } #pragma GCC pop_options