Move SPI definition to spi.h

Update to last ili driver (
pull/4/head
DiSlord 6 years ago
parent 27d808bf62
commit 174bbaa7d1

@ -1,5 +1,5 @@
/*
* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) edy555@gmail.com
* Copyright (c) 2019-2020, written by DiSlord dislordlive@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
@ -21,8 +21,23 @@
#include "hal.h"
#include "nanovna.h"
// Allow enable DMA for read display data (some problem vs use in ST7796 in fast mode)
#define __USE_DISPLAY_DMA_RX__
#include "spi.h"
// Allow enable DMA for read display data
//#define __USE_DISPLAY_DMA_RX__
// Pin macros for LCD
#define LCD_CS_LOW palClearPad(GPIOB, GPIOB_LCD_CS)
#define LCD_CS_HIGH palSetPad(GPIOB, GPIOB_LCD_CS)
#define LCD_RESET_ASSERT palClearPad(GPIOA, GPIOA_LCD_RESET)
#define LCD_RESET_NEGATE palSetPad(GPIOA, GPIOA_LCD_RESET)
#define LCD_DC_CMD palClearPad(GPIOB, GPIOB_LCD_CD)
#define LCD_DC_DATA palSetPad(GPIOB, GPIOB_LCD_CD)
#define LCD_SPI SPI1
// Set SPI bus speed for LCD
#define LCD_SPI_SPEED SPI_BR_DIV2
//Not define if need use some as Tx speed
//#define LCD_SPI_RX_SPEED SPI_BR_DIV4
uint16_t spi_buffer[SPI_BUFFER_SIZE];
// Default foreground & background colors
@ -135,85 +150,44 @@ uint16_t background_color = 0;
#define DISPLAY_ROTATION_180 (ILI9341_MADCTL_MX | ILI9341_MADCTL_MY \
| ILI9341_MADCTL_MV | ILI9341_MADCTL_BGR)
//
// Pin macros
//
#define RESET_ASSERT palClearPad(GPIOA, 15)
#define RESET_NEGATE palSetPad(GPIOA, 15)
#define CS_LOW palClearPad(GPIOB, 6)
#define CS_HIGH palSetPad(GPIOB, 6)
#define DC_CMD palClearPad(GPIOB, 7)
#define DC_DATA palSetPad(GPIOB, 7)
//*****************************************************************************
//********************************** SPI bus **********************************
//*****************************************************************************
// STM32 SPI transfer mode:
// in 8 bit mode:
// if you write *(uint8_t*)(&SPI1->DR) = (uint8_t) data, then data send as << data
// if you write *(uint16_t*)(&SPI1->DR) =(uint16_t) data, then data send as << dataLoByte, after send dataHiByte
// in 16 bit mode
// if you write *(uint16_t*)(&SPI1->DR) =(uint16_t) data, then data send as << data
// SPI init in 8 bit mode
#define SPI_CR2_8BIT 0x0700
#define SPI_CR2_16BIT 0x0F00
// SPI bus activity macros
// The RXNE flag is set depending on the FRXTH bit value in the SPIx_CR2 register:
// • If FRXTH is set, RXNE goes high and stays high until the RXFIFO level is greater or equal to 1/4 (8-bit).
#define SPI_RX_IS_NOT_EMPTY (SPI1->SR&SPI_SR_RXNE)
#define SPI_RX_IS_EMPTY (((SPI1->SR&SPI_SR_RXNE) == 0))
// The TXE flag is set when transmission TXFIFO has enough space to store data to send.
// 0: Tx buffer not empty, bit is cleared automatically when the TXFIFO level becomes greater than 1/2
// 1: Tx buffer empty, flag goes high and stays high until the TXFIFO level is lower or equal to 1/2 of the FIFO depth
#define SPI_TX_IS_NOT_EMPTY (((SPI1->SR&(SPI_SR_TXE)) == 0))
#define SPI_TX_IS_EMPTY (SPI1->SR&SPI_SR_TXE)
// When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy).
