You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CubeSatSim/cubesatsim/cubesatsim.ino

2521 lines
76 KiB

/*
* Transmits CubeSat Telemetry at 434.9MHz in AFSK, FSK, or CW format
*
* Copyright Alan B. Johnston
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// This code is an Arduino sketch for the Raspberry Pi Pico
// based on the Raspberry Pi Code
#include "cubesatsim.h"
#include "DumbTXSWS.h"
#include <Wire.h>
#include <Adafruit_INA219.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#include <Arduino-APRS-Library.h>
#include <stdio.h>
#include "pico/stdlib.h" // stdlib
#include "hardware/irq.h" // interrupts
#include "hardware/pwm.h" // pwm
#include "hardware/sync.h" // wait for interrupt
Adafruit_INA219 ina219_1_0x40;
Adafruit_INA219 ina219_1_0x41(0x41);
Adafruit_INA219 ina219_1_0x44(0x44);
Adafruit_INA219 ina219_1_0x45(0x45);
Adafruit_INA219 ina219_2_0x40(0x40);
Adafruit_INA219 ina219_2_0x41(0x41);
Adafruit_INA219 ina219_2_0x44(0x44);
Adafruit_INA219 ina219_2_0x45(0x45);
char payload_str[100];
void setup() {
// set all Pico GPIO pins to input
for (int i = 6; i < 29; i++) {
pinMode(i, INPUT);
}
pinMode(LED_BUILTIN, OUTPUT); // Set LED pin to output
pinMode(MAIN_LED_GREEN, OUTPUT); // Set LED pin to output
pinMode(MAIN_LED_BLUE, OUTPUT); // Set LED pin to output
digitalWrite(MAIN_LED_GREEN, HIGH);
digitalWrite(MAIN_LED_BLUE, LOW);
pinMode(MAIN_PB_PIN, INPUT_PULLUP); // Read Main Board push button
mode = FSK; // AFSK;
Serial.begin(9600);
// delay(12000);
sleep(10.0);
#ifndef ARDUINO_ARCH_RP2040
Serial.println("This code is written for the Raspberry Pi Pico hardware.");
#endif
// detect Pi Zero using 3.3V
// if Pi is present, run Payload OK software
// otherwise, run CubeSatSim Pico code
Serial.println("\n\nCubeSatSim Pico v0.1 starting...\n\n");
sim_mode = FALSE;
if (sim_mode)
config_simulated_telem();
else
// configure ina219s
start_ina219();
config_telem();
// configure STEM Payload sensors
start_payload();
// program Transceiver board
config_radio();
sampleTime = (unsigned int) millis();
ready = TRUE; // flag for core1 to start looping
Serial.print("s");
Serial.print(" ");
Serial.println(millis());
}
void loop() {
int startSleep = millis();
loop_count++;
if (sim_mode == TRUE)
generate_simulated_telem();
else
// query INA219 sensors and Payload sensors
read_ina219();
read_payload();
// encode as digits (APRS or CW mode) or binary (DUV FSK)
if ((mode == BPSK) || (mode == FSK))
{
get_tlm_fox();
}
else if (mode == AFSK)
send_packet();
while ((millis() - sampleTime) < ((unsigned int)samplePeriod)) // - 250)) // was 250 100
sleep(0.1); // 25); // 0.5); // 25);
sampleTime = (unsigned int) millis();
// delay(2000);
// test_radio();
if (mode == FSK) {
digitalWrite(LED_BUILTIN, LOW);
digitalWrite(MAIN_LED_BLUE, LOW);
// delay(3000);
sleep(0.5); // 2.845); // 3.0);
digitalWrite(LED_BUILTIN, HIGH);
digitalWrite(MAIN_LED_BLUE, HIGH);
}
// send telemetry
// delay some time
Serial.print("\nLoop time: ");
Serial.println(millis() - startSleep);
}
void send_packet() {
// encode telemetry
get_tlm_ao7();
// digitalWrite(LED_BUILTIN, LOW);
Serial.println("Sending APRS packet!");
transmit_on();
send_packet(_FIXPOS_STATUS);
transmit_off();
// delay(1000);
// digitalWrite(LED_BUILTIN, HIGH);
}
void transmit_on() {
digitalWrite(MAIN_LED_BLUE, HIGH);
digitalWrite(PTT_PIN, LOW);
}
void transmit_off() {
digitalWrite(PTT_PIN, HIGH);
digitalWrite(MAIN_LED_BLUE, LOW);
}
void config_telem() {
frameCnt = 1;
Serial.println("v1 Present with UHF BPF\n");
txLed = 2;
txLedOn = HIGH;
txLedOff = LOW;
vB5 = TRUE;
onLed = 27;
onLedOn = HIGH;
onLedOff = LOW;
transmit = TRUE;
if (mode == FSK) {
Serial.println("Configuring for FSK\n");
bitRate = 200;
rsFrames = 1;
payloads = 1;
rsFrameLen = 64;
headerLen = 6;
dataLen = 58;
syncBits = 10;
syncWord = 0b0011111010;
parityLen = 32;
amplitude = 32767 / 3;
samples = S_RATE / bitRate;
Serial.println(samples);
bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples);
Serial.println(bufLen);
samplePeriod = (int) (((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen)))) / (float) bitRate) * 1000 - 500);
sleepTime = 0.1;
Serial.println(samplePeriod);
frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms
Serial.println(frameTime);
// printf("\n FSK Mode, %d bits per frame, %d bits per second, %d ms per frame, %d ms sample period\n",
// bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod);
} else if (mode == BPSK) {
Serial.println("Configuring for BPSK\n");
bitRate = 1200;
rsFrames = 3;
payloads = 6;
rsFrameLen = 159;
headerLen = 8;
dataLen = 78;
syncBits = 31;
syncWord = 0b1000111110011010010000101011101;
parityLen = 32;
amplitude = 32767;
samples = S_RATE / bitRate;
bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples);
samplePeriod = ((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))))/(float)bitRate) * 1000 - 1800;
// samplePeriod = 3000;
// sleepTime = 3.0;
//samplePeriod = 2200; // reduce dut to python and sensor querying delays
sleepTime = 2.2f;
frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms
// printf("\n BPSK Mode, bufLen: %d, %d bits per frame, %d bits per second, %d ms per frame %d ms sample period\n",
// bufLen, bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod);
sin_samples = S_RATE/freq_Hz;
// printf("Sin map: ");
for (int j = 0; j < sin_samples; j++) {
sin_map[j] = (short int)(amplitude * sin((float)(2 * M_PI * j / sin_samples)));
// printf(" %d", sin_map[j]);
// }
// printf("\n");
}
} else if (mode == AFSK) {
Serial.println("Configuring for AFSK\n");
set_pin(AUDIO_OUT_PIN);
char callsign[] = "W3ZM";
set_callsign(callsign);
char lat_default[] = "0610.55S";
char lon_default[] = "10649.62E";
char sym_ovl_default = 'H';
char sym_tab_default = 'a';
char icon[] = "Ha";
set_lat_lon_icon(lat_default, lon_default, icon);
samplePeriod = 5000;
}
firstTime = ON;
}
void get_tlm_ao7() {
// for (int l = 0; l < frameCnt; l++) {
// fflush(stdout);
// fflush(stderr);
int tlm[7][5];
memset(tlm, 0, sizeof tlm);
tlm[1][A] = (int)(voltage[mapping[BUS]] / 15.0 + 0.5) % 100; // Current of 5V supply to Pi
tlm[1][B] = (int)(99.5 - current[mapping[PLUS_X]] / 10.0) % 100; // +X current [4]