#define SPI_IS_BUSY (SPI1->SR & SPI_SR_BSY)
// SPI send data macros
#define SPI_WRITE_8BIT(data) *(__IO uint8_t*)(&SPI1->DR) = (uint8_t) data
#define SPI_WRITE_16BIT(data) SPI1->DR = data
// SPI read data macros
#define SPI_READ_DATA SPI1->DR
//*****************************************************
// SPI DMA settings and data
//*****************************************************
#ifdef __USE_DISPLAY_DMA__
static const stm32_dma_stream_t *dmatx =
STM32_DMA_STREAM(STM32_SPI_SPI1_TX_DMA_STREAM);
static uint32_t txdmamode =
static const uint32_t txdmamode =
STM32_DMA_CR_CHSEL(SPI1_TX_DMA_CHANNEL) // Select SPI1 Tx DMA
| STM32_DMA_CR_PL(STM32_SPI_SPI1_DMA_PRIORITY) // Set priority
| STM32_DMA_CR_DIR_M2P // Memory to Spi
| STM32_DMA_CR_DMEIE //
| STM32_DMA_CR_TEIE;
| STM32_DMA_CR_DIR_M2P; // Memory to Spi
// Not handle interrupt
#if 0
static void spi_lld_serve_tx_interrupt(SPIDriver *spip, uint32_t flags)
{
(void)spip;
(void)flags;
}
#endif
#ifdef __USE_DISPLAY_DMA_RX__
static const stm32_dma_stream_t *dmarx = STM32_DMA_STREAM(STM32_SPI_SPI1_RX_DMA_STREAM);
static uint32_t rxdmamode = STM32_DMA_CR_CHSEL(SPI1_RX_DMA_CHANNEL)
| STM32_DMA_CR_PL(STM32_SPI_SPI1_DMA_PRIORITY)
| STM32_DMA_CR_DIR_P2M
| STM32_DMA_CR_TCIE
| STM32_DMA_CR_DMEIE
| STM32_DMA_CR_TEIE;
static const uint32_t rxdmamode =
STM32_DMA_CR_CHSEL(SPI1_RX_DMA_CHANNEL) // Select SPI1 Rx DMA
| STM32_DMA_CR_PL(STM32_SPI_SPI1_DMA_PRIORITY) // Set priority
| STM32_DMA_CR_DIR_P2M; // SPI to Memory
// Not handle interrupt
#if 0
static void spi_lld_serve_rx_interrupt(SPIDriver *spip, uint32_t flags)
{
(void)spip;
(void)flags;
}
#endif
#endif
// Send prepared DMA data, and wait completion
static void dmaStreamFlush(uint32_t len)
{
while (len) {
@ -227,53 +201,129 @@ static void dmaStreamFlush(uint32_t len)
}
#endif
// SPI transmit byte to SPI (no wait complete transmit)
void spi_TxByte(uint8_t data) {
SPI_WRITE_8BIT(LCD_SPI, data);
}
// Transmit word to SPI bus (if SPI in 8 bit mode LSB send first!!!!!)