tlm[1][C] = (int)(99.5 - current[mapping[MINUS_X]] / 10.0) % 100; // X- current [10]
tlm[1][D] = (int)(99.5 - current[mapping[PLUS_Y]] / 10.0) % 100; // +Y current [7]
tlm[2][A] = (int)(99.5 - current[mapping[MINUS_Y]] / 10.0) % 100; // -Y current [10]
tlm[2][B] = (int)(99.5 - current[mapping[PLUS_Z]] / 10.0) % 100; // +Z current [10] // was 70/2m transponder power, AO-7 didn't have a Z panel
tlm[2][C] = (int)(99.5 - current[mapping[MINUS_Z]] / 10.0) % 100; // -Z current (was timestamp)
tlm[2][D] = (int)(50.5 + current[mapping[BAT]] / 10.0) % 100; // NiMH Battery current
// tlm[3][A] = abs((int)((voltage[mapping[BAT]] * 10.0) - 65.5) % 100);
if (voltage[mapping[BAT]] > 4.6)
tlm[3][A] = (int)((voltage[mapping[BAT]] * 10.0) - 65.5) % 100; // 7.0 - 10.0 V for old 9V battery
else
tlm[3][A] = (int)((voltage[mapping[BAT]] * 10.0) + 44.5) % 100; // 0 - 4.5 V for new 3 cell battery
tlm[3][B] = (int)(voltage[mapping[BUS]] * 10.0) % 100; // 5V supply to Pi
// tlm[4][A] = (int)((95.8 - other[IHU_TEMP]) / 1.48 + 0.5) % 100; // was [B] but didn't display in online TLM spreadsheet
tlm[4][A] = (int)((95.8 - analogReadTemp()) / 1.48 + 0.5) % 100; // was [B] but didn't display in online TLM spreadsheet
tlm[6][B] = 0;
tlm[6][D] = 49 + rand() % 3;
/*
// Display tlm
int k, j;
Serial.print("TLM: ");
for (k = 1; k < 7; k++) {
for (j = 1; j < 5; j++) {
Serial.print(tlm[k][j]);
Serial.print(" ");
}
}
Serial.println(" ");
*/
char str[1000];
char tlm_str[1000];
int channel;
char header_str[] = "hi hi ";
strcpy(str, header_str);
for (channel = 1; channel < 7; channel++) {
sprintf(tlm_str, "%d%d%d %d%d%d %d%d%d %d%d%d ",
channel, upper_digit(tlm[channel][1]), lower_digit(tlm[channel][1]),
channel, upper_digit(tlm[channel][2]), lower_digit(tlm[channel][2]),
channel, upper_digit(tlm[channel][3]), lower_digit(tlm[channel][3]),
channel, upper_digit(tlm[channel][4]), lower_digit(tlm[channel][4]));
// printf("%s",tlm_str);
strcat(str, tlm_str);
}
print_string(str);
strcat(str, payload_str);
print_string(str);
// Serial.println(strlen(str));
set_status(str);
// }
}
void generate_simulated_telem() {
double time = ((long int)millis() - time_start) / 1000.0;
if ((time - eclipse_time) > period) {
eclipse = (eclipse == 1) ? 0 : 1;
eclipse_time = time;
Serial.println("\n\nSwitching eclipse mode! \n\n");
}
double Xi = eclipse * amps_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-2, 2);
double Yi = eclipse * amps_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-2, 2);
double Zi = eclipse * amps_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-2, 2);
double Xv = eclipse * volts_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-0.2, 0.2);
double Yv = eclipse * volts_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-0.2, 0.2);
double Zv = 2.0 * eclipse * volts_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-0.2, 0.2);
// printf("Yi: %f Zi: %f %f %f Zv: %f \n", Yi, Zi, amps_max[2], angle[2], Zv);
current[mapping[PLUS_X]] = (Xi >= 0) ? Xi : 0;
current[mapping[MINUS_X]] = (Xi >= 0) ? 0 : ((-1.0f) * Xi);
current[mapping[PLUS_Y]] = (Yi >= 0) ? Yi : 0;
current[mapping[MINUS_Y]] = (Yi >= 0) ? 0 : ((-1.0f) * Yi);
current[mapping[PLUS_Z]] = (Zi >= 0) ? Zi : 0;
current[mapping[MINUS_Z]] = (Zi >= 0) ? 0 : ((-1.0f) * Zi);
voltage[mapping[PLUS_X]] = (Xv >= 1) ? Xv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_X]] = (Xv <= -1) ? ((-1.0f) * Xv) : rnd_float(0.9, 1.1);
voltage[mapping[PLUS_Y]] = (Yv >= 1) ? Yv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_Y]] = (Yv <= -1) ? ((-1.0f) * Yv) : rnd_float(0.9, 1.1);
voltage[mapping[PLUS_Z]] = (Zv >= 1) ? Zv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_Z]] = (Zv <= -1) ? ((-1.0f) * Zv) : rnd_float(0.9, 1.1);
// printf("temp: %f Time: %f Eclipse: %d : %f %f | %f %f | %f %f\n",tempS, time, eclipse, voltage[map[PLUS_X]], voltage[map[MINUS_X]], voltage[map[PLUS_Y]], voltage[map[MINUS_Y]], current[map[PLUS_Z]], current[map[MINUS_Z]]);
tempS += (eclipse > 0) ? ((temp_max - tempS) / 50.0f) : ((temp_min - tempS) / 50.0f);
tempS += +rnd_float(-1.0, 1.0);
// IHUcpuTemp = (int)((tempS + rnd_float(-1.0, 1.0)) * 10 + 0.5);
other[IHU_TEMP] = tempS;
voltage[mapping[BUS]] = rnd_float(5.0, 5.005);
current[mapping[BUS]] = rnd_float(158, 171);
// float charging = current[map[PLUS_X]] + current[map[MINUS_X]] + current[map[PLUS_Y]] + current[map[MINUS_Y]] + current[map[PLUS_Z]] + current[map[MINUS_Z]];
float charging = eclipse * (fabs(amps_max[0] * 0.707) + fabs(amps_max[1] * 0.707) + rnd_float(-4.0, 4.0));
current[mapping[BAT]] = ((current[mapping[BUS]] * voltage[mapping[BUS]]) / batt) - charging;
// printf("charging: %f bat curr: %f bus curr: %f bat volt: %f bus volt: %f \n",charging, current[map[BAT]], current[map[BUS]], batt, voltage[map[BUS]]);
batt -= (batt > 3.5) ? current[mapping[BAT]] / 30000 : current[mapping[BAT]] / 3000;
if (batt < 3.0) {
batt = 3.0;
SafeMode = 1;
printf("Safe Mode!\n");
} else
SafeMode= 0;
if (batt > 4.5)
batt = 4.5;
voltage[mapping[BAT]] = batt + rnd_float(-0.01, 0.01);
// end of simulated telemetry
}
void config_simulated_telem()
{
sim_mode = TRUE;
Serial.println("Simulated telemetry mode!\n");
srand((unsigned int)time(0));
axis[0] = rnd_float(-0.2, 0.2);
if (axis[0] == 0)
axis[0] = rnd_float(-0.2, 0.2);
axis[1] = rnd_float(-0.2, 0.2);
axis[2] = (rnd_float(-0.2, 0.2) > 0) ? 1.0 : -1.0;
angle[0] = (float) atan(axis[1] / axis[2]);
angle[1] = (float) atan(axis[2] / axis[0]);
angle[2] = (float) atan(axis[1] / axis[0]);
volts_max[0] = rnd_float(4.5, 5.5) * (float) sin(angle[1]);
volts_max[1] = rnd_float(4.5, 5.5) * (float) cos(angle[0]);
volts_max[2] = rnd_float(4.5, 5.5) * (float) cos(angle[1] - angle[0]);
float amps_avg = rnd_float(150, 300);
amps_max[0] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) sin(angle[1]);
amps_max[1] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[0]);
amps_max[2] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[1] - angle[0]);
batt = rnd_float(3.8, 4.3);
speed = rnd_float(1.0, 2.5);
eclipse = (rnd_float(-1, +4) > 0) ? 1.0 : 0.0;
period = rnd_float(150, 300);
tempS = rnd_float(20, 55);
temp_max = rnd_float(50, 70);
temp_min = rnd_float(10, 20);
// #ifdef DEBUG_LOGGING
// for (int i = 0; i < 3; i++)
// printf("axis: %f angle: %f v: %f i: %f \n", axis[i], angle[i], volts_max[i], amps_max[i]);
// printf("batt: %f speed: %f eclipse_time: %f eclipse: %f period: %f temp: %f max: %f min: %f\n", batt, speed, eclipse_time, eclipse, period, tempS, temp_max, temp_min);
// #endif
time_start = (long int) millis();
eclipse_time = (long int)(millis() / 1000.0);
if (eclipse == 0.0)
eclipse_time -= period / 2; // if starting in eclipse, shorten interval
// }
tx_freq_hz -= tx_channel * 50000;
}
void get_tlm_fox() {
// Serial.println("get_tlm_fox");
int i;
long int sync = syncWord;
smaller = (int) (S_RATE / (2 * freq_Hz));
short int b[dataLen];
short int b_max[dataLen];
short int b_min[dataLen];
memset(b, 0, sizeof(b));
memset(b_max, 0, sizeof(b_max));
memset(b_min, 0, sizeof(b_min));
short int h[headerLen];
memset(h, 0, sizeof(h));
memset(buffer, 0xa5, sizeof(buffer));
short int rs_frame[rsFrames][223];
unsigned char parities[rsFrames][parityLen], inputByte;
int id, frm_type = 0x01, NormalModeFailure = 0, groundCommandCount = 0;
int PayloadFailure1 = 0, PayloadFailure2 = 0;
int PSUVoltage = 0, PSUCurrent = 0, Resets = 0, Rssi = 2048;
int batt_a_v = 0, batt_b_v = 0, batt_c_v = 0, battCurr = 0;
int posXv = 0, negXv = 0, posYv = 0, negYv = 0, posZv = 0, negZv = 0;
int posXi = 0, negXi = 0, posYi = 0, negYi = 0, posZi = 0, negZi = 0;
int head_offset = 0;
short int buffer_test[bufLen];
int buffSize;
buffSize = (int) sizeof(buffer_test);
for (int n = 0; n < 17; n++)
sensor[n] = 1.0;
if (mode == FSK)
id = 7;
else
id = 0; // 99 in h[6]
// Serial.println("About to do frame loop");
// for (int frames = 0; frames < FRAME_CNT; frames++)
for (int frames = 0; frames < frameCnt; frames++) {
// Serial.println("Frame loop");
// if (mode == FSK)
{ // just moved
for (int count1 = 0; count1 < 8; count1++) {
if (voltage[count1] < voltage_min[count1])
voltage_min[count1] = voltage[count1];
if (current[count1] < current_min[count1])
current_min[count1] = current[count1];
if (voltage[count1] > voltage_max[count1])
voltage_max[count1] = voltage[count1];
if (current[count1] > current_max[count1])
current_max[count1] = current[count1];
// printf("Vmin %4.2f Vmax %4.2f Imin %4.2f Imax %4.2f \n", voltage_min[count1], voltage_max[count1], current_min[count1], current_max[count1]);
// Serial.print(voltage_min[count1]);
// Serial.print(" ");
}
// Serial.println(" ");
for (int count1 = 0; count1 < 3; count1++) {
if (other[count1] < other_min[count1])
other_min[count1] = other[count1];
if (other[count1] > other_max[count1])
other_max[count1] = other[count1];
// Serial.print(other_min[count1]);
// Serial.print(" ");
}
// Serial.println(" ");
if (mode == FSK)
{
// Serial.println("Starting");
if (loop_count % 32 == 0) { // was 8 /// was loop now loop_count
Serial.println("Sending MIN frame");
frm_type = 0x03;
for (int count1 = 0; count1 < 17; count1++) {
if (count1 < 3)
other[count1] = other_min[count1];
if (count1 < 8) {
voltage[count1] = voltage_min[count1];
current[count1] = current_min[count1];
}
if (sensor_min[count1] != 1000.0) // make sure values are valid
sensor[count1] = sensor_min[count1];
}
}
if ((loop_count + 16) % 32 == 0) { // was 8
Serial.println("Sending MAX frame");
frm_type = 0x02;
for (int count1 = 0; count1 < 17; count1++) {
if (count1 < 3)
other[count1] = other_max[count1];
if (count1 < 8) {
voltage[count1] = voltage_max[count1];
current[count1] = current_max[count1];
}
if (sensor_max[count1] != -1000.0) // make sure values are valid
sensor[count1] = sensor_max[count1];
}
}
// Serial.println("Here");
}
else
frm_type = 0x02; // BPSK always send MAX MIN frame
}
// Serial.println("Continuing");
sensor_payload[0] = 0; // clear for next payload
// if (mode == FSK) { // remove this
// }
memset(rs_frame, 0, sizeof(rs_frame));
memset(parities, 0, sizeof(parities));
// Serial.println("After memset");
h[0] = (short int) ((h[0] & 0xf8) | (id & 0x07)); // 3 bits
// Serial.println("After h[0]");
if (uptime != 0) // if uptime is 0, leave reset count at 0
{
// Serial.println("After uptime test");
h[0] = (short int) ((h[0] & 0x07) | ((reset_count & 0x1f) << 3));
h[1] = (short int) ((reset_count >> 5) & 0xff);
h[2] = (short int) ((h[2] & 0xf8) | ((reset_count >> 13) & 0x07));
}
h[2] = (short int) ((h[2] & 0x0e) | ((uptime & 0x1f) << 3));
h[3] = (short int) ((uptime >> 5) & 0xff);
h[4] = (short int) ((uptime >> 13) & 0xff);
h[5] = (short int) ((h[5] & 0xf0) | ((uptime >> 21) & 0x0f));
h[5] = (short int) ((h[5] & 0x0f) | (frm_type << 4));
// Serial.println("h[5]");
if (mode == BPSK)
h[6] = 99;
posXi = (int)(current[mapping[PLUS_X]] + 0.5) + 2048;
posYi = (int)(current[mapping[PLUS_Y]] + 0.5) + 2048;
posZi = (int)(current[mapping[PLUS_Z]] + 0.5) + 2048;
negXi = (int)(current[mapping[MINUS_X]] + 0.5) + 2048;
negYi = (int)(current[mapping[MINUS_Y]] + 0.5) + 2048;
negZi = (int)(current[mapping[MINUS_Z]] + 0.5) + 2048;
posXv = (int)(voltage[mapping[PLUS_X]] * 100);
posYv = (int)(voltage[mapping[PLUS_Y]] * 100);
posZv = (int)(voltage[mapping[PLUS_Z]] * 100);
negXv = (int)(voltage[mapping[MINUS_X]] * 100);
negYv = (int)(voltage[mapping[MINUS_Y]] * 100);
negZv = (int)(voltage[mapping[MINUS_Z]] * 100);
batt_c_v = (int)(voltage[mapping[BAT]] * 100);
battCurr = (int)(current[mapping[BAT]] + 0.5) + 2048;
PSUVoltage = (int)(voltage[mapping[BUS]] * 100);
PSUCurrent = (int)(current[mapping[BUS]] + 0.5) + 2048;
// if (payload == ON)
STEMBoardFailure = 0;
// read payload sensor if available
// Serial.println("Before encoding");
encodeA(b, 0 + head_offset, batt_a_v);
// Serial.println("After encoding");
encodeB(b, 1 + head_offset, batt_b_v);
encodeA(b, 3 + head_offset, batt_c_v);
encodeB(b, 4 + head_offset, (int)(sensor[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b, 6 + head_offset, (int)(sensor[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b, 7 + head_offset, (int)(sensor[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b, 9 + head_offset, battCurr);
encodeB(b, 10 + head_offset, (int)(sensor[TEMP] * 10 + 0.5)); // Temp
// Serial.println("A");