void spi_TxWord(uint16_t data) {
SPI_WRITE_16BIT(LCD_SPI, data);
}
// Transmit buffer to SPI bus (len should be > 0)
void spi_TxBuffer(uint8_t *buffer, uint16_t len) {
do {
while (SPI_TX_IS_NOT_EMPTY(LCD_SPI));
SPI_WRITE_8BIT(LCD_SPI, *buffer++);
}while(--len);
}
// Receive byte from SPI bus
uint8_t spi_RxByte(void) {
// Start RX clock (by sending data)
SPI_WRITE_8BIT(LCD_SPI, 0xFF);
while (SPI_RX_IS_EMPTY(LCD_SPI)||SPI_IS_BUSY(LCD_SPI));
return SPI_READ_8BIT(LCD_SPI);
}
// Receive buffer from SPI bus (len should be > 0)
void spi_RxBuffer(uint8_t *buffer, uint16_t len) {
do{
SPI_WRITE_8BIT(LCD_SPI, 0xFF);
while (SPI_RX_IS_EMPTY(LCD_SPI));
*buffer++ = SPI_READ_8BIT(LCD_SPI);
}while(--len);
}
void spi_DropRx(void){
// Drop Rx buffer after tx and wait tx complete
while (SPI_RX_IS_NOT_EMPTY(LCD_SPI)||SPI_IS_BUSY(LCD_SPI))
(void)SPI_READ_8BIT(LCD_SPI);
}
#ifdef __USE_DISPLAY_DMA__
// SPI receive byte buffer use DMA
void spi_DMATxBuffer(uint8_t *buffer, uint16_t len) {
dmaStreamSetMemory0(dmatx, buffer);
dmaStreamSetMode(dmatx, txdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_MINC);
dmaStreamFlush(len);
}
#ifdef __USE_DISPLAY_DMA_RX__
// SPI transmit byte buffer use DMA
static void spi_DMARxBuffer(uint8_t *buffer, uint16_t len) {
uint8_t dummy_tx = 0xFF;
// Init Rx DMA buffer, size, mode (spi and mem data size is 8 bit)
dmaStreamSetMemory0(dmarx, buffer);
dmaStreamSetTransactionSize(dmarx, len);
dmaStreamSetMode(dmarx, rxdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_MINC);
// Init dummy Tx DMA (for rx clock), size, mode (spi and mem data size is 8 bit)
dmaStreamSetMemory0(dmatx, &dummy_tx);
dmaStreamSetTransactionSize(dmatx, len);
dmaStreamSetMode(dmatx, txdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE);
// Skip SPI rx buffer
spi_DropRx();
// Start DMA exchange
dmaStreamEnable(dmarx);
dmaStreamEnable(dmatx);
// Wait DMA completion
dmaWaitCompletion(dmatx);
dmaWaitCompletion(dmarx);
}
#endif
#endif
static void spi_init(void)
{
rccEnableSPI1(FALSE);
SPI1->CR1 = 0;
SPI1->CR1 = SPI_CR1_MSTR // SPI is MASTER
| SPI_CR1_SSM // Software slave management (The external NSS pin is free for other application uses)
| SPI_CR1_SSI; // Internal slave select (This bit has an effect only when the SSM bit is set. Allow use NSS pin as I/O)
// | SPI_CR1_BR_1; // Baud rate control
SPI1->CR2 = SPI_CR2_8BIT // SPI data size, set to 8 bit
| SPI_CR2_FRXTH; // SPI_SR_RXNE generated every 8 bit data
// | SPI_CR2_SSOE; //
LCD_SPI->CR1 = 0;
LCD_SPI->CR1 = SPI_CR1_MSTR // SPI is MASTER
| SPI_CR1_SSM // Software slave management (The external NSS pin is free for other application uses)
| SPI_CR1_SSI // Internal slave select (This bit has an effect only when the SSM bit is set. Allow use NSS pin as I/O)
| LCD_SPI_SPEED // Baud rate control
// | SPI_CR1_CPHA // Clock Phase
// | SPI_CR1_CPOL // Clock Polarity
;
LCD_SPI->CR2 = SPI_CR2_8BIT // SPI data size, set to 8 bit
| SPI_CR2_FRXTH; // SPI_SR_RXNE generated every 8 bit data