if (mode == FSK) {
encodeA(b, 12 + head_offset, posXv);
encodeB(b, 13 + head_offset, negXv);
encodeA(b, 15 + head_offset, posYv);
encodeB(b, 16 + head_offset, negYv);
encodeA(b, 18 + head_offset, posZv);
encodeB(b, 19 + head_offset, negZv);
encodeA(b, 21 + head_offset, posXi);
encodeB(b, 22 + head_offset, negXi);
encodeA(b, 24 + head_offset, posYi);
encodeB(b, 25 + head_offset, negYi);
encodeA(b, 27 + head_offset, posZi);
encodeB(b, 28 + head_offset, negZi);
// Serial.println("B");
} else // BPSK
{
encodeA(b, 12 + head_offset, posXv);
encodeB(b, 13 + head_offset, posYv);
encodeA(b, 15 + head_offset, posZv);
encodeB(b, 16 + head_offset, negXv);
encodeA(b, 18 + head_offset, negYv);
encodeB(b, 19 + head_offset, negZv);
encodeA(b, 21 + head_offset, posXi);
encodeB(b, 22 + head_offset, posYi);
encodeA(b, 24 + head_offset, posZi);
encodeB(b, 25 + head_offset, negXi);
encodeA(b, 27 + head_offset, negYi);
encodeB(b, 28 + head_offset, negZi);
encodeA(b_max, 12 + head_offset, (int)(voltage_max[mapping[PLUS_X]] * 100));
encodeB(b_max, 13 + head_offset, (int)(voltage_max[mapping[PLUS_Y]] * 100));
encodeA(b_max, 15 + head_offset, (int)(voltage_max[mapping[PLUS_Z]] * 100));
encodeB(b_max, 16 + head_offset, (int)(voltage_max[mapping[MINUS_X]] * 100));
encodeA(b_max, 18 + head_offset, (int)(voltage_max[mapping[MINUS_Y]] * 100));
encodeB(b_max, 19 + head_offset, (int)(voltage_max[mapping[MINUS_Z]] * 100));
encodeA(b_max, 21 + head_offset, (int)(current_max[mapping[PLUS_X]] + 0.5) + 2048);
encodeB(b_max, 22 + head_offset, (int)(current_max[mapping[PLUS_Y]] + 0.5) + 2048);
encodeA(b_max, 24 + head_offset, (int)(current_max[mapping[PLUS_Z]] + 0.5) + 2048);
encodeB(b_max, 25 + head_offset, (int)(current_max[mapping[MINUS_X]] + 0.5) + 2048);
encodeA(b_max, 27 + head_offset, (int)(current_max[mapping[MINUS_Y]] + 0.5) + 2048);
encodeB(b_max, 28 + head_offset, (int)(current_max[mapping[MINUS_Z]] + 0.5) + 2048);
encodeA(b_max, 9 + head_offset, (int)(current_max[mapping[BAT]] + 0.5) + 2048);
encodeA(b_max, 3 + head_offset, (int)(voltage_max[mapping[BAT]] * 100));
encodeA(b_max, 30 + head_offset, (int)(voltage_max[mapping[BUS]] * 100));
encodeB(b_max, 46 + head_offset, (int)(current_max[mapping[BUS]] + 0.5) + 2048);
encodeB(b_max, 37 + head_offset, (int)(other_max[RSSI] + 0.5) + 2048);
encodeA(b_max, 39 + head_offset, (int)(other_max[IHU_TEMP] * 10 + 0.5));
encodeB(b_max, 31 + head_offset, ((int)(other_max[SPIN] * 10)) + 2048);
if (sensor_min[0] != 1000.0) // make sure values are valid
{
encodeB(b_max, 4 + head_offset, (int)(sensor_max[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b_max, 6 + head_offset, (int)(sensor_max[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b_max, 7 + head_offset, (int)(sensor_max[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b_max, 33 + head_offset, (int)(sensor_max[PRES] + 0.5)); // Pressure
encodeB(b_max, 34 + head_offset, (int)(sensor_max[ALT] * 10.0 + 0.5)); // Altitude
encodeB(b_max, 40 + head_offset, (int)(sensor_max[GYRO_X] + 0.5) + 2048);
encodeA(b_max, 42 + head_offset, (int)(sensor_max[GYRO_Y] + 0.5) + 2048);
encodeB(b_max, 43 + head_offset, (int)(sensor_max[GYRO_Z] + 0.5) + 2048);
encodeA(b_max, 48 + head_offset, (int)(sensor_max[XS1] * 10 + 0.5) + 2048);
encodeB(b_max, 49 + head_offset, (int)(sensor_max[XS2] * 10 + 0.5) + 2048);
encodeB(b_max, 10 + head_offset, (int)(sensor_max[TEMP] * 10 + 0.5));
encodeA(b_max, 45 + head_offset, (int)(sensor_max[HUMI] * 10 + 0.5));
}
else
{
encodeB(b_max, 4 + head_offset, 2048); // 0
encodeA(b_max, 6 + head_offset, 2048); // 0
encodeB(b_max, 7 + head_offset, 2048); // 0
encodeB(b_max, 40 + head_offset, 2048);
encodeA(b_max, 42 + head_offset, 2048);
encodeB(b_max, 43 + head_offset, 2048);
encodeA(b_max, 48 + head_offset, 2048);
encodeB(b_max, 49 + head_offset, 2048);
}
encodeA(b_min, 12 + head_offset, (int)(voltage_min[mapping[PLUS_X]] * 100));
encodeB(b_min, 13 + head_offset, (int)(voltage_min[mapping[PLUS_Y]] * 100));
encodeA(b_min, 15 + head_offset, (int)(voltage_min[mapping[PLUS_Z]] * 100));
encodeB(b_min, 16 + head_offset, (int)(voltage_min[mapping[MINUS_X]] * 100));
encodeA(b_min, 18 + head_offset, (int)(voltage_min[mapping[MINUS_Y]] * 100));
encodeB(b_min, 19 + head_offset, (int)(voltage_min[mapping[MINUS_Z]] * 100));
encodeA(b_min, 21 + head_offset, (int)(current_min[mapping[PLUS_X]] + 0.5) + 2048);
encodeB(b_min, 22 + head_offset, (int)(current_min[mapping[PLUS_Y]] + 0.5) + 2048);
encodeA(b_min, 24 + head_offset, (int)(current_min[mapping[PLUS_Z]] + 0.5) + 2048);
encodeB(b_min, 25 + head_offset, (int)(current_min[mapping[MINUS_X]] + 0.5) + 2048);
encodeA(b_min, 27 + head_offset, (int)(current_min[mapping[MINUS_Y]] + 0.5) + 2048);
encodeB(b_min, 28 + head_offset, (int)(current_min[mapping[MINUS_Z]] + 0.5) + 2048);
encodeA(b_min, 9 + head_offset, (int)(current_min[mapping[BAT]] + 0.5) + 2048);
encodeA(b_min, 3 + head_offset, (int)(voltage_min[mapping[BAT]] * 100));
encodeA(b_min, 30 + head_offset, (int)(voltage_min[mapping[BUS]] * 100));
encodeB(b_min, 46 + head_offset, (int)(current_min[mapping[BUS]] + 0.5) + 2048);
encodeB(b_min, 31 + head_offset, ((int)(other_min[SPIN] * 10)) + 2048);
encodeB(b_min, 37 + head_offset, (int)(other_min[RSSI] + 0.5) + 2048);
encodeA(b_min, 39 + head_offset, (int)(other_min[IHU_TEMP] * 10 + 0.5));
if (sensor_min[0] != 1000.0) // make sure values are valid
{
encodeB(b_min, 4 + head_offset, (int)(sensor_min[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b_min, 6 + head_offset, (int)(sensor_min[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b_min, 7 + head_offset, (int)(sensor_min[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b_min, 33 + head_offset, (int)(sensor_min[PRES] + 0.5)); // Pressure
encodeB(b_min, 34 + head_offset, (int)(sensor_min[ALT] * 10.0 + 0.5)); // Altitude
encodeB(b_min, 40 + head_offset, (int)(sensor_min[GYRO_X] + 0.5) + 2048);
encodeA(b_min, 42 + head_offset, (int)(sensor_min[GYRO_Y] + 0.5) + 2048);
encodeB(b_min, 43 + head_offset, (int)(sensor_min[GYRO_Z] + 0.5) + 2048);
encodeA(b_min, 48 + head_offset, (int)(sensor_min[XS1] * 10 + 0.5) + 2048);
encodeB(b_min, 49 + head_offset, (int)(sensor_min[XS2] * 10 + 0.5) + 2048);
encodeB(b_min, 10 + head_offset, (int)(sensor_min[TEMP] * 10 + 0.5));
encodeA(b_min, 45 + head_offset, (int)(sensor_min[HUMI] * 10 + 0.5));
}
else
{
encodeB(b_min, 4 + head_offset, 2048); // 0
encodeA(b_min, 6 + head_offset, 2048); // 0
encodeB(b_min, 7 + head_offset, 2048); // 0
encodeB(b_min, 40 + head_offset, 2048);
encodeA(b_min, 42 + head_offset, 2048);
encodeB(b_min, 43 + head_offset, 2048);
encodeA(b_min, 48 + head_offset, 2048);
encodeB(b_min, 49 + head_offset, 2048);
}
}
// Serial.println("C");
encodeA(b, 30 + head_offset, PSUVoltage);
encodeB(b, 31 + head_offset, ((int)(other[SPIN] * 10)) + 2048);
encodeA(b, 33 + head_offset, (int)(sensor[PRES] + 0.5)); // Pressure
encodeB(b, 34 + head_offset, (int)(sensor[ALT] * 10.0 + 0.5)); // Altitude
encodeA(b, 36 + head_offset, Resets);
encodeB(b, 37 + head_offset, (int)(other[RSSI] + 0.5) + 2048);
encodeA(b, 39 + head_offset, (int)(other[IHU_TEMP] * 10 + 0.5));
encodeB(b, 40 + head_offset, (int)(sensor[GYRO_X] + 0.5) + 2048);
encodeA(b, 42 + head_offset, (int)(sensor[GYRO_Y] + 0.5) + 2048);
encodeB(b, 43 + head_offset, (int)(sensor[GYRO_Z] + 0.5) + 2048);
encodeA(b, 45 + head_offset, (int)(sensor[HUMI] * 10 + 0.5)); // in place of sensor1
encodeB(b, 46 + head_offset, PSUCurrent);
encodeA(b, 48 + head_offset, (int)(sensor[XS1] * 10 + 0.5) + 2048);
encodeB(b, 49 + head_offset, (int)(sensor[XS2] * 10 + 0.5) + 2048);
// Serial.println("D");
int status = STEMBoardFailure + SafeMode * 2 + sim_mode * 4 + PayloadFailure1 * 8 +
(i2c_bus0 == OFF) * 16 + (i2c_bus1 == OFF) * 32 + (i2c_bus3 == OFF) * 64 + (camera == OFF) * 128 + groundCommandCount * 256;
encodeA(b, 51 + head_offset, status);
encodeB(b, 52 + head_offset, rxAntennaDeployed + txAntennaDeployed * 2);
// Serial.println("E");
if (txAntennaDeployed == 0) {
txAntennaDeployed = 1;
// Serial.println("TX Antenna Deployed!");
}
// Serial.println("F");
if (mode == BPSK) { // wod field experiments
unsigned long val = 0xffff;
encodeA(b, 64 + head_offset, 0xff & val);
encodeA(b, 65 + head_offset, val >> 8);
encodeA(b, 63 + head_offset, 0x00);
encodeA(b, 62 + head_offset, 0x01);
encodeB(b, 74 + head_offset, 0xfff);
}
// Serial.println("Finished encoding");
short int data10[headerLen + rsFrames * (rsFrameLen + parityLen)];
short int data8[headerLen + rsFrames * (rsFrameLen + parityLen)];
int ctr1 = 0;
int ctr3 = 0;
for (i = 0; i < rsFrameLen; i++) {
for (int j = 0; j < rsFrames; j++) {
if (!((i == (rsFrameLen - 1)) && (j == 2))) // skip last one for BPSK
{
if (ctr1 < headerLen) {
rs_frame[j][i] = h[ctr1];
update_rs(parities[j], h[ctr1]);
// printf("header %d rs_frame[%d][%d] = %x \n", ctr1, j, i, h[ctr1]);
data8[ctr1++] = rs_frame[j][i];
// printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
} else {
if (mode == FSK)
{
rs_frame[j][i] = b[ctr3 % dataLen];
update_rs(parities[j], b[ctr3 % dataLen]);
} else // BPSK
if ((int)(ctr3/dataLen) == 3)
{
rs_frame[j][i] = b_max[ctr3 % dataLen];
update_rs(parities[j], b_max[ctr3 % dataLen]);
}
else if ((int)(ctr3/dataLen) == 4)
{
rs_frame[j][i] = b_min[ctr3 % dataLen];
update_rs(parities[j], b_min[ctr3 % dataLen]);
}
else
{
rs_frame[j][i] = b[ctr3 % dataLen];
update_rs(parities[j], b[ctr3 % dataLen]);
}
{
}
// printf("%d rs_frame[%d][%d] = %x %d \n",
// ctr1, j, i, b[ctr3 % DATA_LEN], ctr3 % DATA_LEN);
data8[ctr1++] = rs_frame[j][i];
// printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
ctr3++;
}
}
}
}
///#ifdef DEBUG_LOGGING
// printf("\nAt end of data8 write, %d ctr1 values written\n\n", ctr1);
/*
printf("Parities ");
for (int m = 0; m < parityLen; m++) {
printf("%d ", parities[0][m]);
}
printf("\n");
*/
/// #endif
int ctr2 = 0;
memset(data10, 0, sizeof(data10));
for (i = 0; i < dataLen * payloads + headerLen; i++) // 476 for BPSK
{
data10[ctr2] = (Encode_8b10b[rd][((int) data8[ctr2])] & 0x3ff);
nrd = (Encode_8b10b[rd][((int) data8[ctr2])] >> 10) & 1;
// printf ("data10[%d] = encoded data8[%d] = %x \n",
// ctr2, ctr2, data10[ctr2]);
rd = nrd; // ^ nrd;
ctr2++;
}
// {
for (i = 0; i < parityLen; i++) {
for (int j = 0; j < rsFrames; j++) {
if ((uptime != 0) || (i != 0)) // don't correctly update parties if uptime is 0 so the frame will fail the FEC check and be discarded
data10[ctr2++] = (Encode_8b10b[rd][((int) parities[j][i])] & 0x3ff);
nrd = (Encode_8b10b[rd][((int) parities[j][i])] >> 10) & 1;
// printf ("data10[%d] = encoded parities[%d][%d] = %x \n",
// ctr2 - 1, j, i, data10[ctr2 - 1]);
rd = nrd;
}
}
// }
/// #ifdef DEBUG_LOGGING
// printf("\nAt end of data10 write, %d ctr2 values written\n\n", ctr2);
/// #endif
int data;
int val;
//int offset = 0;
/// #ifdef DEBUG_LOGGING
// printf("\nAt start of buffer loop, syncBits %d samples %d ctr %d\n", syncBits, samples, ctr);
/// #endif
for (i = 1; i <= syncBits * samples; i++) {
write_wave(ctr, buffer);
// printf("%d ",ctr);
if ((i % samples) == 0) {
int bit = syncBits - i / samples + 1;
val = sync;
data = val & 1 << (bit - 1);
// printf ("%d i: %d new frame %d sync bit %d = %d \n",
// ctr/SAMPLES, i, frames, bit, (data > 0) );
if (mode == FSK) {
phase = ((data != 0) * 2) - 1;
// printf("Sending a %d\n", phase);
} else {
if (data == 0) {
phase *= -1;
if ((ctr - smaller) > 0) {
for (int j = 1; j <= smaller; j++)
buffer[ctr - j] = buffer[ctr - j] * 0.4;
}
flip_ctr = ctr;
}
}
}
}
/// #ifdef DEBUG_LOGGING
// printf("\n\nValue of ctr after header: %d Buffer Len: %d\n\n", ctr, buffSize);
/// #endif
// Serial.println(10 * (headerLen + dataLen * payloads + rsFrames * parityLen) * samples);
for (i = 1; i <= (10 * (headerLen + dataLen * payloads + rsFrames * parityLen) * samples); i++) // 572
// for (i = 1; i <= ((headerLen + dataLen * payloads + rsFrames * parityLen) * samples); i++) // Not 10 * anymore 572
{
write_wave(ctr, buffer);
if ((i % samples) == 0) {
int symbol = (int)((i - 1) / (samples * 10));
int bit = 10 - (i - symbol * samples * 10) / samples + 1;
val = data10[symbol];
data = val & 1 << (bit - 1);
// printf ("%d i: %d new frame %d data10[%d] = %x bit %d = %d \n",
// ctr/SAMPLES, i, frames, symbol, val, bit, (data > 0) );
// Serial.print(data, BIN); // Debugging print!!!