// | SPI_CR2_SSOE; //
#ifdef __USE_DISPLAY_DMA__
// Tx DMA init
dmaStreamAllocate(dmatx, STM32_SPI_SPI1_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_tx_interrupt, NULL);
dmaStreamSetPeripheral(dmatx, &SPI1->DR);
SPI1->CR2|= SPI_CR2_TXDMAEN; // Tx DMA enable
dmaStreamAllocate(dmatx, STM32_SPI_SPI1_IRQ_PRIORITY, NULL, NULL);
dmaStreamSetPeripheral(dmatx, &LCD_SPI->DR);
LCD_SPI->CR2|= SPI_CR2_TXDMAEN; // Tx DMA enable
#ifdef __USE_DISPLAY_DMA_RX__
// Rx DMA init
dmaStreamAllocate(dmarx, STM32_SPI_SPI1_IRQ_PRIORITY, (stm32_dmaisr_t)spi_lld_serve_rx_interrupt, NULL);
dmaStreamSetPeripheral(dmarx, &SPI1->DR);
dmaStreamAllocate(dmarx, STM32_SPI_SPI1_IRQ_PRIORITY, NULL, NULL);
dmaStreamSetPeripheral(dmarx, &LCD_SPI->DR);
// Enable DMA on SPI
SPI1->CR2|= SPI_CR2_RXDMAEN; // Rx DMA enable
LCD_SPI->CR2|= SPI_CR2_RXDMAEN; // Rx DMA enable
#endif
#endif
SPI1->CR1|= SPI_CR1_SPE; //SPI enable
LCD_SPI->CR1|= SPI_CR1_SPE; //SPI enable
}
// Disable inline for this function
static void __attribute__ ((noinline)) send_command(uint8_t cmd, uint8_t len, const uint8_t *data)
static void send_command(uint8_t cmd, uint8_t len, const uint8_t *data)
{
CS_LOW;
//while (SPI_TX_IS_NOT_EMPTY);
DC_CMD;
SPI_WRITE_8BIT(cmd);
// Uncomment on low speed SPI (possible get here before previous tx complete)
// while (SPI_IN_TX_RX);
LCD_CS_LOW;
LCD_DC_CMD;
SPI_WRITE_8BIT(LCD_SPI, cmd);
// Need wait transfer complete and set data bit
while (SPI_IS_BUSY)
while (SPI_IN_TX_RX(LCD_SPI))
;
// Send command data (if need)
DC_DATA;
LCD_DC_DATA;
while (len-- > 0) {
while (SPI_TX_IS_NOT_EMPTY)
while (SPI_TX_IS_NOT_EMPTY(LCD_SPI))
;
SPI_WRITE_8BIT(*data++);
SPI_WRITE_8BIT(LCD_SPI, *data++);
}
//CS_HIGH;
//LCD_CS_HIGH;
}
static const uint8_t ili9341_init_seq[] = {
@ -337,10 +387,10 @@ static const uint8_t ili9341_init_seq[] = {
void ili9341_init(void)
{
spi_init();
DC_DATA;
RESET_ASSERT;
LCD_DC_DATA;
LCD_RESET_ASSERT;
chThdSleepMilliseconds(10);
RESET_NEGATE;
LCD_RESET_NEGATE;
const uint8_t *p;
for (p = ili9341_init_seq; *p; ) {
send_command(p[0], p[1], &p[2]);
@ -351,6 +401,8 @@ void ili9341_init(void)
void ili9341_bulk_8bit(int x, int y, int w, int h, uint16_t *palette)
{
//uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
//uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
uint32_t xx = __REV16(x | ((x + w - 1) << 16));
uint32_t yy = __REV16(y | ((y + h - 1) << 16));
send_command(ILI9341_COLUMN_ADDRESS_SET, 4, (uint8_t *)&xx);
@ -359,12 +411,8 @@ void ili9341_bulk_8bit(int x, int y, int w, int h, uint16_t *palette)
uint8_t *buf = (uint8_t *)spi_buffer;
int32_t len = w * h;
while (len-- > 0) {
uint16_t color = palette[*buf++];
while (SPI_TX_IS_NOT_EMPTY)
;
SPI_WRITE_16BIT(color);
}
while (len-- > 0)
spi_TxWord(palette[*buf++]);
}
#ifndef __USE_DISPLAY_DMA__
@ -378,17 +426,14 @@ void ili9341_fill(int x, int y, int w, int h, uint16_t color)
send_command(ILI9341_PAGE_ADDRESS_SET, 4, (uint8_t*)&yy);
send_command(ILI9341_MEMORY_WRITE, 0, NULL);