// Serial.print(" ");
if (mode == FSK) {
phase = ((data != 0) * 2) - 1;
// printf("Sending a %d\n", phase);
} else {
if (data == 0) {
phase *= -1;
if ((ctr - smaller) > 0) {
for (int j = 1; j <= smaller; j++)
buffer[ctr - j] = buffer[ctr - j] * 0.4;
}
flip_ctr = ctr;
}
}
// Serial.println("AA");
}
// Serial.println("BB");
}
// Serial.println("CC");
}
// Serial.println(" ");
// Serial.print("get_fox_tlm eturning with counter: ");
// Serial.println(ctr);
}
void write_wave(int i, short int *buffer)
{
if (mode == FSK)
{
// if ((ctr - flip_ctr) < smaller) // No wave shaping
// buffer[ctr++] = (short int)(0.1 * phase * (ctr - flip_ctr) / smaller);
// else
buffer[ctr++] = (short int)(0.25 * amplitude * phase);
// Serial.print(buffer[ctr - 1]);
// Serial.print(" ");
if (ctr > BUFFER_SIZE) {
ctr = ctr - BUFFER_SIZE;
Serial.print("r");
Serial.print(" ");
Serial.println(millis());
}
}
else
{
if ((ctr - flip_ctr) < smaller)
// buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples] / 2);
else
// buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples]); }
// printf("%d %d \n", i, buffer[ctr - 1]);
}
int encodeA(short int *b, int index, int val) {
// printf("Encoding A\n");
b[index] = val & 0xff;
b[index + 1] = (short int) ((b[index + 1] & 0xf0) | ((val >> 8) & 0x0f));
return 0;
}
int encodeB(short int *b, int index, int val) {
// printf("Encoding B\n");
b[index] = (short int) ((b[index] & 0x0f) | ((val << 4) & 0xf0));
b[index + 1] = (val >> 4 ) & 0xff;
return 0;
}
int twosToInt(int val,int len) { // Convert twos compliment to integer
// from https://www.raspberrypi.org/forums/viewtopic.php?t=55815
if(val & (1 << (len - 1)))
val = val - (1 << len);
return(val);
}
float rnd_float(double min,double max) { // returns 2 decimal point random number
int val = (rand() % ((int)(max*100) - (int)(min*100) + 1)) + (int)(min*100);
float ret = ((float)(val)/100);
return(ret);
}
float toAprsFormat(float input) {
// converts decimal coordinate (latitude or longitude) to APRS DDMM.MM format
int dd = (int) input;
int mm1 = (int)((input - dd) * 60.0);
int mm2 = (int)((input - dd - (float)mm1/60.0) * 60.0 * 60.0);
float output = dd * 100 + mm1 + (float)mm2 * 0.01;
return(output);
}
/*
* TelemEncoding.c
*
Fox-1 telemetry encoder
January 2014 Phil Karn KA9Q
This file has two external functions:
void update_rs(unsigned char parity[32],unsigned char data);
int encode_8b10b(int *state,int data).
update_rs() is the Reed-Solomon encoder. Its first argument is the 32-byte
encoder shift register, the second is the 8-bit data byte being encoded. It updates
the shift register in place and returns void. At the end of each frame, it contains
the parities ready for transmission, starting with parity[0].
Be sure to zero this array before each new frame!
encode_8b10b() is the 8b10b encoder. Its first argument is a pointer to a single integer
with the 1-bit encoder state (the current run disparity, or RD). Initialize it to 0
JUST ONCE at startup (not between frames).
The second argument is the data byte being encoded. It updates the state and returns
an integer containing the 10-bit encoded word, right justified.
Transmit this word from left to right.
The data argument is an int so it can hold the special value -1 to indicate end of frame;
it generates the 8b10b control word K.28.5, which is used as an inter-frame flag.
Some assert() calls are made to verify legality of arguments. These can be turned off in
production code.
sample frame transmission code:
unsigned char data[64]; // Data block to be sent
unsigned char parity[32]; // RS parities
void transmit_word(int); // User provided transmit function: 10 bits of data in bits 9....0
int state,i;
state = 0; // Only once at startup, not between frames
memset(parity,0,sizeof(parity); // Do this before every frame
// Transmit the data, updating the RS encoder
for(i=0;i<64;i++){
update_rs(parity,data[i]);
transmit_word(encode_8b10b(&state,data[i]);
}
// get the RS parities
for(i=0;i<32;i++)
transmit_word(encode_8b10b(&state,parity[i]);
transmit_word(encode_8b10b(&state,-1); // Transmit end-of-frame flag
*/
#include <string.h>
//#include "Fox.h"
//#include "TelemEncoding.h"
#include <assert.h>
#include <stdio.h>
#ifndef NULL
#define NULL ((void *)0)
#endif
#define NN (0xff) // Frame size in symbols
#define A0 (NN) // special value for log(0)
int Encode_8b10b[][256] = {
// RD = -1 cases
{
/* 00 */ 0x274,
/* 01 */ 0x1d4,
/* 02 */ 0x2d4,
/* 03 */ 0x71b,
/* 04 */ 0x354,
/* 05 */ 0x69b,
/* 06 */ 0x59b,
/* 07 */ 0x78b,
/* 08 */ 0x394,
/* 09 */ 0x65b,
/* 0a */ 0x55b,