int32_t len = w * h;
while (len-- > 0) {
while (SPI_TX_IS_NOT_EMPTY)
;
SPI_WRITE_16BIT(color);
}
while (len-- > 0)
spi_TxWord(color);
}
void ili9341_bulk(int x, int y, int w, int h)
{
// uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
// uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
//uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
//uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
uint16_t *buf = spi_buffer;
uint32_t xx = __REV16(x | ((x + w - 1) << 16));
uint32_t yy = __REV16(y | ((y + h - 1) << 16));
@ -396,11 +441,8 @@ void ili9341_bulk(int x, int y, int w, int h)
send_command(ILI9341_PAGE_ADDRESS_SET, 4, (uint8_t*)&yy);
send_command(ILI9341_MEMORY_WRITE, 0, NULL);
int32_t len = w * h;
while (len-- > 0) {
while (SPI_TX_IS_NOT_EMPTY)
;
SPI_WRITE_16BIT(*buf++);
}
while (len-- > 0)
spi_TxWord(*buf++);
}
#else
//
@ -409,6 +451,8 @@ void ili9341_bulk(int x, int y, int w, int h)
// Fill region by some color
void ili9341_fill(int x, int y, int w, int h, uint16_t color)
{
//uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
//uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
uint32_t xx = __REV16(x | ((x + w - 1) << 16));
uint32_t yy = __REV16(y | ((y + h - 1) << 16));
send_command(ILI9341_COLUMN_ADDRESS_SET, 4, (uint8_t *)&xx);
@ -438,75 +482,83 @@ void ili9341_bulk(int x, int y, int w, int h)
#endif
#ifndef __USE_DISPLAY_DMA_RX__
static uint8_t ssp_sendrecvdata(void)
{
// Start RX clock (by sending data)
SPI_WRITE_8BIT(0);
while (SPI_RX_IS_EMPTY && SPI_IS_BUSY)
;
return SPI_READ_DATA;
}
void ili9341_read_memory(int x, int y, int w, int h, int len, uint16_t *out)
{
// uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
// uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
//uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
//uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
uint32_t xx = __REV16(x | ((x + w - 1) << 16));
uint32_t yy = __REV16(y | ((y + h - 1) << 16));
send_command(ILI9341_COLUMN_ADDRESS_SET, 4, (uint8_t *)&xx);
send_command(ILI9341_PAGE_ADDRESS_SET, 4, (uint8_t*)&yy);
send_command(ILI9341_MEMORY_READ, 0, NULL);
// Skip data from rx buffer
while (SPI_RX_IS_NOT_EMPTY)
(void) SPI_READ_DATA;
spi_DropRx();
// Set read speed (if need different)
#ifdef LCD_SPI_RX_SPEED
SPI_BR_SET(LCD_SPI, LCD_SPI_RX_SPEED);
#endif
// require 8bit dummy clock
ssp_sendrecvdata();
spi_RxByte();
while (len-- > 0) {
uint8_t r, g, b;
// read data is always 18bit
uint8_t r = ssp_sendrecvdata();
uint8_t g = ssp_sendrecvdata();
uint8_t b = ssp_sendrecvdata();
r = spi_RxByte();
g = spi_RxByte();
b = spi_RxByte();
*out++ = RGB565(r, g, b);
}
CS_HIGH;
// restore speed if need
#ifdef LCD_SPI_RX_SPEED
SPI_BR_SET(LCD_SPI, LCD_SPI_SPEED);
#endif
LCD_CS_HIGH;
}
#else
// Copy screen data to buffer
// Warning!!! buffer size must be greater then 3*len + 1 bytes
void ili9341_read_memory(int x, int y, int w, int h, int len, uint16_t *out)
{
uint8_t dummy_tx = 0;
uint16_t dummy_tx = 0;
uint8_t *rgbbuf = (uint8_t *)out;
uint16_t data_size = len * 3 + 1;
uint16_t data_size = len * 3;
//uint8_t xx[4] = { x >> 8, x, (x+w-1) >> 8, (x+w-1) };
//uint8_t yy[4] = { y >> 8, y, (y+h-1) >> 8, (y+h-1) };
uint32_t xx = __REV16(x | ((x + w - 1) << 16));
uint32_t yy = __REV16(y | ((y + h - 1) << 16));
send_command(ILI9341_COLUMN_ADDRESS_SET, 4, (uint8_t *)&xx);
send_command(ILI9341_PAGE_ADDRESS_SET, 4, (uint8_t *)&yy);
send_command(ILI9341_MEMORY_READ, 0, NULL);
// Skip SPI rx buffer
while (SPI_RX_IS_NOT_EMPTY) (void)SPI_READ_DATA;
// Init Rx DMA buffer, size, mode (spi and mem data size is 8 bit)
dmaStreamSetMemory0(dmarx, rgbbuf);
dmaStreamSetTransactionSize(dmarx, data_size);
dmaStreamSetMode(dmarx, rxdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE |
STM32_DMA_CR_MINC);
dmaStreamSetMode(dmarx, rxdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE | STM32_DMA_CR_MINC);
// Init dummy Tx DMA (for rx clock), size, mode (spi and mem data size is 8 bit)
dmaStreamSetMemory0(dmatx, &dummy_tx);
dmaStreamSetTransactionSize(dmatx, data_size);
dmaStreamSetMode(dmatx, txdmamode | STM32_DMA_CR_PSIZE_BYTE | STM32_DMA_CR_MSIZE_BYTE);
// Skip SPI rx buffer
spi_DropRx();
// Set read speed (if need different)
#ifdef LCD_SPI_RX_SPEED
SPI_BR_SET(LCD_SPI, LCD_SPI_RX_SPEED);
#endif
// require 8bit dummy clock
spi_RxByte();
// Start DMA exchange
dmaStreamEnable(dmarx);
dmaStreamEnable(dmatx);
// Wait DMA completion
dmaWaitCompletion(dmatx);
dmaWaitCompletion(dmarx);
CS_HIGH;
// restore speed if need
#ifdef LCD_SPI_RX_SPEED
SPI_BR_SET(LCD_SPI, LCD_SPI_SPEED);
#endif
LCD_CS_HIGH;
// Parce recived data
// Skip dummy 8-bit read
rgbbuf++;
while (len-- > 0) {
uint8_t r, g, b;
// read data is always 18bit
@ -519,7 +571,7 @@ void ili9341_read_memory(int x, int y, int w, int h, int len, uint16_t *out)
}
#endif
void ili9341_clear_screen(void)
void ili9341_clear_screen(void)
{
ili9341_fill(0, 0, ILI9341_WIDTH, ILI9341_HEIGHT, background_color);
}
@ -546,7 +598,7 @@ void ili9341_set_rotation(uint8_t r)
}
void blit8BitWidthBitmap(uint16_t x, uint16_t y, uint16_t width, uint16_t height,
const uint8_t *bitmap)
const uint8_t *bitmap)
{
uint16_t *buf = spi_buffer;
for (uint16_t c = 0; c < height; c++) {
@ -560,7 +612,7 @@ void blit8BitWidthBitmap(uint16_t x, uint16_t y, uint16_t width, uint16_t height
}
void blit16BitWidthBitmap(uint16_t x, uint16_t y, uint16_t width, uint16_t height,
const uint16_t *bitmap)
const uint16_t *bitmap)
{
uint16_t *buf = spi_buffer;
for (uint16_t c = 0; c < height; c++) {
@ -573,12 +625,6 @@ void blit16BitWidthBitmap(uint16_t x, uint16_t y, uint16_t width, uint16_t heigh
ili9341_bulk(x, y, width, height);
}
int ili9341_size = 1;
void ili9341_charsize(int s)
{
ili9341_size = s;
}
void ili9341_drawchar(uint8_t ch, int x, int y)
{
blit8BitWidthBitmap(x, y, FONT_GET_WIDTH(ch), FONT_GET_HEIGHT, FONT_GET_DATA(ch));

80
spi.h

@ -0,0 +1,80 @@
/*
* Copyright (c) 2019-2020, Dmitry Slepynin (DiSlord) dislordlive@gmail.com