/* 0b */ 0x74b,
/* 0c */ 0x4db,
/* 0d */ 0x6cb,
/* 0e */ 0x5cb,
/* 0f */ 0x174,
/* 10 */ 0x1b4,
/* 11 */ 0x63b,
/* 12 */ 0x53b,
/* 13 */ 0x72b,
/* 14 */ 0x4bb,
/* 15 */ 0x6ab,
/* 16 */ 0x5ab,
/* 17 */ 0x3a4,
/* 18 */ 0x334,
/* 19 */ 0x66b,
/* 1a */ 0x56b,
/* 1b */ 0x364,
/* 1c */ 0x4eb,
/* 1d */ 0x2e4,
/* 1e */ 0x1e4,
/* 1f */ 0x2b4,
/* 20 */ 0x679,
/* 21 */ 0x5d9,
/* 22 */ 0x6d9,
/* 23 */ 0x319,
/* 24 */ 0x759,
/* 25 */ 0x299,
/* 26 */ 0x199,
/* 27 */ 0x389,
/* 28 */ 0x799,
/* 29 */ 0x259,
/* 2a */ 0x159,
/* 2b */ 0x349,
/* 2c */ 0x0d9,
/* 2d */ 0x2c9,
/* 2e */ 0x1c9,
/* 2f */ 0x579,
/* 30 */ 0x5b9,
/* 31 */ 0x239,
/* 32 */ 0x139,
/* 33 */ 0x329,
/* 34 */ 0x0b9,
/* 35 */ 0x2a9,
/* 36 */ 0x1a9,
/* 37 */ 0x7a9,
/* 38 */ 0x739,
/* 39 */ 0x269,
/* 3a */ 0x169,
/* 3b */ 0x769,
/* 3c */ 0x0e9,
/* 3d */ 0x6e9,
/* 3e */ 0x5e9,
/* 3f */ 0x6b9,
/* 40 */ 0x675,
/* 41 */ 0x5d5,
/* 42 */ 0x6d5,
/* 43 */ 0x315,
/* 44 */ 0x755,
/* 45 */ 0x295,
/* 46 */ 0x195,
/* 47 */ 0x385,
/* 48 */ 0x795,
/* 49 */ 0x255,
/* 4a */ 0x155,
/* 4b */ 0x345,
/* 4c */ 0x0d5,
/* 4d */ 0x2c5,
/* 4e */ 0x1c5,
/* 4f */ 0x575,
/* 50 */ 0x5b5,
/* 51 */ 0x235,
/* 52 */ 0x135,
/* 53 */ 0x325,
/* 54 */ 0x0b5,
/* 55 */ 0x2a5,
/* 56 */ 0x1a5,
/* 57 */ 0x7a5,
/* 58 */ 0x735,
/* 59 */ 0x265,
/* 5a */ 0x165,
/* 5b */ 0x765,
/* 5c */ 0x0e5,
/* 5d */ 0x6e5,
/* 5e */ 0x5e5,
/* 5f */ 0x6b5,
/* 60 */ 0x673,
/* 61 */ 0x5d3,
/* 62 */ 0x6d3,
/* 63 */ 0x31c,
/* 64 */ 0x753,
/* 65 */ 0x29c,
/* 66 */ 0x19c,
/* 67 */ 0x38c,
/* 68 */ 0x793,
/* 69 */ 0x25c,
/* 6a */ 0x15c,
/* 6b */ 0x34c,
/* 6c */ 0x0dc,
/* 6d */ 0x2cc,
/* 6e */ 0x1cc,
/* 6f */ 0x573,
/* 70 */ 0x5b3,
/* 71 */ 0x23c,
/* 72 */ 0x13c,
/* 73 */ 0x32c,
/* 74 */ 0x0bc,
/* 75 */ 0x2ac,
/* 76 */ 0x1ac,
/* 77 */ 0x7a3,
/* 78 */ 0x733,
/* 79 */ 0x26c,
/* 7a */ 0x16c,
/* 7b */ 0x763,
/* 7c */ 0x0ec,
/* 7d */ 0x6e3,
/* 7e */ 0x5e3,
/* 7f */ 0x6b3,
/* 80 */ 0x272,
/* 81 */ 0x1d2,
/* 82 */ 0x2d2,
/* 83 */ 0x71d,
/* 84 */ 0x352,
/* 85 */ 0x69d,
/* 86 */ 0x59d,
/* 87 */ 0x78d,
/* 88 */ 0x392,
/* 89 */ 0x65d,
/* 8a */ 0x55d,
/* 8b */ 0x74d,
/* 8c */ 0x4dd,
/* 8d */ 0x6cd,
/* 8e */ 0x5cd,
/* 8f */ 0x172,
/* 90 */ 0x1b2,
/* 91 */ 0x63d,
/* 92 */ 0x53d,
/* 93 */ 0x72d,
/* 94 */ 0x4bd,
/* 95 */ 0x6ad,
/* 96 */ 0x5ad,
/* 97 */ 0x3a2,
/* 98 */ 0x332,
/* 99 */ 0x66d,
/* 9a */ 0x56d,
/* 9b */ 0x362,
/* 9c */ 0x4ed,
/* 9d */ 0x2e2,
/* 9e */ 0x1e2,
/* 9f */ 0x2b2,
/* a0 */ 0x67a,
/* a1 */ 0x5da,
/* a2 */ 0x6da,
/* a3 */ 0x31a,
/* a4 */ 0x75a,
/* a5 */ 0x29a,
/* a6 */ 0x19a,
/* a7 */ 0x38a,
/* a8 */ 0x79a,
/* a9 */ 0x25a,
/* aa */ 0x15a,
/* ab */ 0x34a,
/* ac */ 0x0da,
/* ad */ 0x2ca,
/* ae */ 0x1ca,
/* af */ 0x57a,
/* b0 */ 0x5ba,
/* b1 */ 0x23a,
/* b2 */ 0x13a,
/* b3 */ 0x32a,
/* b4 */ 0x0ba,
/* b5 */ 0x2aa,
/* b6 */ 0x1aa,
/* b7 */ 0x7aa,
/* b8 */ 0x73a,
/* b9 */ 0x26a,
/* ba */ 0x16a,
/* bb */ 0x76a,
/* bc */ 0x0ea,
/* bd */ 0x6ea,
/* be */ 0x5ea,
/* bf */ 0x6ba,
/* c0 */ 0x676,
/* c1 */ 0x5d6,
/* c2 */ 0x6d6,
/* c3 */ 0x316,
/* c4 */ 0x756,
/* c5 */ 0x296,
/* c6 */ 0x196,
/* c7 */ 0x386,
/* c8 */ 0x796,
/* c9 */ 0x256,
/* ca */ 0x156,
/* cb */ 0x346,
/* cc */ 0x0d6,
/* cd */ 0x2c6,
/* ce */ 0x1c6,
/* cf */ 0x576,
/* d0 */ 0x5b6,
/* d1 */ 0x236,
/* d2 */ 0x136,
/* d3 */ 0x326,
/* d4 */ 0x0b6,
/* d5 */ 0x2a6,
/* d6 */ 0x1a6,
/* d7 */ 0x7a6,
/* d8 */ 0x736,
/* d9 */ 0x266,
/* da */ 0x166,
/* db */ 0x766,
/* dc */ 0x0e6,
/* dd */ 0x6e6,
/* de */ 0x5e6,
/* df */ 0x6b6,
/* e0 */ 0x271,
/* e1 */ 0x1d1,
/* e2 */ 0x2d1,
/* e3 */ 0x71e,
/* e4 */ 0x351,
/* e5 */ 0x69e,
/* e6 */ 0x59e,
/* e7 */ 0x78e,
/* e8 */ 0x391,
/* e9 */ 0x65e,
/* ea */ 0x55e,
/* eb */ 0x74e,
/* ec */ 0x4de,
/* ed */ 0x6ce,
/* ee */ 0x5ce,
/* ef */ 0x171,
/* f0 */ 0x1b1,
/* f1 */ 0x637,
/* f2 */ 0x537,
/* f3 */ 0x72e,
/* f4 */ 0x4b7,
/* f5 */ 0x6ae,
/* f6 */ 0x5ae,
/* f7 */ 0x3a1,
/* f8 */ 0x331,
/* f9 */ 0x66e,
/* fa */ 0x56e,
/* fb */ 0x361,
/* fc */ 0x4ee,
/* fd */ 0x2e1,
/* fe */ 0x1e1,
/* ff */ 0x2b1,
}, // RD = +1 cases
{
/* 00 */ 0x58b,
/* 01 */ 0x62b,
/* 02 */ 0x52b,
/* 03 */ 0x314,
/* 04 */ 0x4ab,
/* 05 */ 0x294,
/* 06 */ 0x194,
/* 07 */ 0x074,
/* 08 */ 0x46b,
/* 09 */ 0x254,
/* 0a */ 0x154,
/* 0b */ 0x344,
/* 0c */ 0x0d4,
/* 0d */ 0x2c4,
/* 0e */ 0x1c4,
/* 0f */ 0x68b,
/* 10 */ 0x64b,
/* 11 */ 0x234,
/* 12 */ 0x134,
/* 13 */ 0x324,
/* 14 */ 0x0b4,
/* 15 */ 0x2a4,
/* 16 */ 0x1a4,
/* 17 */ 0x45b,
/* 18 */ 0x4cb,
/* 19 */ 0x264,
/* 1a */ 0x164,
/* 1b */ 0x49b,
/* 1c */ 0x0e4,
/* 1d */ 0x51b,
/* 1e */ 0x61b,
/* 1f */ 0x54b,
/* 20 */ 0x189,
/* 21 */ 0x229,
/* 22 */ 0x129,
/* 23 */ 0x719,
/* 24 */ 0x0a9,
/* 25 */ 0x699,
/* 26 */ 0x599,