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
//*****************************************************************************
//********************************** SPI1 bus *********************************
//*****************************************************************************
// STM32 SPI transfer mode:
// in 8 bit mode:
// if you write *(uint8_t*)(&SPI1->DR) = (uint8_t) data, then data send as << data
// if you write *(uint16_t*)(&SPI1->DR) =(uint16_t) data, then data send as << dataLoByte, after send dataHiByte
// in 16 bit mode
// if you write *(uint16_t*)(&SPI1->DR) =(uint16_t) data, then data send as << data
// SPI init in 8 bit mode
#define SPI_CR2_8BIT 0x0700
#define SPI_CR2_16BIT 0x0F00
//*****************************************************
// SPI bus baud rate (PPL/BR_DIV)
//*****************************************************
#define SPI_BR_DIV2 (0x00000000U)
#define SPI_BR_DIV4 (SPI_CR1_BR_0)
#define SPI_BR_DIV8 (SPI_CR1_BR_1)
#define SPI_BR_DIV16 (SPI_CR1_BR_1|SPI_CR1_BR_0)
#define SPI_BR_DIV32 (SPI_CR1_BR_2)
#define SPI_BR_DIV64 (SPI_CR1_BR_2|SPI_CR1_BR_0)
#define SPI_BR_DIV128 (SPI_CR1_BR_2|SPI_CR1_BR_1)
#define SPI_BR_DIV256 (SPI_CR1_BR_2|SPI_CR1_BR_1|SPI_CR1_BR_0)
#define SPI_BR_SET(spi, br) (spi->CR1 = (spi->CR1& ~(SPI_CR1_BR))|br)
//*****************************************************
// SPI bus activity macros
//*****************************************************
// The RXNE flag is set depending on the FRXTH bit value in the SPIx_CR2 register:
// • If FRXTH is set, RXNE goes high and stays high until the RXFIFO level is greater or equal to 1/4 (8-bit).
#define SPI_RX_IS_NOT_EMPTY(spi) (spi->SR&SPI_SR_RXNE)
#define SPI_RX_IS_EMPTY(spi) (((spi->SR&SPI_SR_RXNE) == 0))
// The TXE flag is set when transmission TXFIFO has enough space to store data to send.
// 0: Tx buffer not empty, bit is cleared automatically when the TXFIFO level becomes greater than 1/2
// 1: Tx buffer empty, flag goes high and stays high until the TXFIFO level is lower or equal to 1/2 of the FIFO depth
#define SPI_TX_IS_NOT_EMPTY(spi) (((spi->SR&(SPI_SR_TXE)) == 0))
#define SPI_TX_IS_EMPTY(spi) (spi->SR&SPI_SR_TXE)
// When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy).
#define SPI_IS_BUSY(spi) (spi->SR & SPI_SR_BSY)
// Tx or Rx in process
#define SPI_IN_TX_RX(spi) ((spi->SR & (SPI_SR_TXE | SPI_SR_RXNE)) == 0 || SPI_IS_BUSY(spi))
//*****************************************************
// SPI send data macros
//*****************************************************
#define SPI_WRITE_8BIT(spi, data) *(__IO uint8_t*)(&spi->DR) = (uint8_t) data
#define SPI_WRITE_16BIT(spi, data) *(__IO uint16_t*)(&spi->DR) = (uint16_t) data
//*****************************************************
// SPI read data macros
//*****************************************************
#define SPI_READ_8BIT(spi) *(__IO uint8_t*)(&spi->DR)
#define SPI_READ_16BIT(spi) *(__IO uint16_t*)(&spi->DR)
Loading…
Cancel
Save

Powered by TurnKey Linux.