/* 27 */ 0x479,
/* 28 */ 0x069,
/* 29 */ 0x659,
/* 2a */ 0x559,
/* 2b */ 0x749,
/* 2c */ 0x4d9,
/* 2d */ 0x6c9,
/* 2e */ 0x5c9,
/* 2f */ 0x289,
/* 30 */ 0x249,
/* 31 */ 0x639,
/* 32 */ 0x539,
/* 33 */ 0x729,
/* 34 */ 0x4b9,
/* 35 */ 0x6a9,
/* 36 */ 0x5a9,
/* 37 */ 0x059,
/* 38 */ 0x0c9,
/* 39 */ 0x669,
/* 3a */ 0x569,
/* 3b */ 0x099,
/* 3c */ 0x4e9,
/* 3d */ 0x119,
/* 3e */ 0x219,
/* 3f */ 0x149,
/* 40 */ 0x185,
/* 41 */ 0x225,
/* 42 */ 0x125,
/* 43 */ 0x715,
/* 44 */ 0x0a5,
/* 45 */ 0x695,
/* 46 */ 0x595,
/* 47 */ 0x475,
/* 48 */ 0x065,
/* 49 */ 0x655,
/* 4a */ 0x555,
/* 4b */ 0x745,
/* 4c */ 0x4d5,
/* 4d */ 0x6c5,
/* 4e */ 0x5c5,
/* 4f */ 0x285,
/* 50 */ 0x245,
/* 51 */ 0x635,
/* 52 */ 0x535,
/* 53 */ 0x725,
/* 54 */ 0x4b5,
/* 55 */ 0x6a5,
/* 56 */ 0x5a5,
/* 57 */ 0x055,
/* 58 */ 0x0c5,
/* 59 */ 0x665,
/* 5a */ 0x565,
/* 5b */ 0x095,
/* 5c */ 0x4e5,
/* 5d */ 0x115,
/* 5e */ 0x215,
/* 5f */ 0x145,
/* 60 */ 0x18c,
/* 61 */ 0x22c,
/* 62 */ 0x12c,
/* 63 */ 0x713,
/* 64 */ 0x0ac,
/* 65 */ 0x693,
/* 66 */ 0x593,
/* 67 */ 0x473,
/* 68 */ 0x06c,
/* 69 */ 0x653,
/* 6a */ 0x553,
/* 6b */ 0x743,
/* 6c */ 0x4d3,
/* 6d */ 0x6c3,
/* 6e */ 0x5c3,
/* 6f */ 0x28c,
/* 70 */ 0x24c,
/* 71 */ 0x633,
/* 72 */ 0x533,
/* 73 */ 0x723,
/* 74 */ 0x4b3,
/* 75 */ 0x6a3,
/* 76 */ 0x5a3,
/* 77 */ 0x05c,
/* 78 */ 0x0cc,
/* 79 */ 0x663,
/* 7a */ 0x563,
/* 7b */ 0x09c,
/* 7c */ 0x4e3,
/* 7d */ 0x11c,
/* 7e */ 0x21c,
/* 7f */ 0x14c,
/* 80 */ 0x58d,
/* 81 */ 0x62d,
/* 82 */ 0x52d,
/* 83 */ 0x312,
/* 84 */ 0x4ad,
/* 85 */ 0x292,
/* 86 */ 0x192,
/* 87 */ 0x072,
/* 88 */ 0x46d,
/* 89 */ 0x252,
/* 8a */ 0x152,
/* 8b */ 0x342,
/* 8c */ 0x0d2,
/* 8d */ 0x2c2,
/* 8e */ 0x1c2,
/* 8f */ 0x68d,
/* 90 */ 0x64d,
/* 91 */ 0x232,
/* 92 */ 0x132,
/* 93 */ 0x322,
/* 94 */ 0x0b2,
/* 95 */ 0x2a2,
/* 96 */ 0x1a2,
/* 97 */ 0x45d,
/* 98 */ 0x4cd,
/* 99 */ 0x262,
/* 9a */ 0x162,
/* 9b */ 0x49d,
/* 9c */ 0x0e2,
/* 9d */ 0x51d,
/* 9e */ 0x61d,
/* 9f */ 0x54d,
/* a0 */ 0x18a,
/* a1 */ 0x22a,
/* a2 */ 0x12a,
/* a3 */ 0x71a,
/* a4 */ 0x0aa,
/* a5 */ 0x69a,
/* a6 */ 0x59a,
/* a7 */ 0x47a,
/* a8 */ 0x06a,
/* a9 */ 0x65a,
/* aa */ 0x55a,
/* ab */ 0x74a,
/* ac */ 0x4da,
/* ad */ 0x6ca,
/* ae */ 0x5ca,
/* af */ 0x28a,
/* b0 */ 0x24a,
/* b1 */ 0x63a,
/* b2 */ 0x53a,
/* b3 */ 0x72a,
/* b4 */ 0x4ba,
/* b5 */ 0x6aa,
/* b6 */ 0x5aa,
/* b7 */ 0x05a,
/* b8 */ 0x0ca,
/* b9 */ 0x66a,
/* ba */ 0x56a,
/* bb */ 0x09a,
/* bc */ 0x4ea,
/* bd */ 0x11a,
/* be */ 0x21a,
/* bf */ 0x14a,
/* c0 */ 0x186,
/* c1 */ 0x226,
/* c2 */ 0x126,
/* c3 */ 0x716,
/* c4 */ 0x0a6,
/* c5 */ 0x696,
/* c6 */ 0x596,
/* c7 */ 0x476,
/* c8 */ 0x066,
/* c9 */ 0x656,
/* ca */ 0x556,
/* cb */ 0x746,
/* cc */ 0x4d6,
/* cd */ 0x6c6,
/* ce */ 0x5c6,
/* cf */ 0x286,
/* d0 */ 0x246,
/* d1 */ 0x636,
/* d2 */ 0x536,
/* d3 */ 0x726,
/* d4 */ 0x4b6,
/* d5 */ 0x6a6,
/* d6 */ 0x5a6,
/* d7 */ 0x056,
/* d8 */ 0x0c6,
/* d9 */ 0x666,
/* da */ 0x566,
/* db */ 0x096,
/* dc */ 0x4e6,
/* dd */ 0x116,
/* de */ 0x216,
/* df */ 0x146,
/* e0 */ 0x58e,
/* e1 */ 0x62e,
/* e2 */ 0x52e,
/* e3 */ 0x311,
/* e4 */ 0x4ae,
/* e5 */ 0x291,
/* e6 */ 0x191,
/* e7 */ 0x071,
/* e8 */ 0x46e,
/* e9 */ 0x251,
/* ea */ 0x151,
/* eb */ 0x348,
/* ec */ 0x0d1,
/* ed */ 0x2c8,
/* ee */ 0x1c8,
/* ef */ 0x68e,
/* f0 */ 0x64e,
/* f1 */ 0x231,
/* f2 */ 0x131,
/* f3 */ 0x321,
/* f4 */ 0x0b1,
/* f5 */ 0x2a1,
/* f6 */ 0x1a1,
/* f7 */ 0x45e,
/* f8 */ 0x4ce,
/* f9 */ 0x261,
/* fa */ 0x161,
/* fb */ 0x49e,
/* fc */ 0x0e1,
/* fd */ 0x51e,
/* fe */ 0x61e,
/* ff */ 0x54e,
} };
// GF Antilog lookup table table
static unsigned char CCSDS_alpha_to[NN+1] = {
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x87,0x89,0x95,0xad,0xdd,0x3d,0x7a,0xf4,
0x6f,0xde,0x3b,0x76,0xec,0x5f,0xbe,0xfb,0x71,0xe2,0x43,0x86,0x8b,0x91,0xa5,0xcd,
0x1d,0x3a,0x74,0xe8,0x57,0xae,0xdb,0x31,0x62,0xc4,0x0f,0x1e,0x3c,0x78,0xf0,0x67,
0xce,0x1b,0x36,0x6c,0xd8,0x37,0x6e,0xdc,0x3f,0x7e,0xfc,0x7f,0xfe,0x7b,0xf6,0x6b,
0xd6,0x2b,0x56,0xac,0xdf,0x39,0x72,0xe4,0x4f,0x9e,0xbb,0xf1,0x65,0xca,0x13,0x26,
0x4c,0x98,0xb7,0xe9,0x55,0xaa,0xd3,0x21,0x42,0x84,0x8f,0x99,0xb5,0xed,0x5d,0xba,
0xf3,0x61,0xc2,0x03,0x06,0x0c,0x18,0x30,0x60,0xc0,0x07,0x0e,0x1c,0x38,0x70,0xe0,
0x47,0x8e,0x9b,0xb1,0xe5,0x4d,0x9a,0xb3,0xe1,0x45,0x8a,0x93,0xa1,0xc5,0x0d,0x1a,
0x34,0x68,0xd0,0x27,0x4e,0x9c,0xbf,0xf9,0x75,0xea,0x53,0xa6,0xcb,0x11,0x22,0x44,
0x88,0x97,0xa9,0xd5,0x2d,0x5a,0xb4,0xef,0x59,0xb2,0xe3,0x41,0x82,0x83,0x81,0x85,
0x8d,0x9d,0xbd,0xfd,0x7d,0xfa,0x73,0xe6,0x4b,0x96,0xab,0xd1,0x25,0x4a,0x94,0xaf,
0xd9,0x35,0x6a,0xd4,0x2f,0x5e,0xbc,0xff,0x79,0xf2,0x63,0xc6,0x0b,0x16,0x2c,0x58,
0xb0,0xe7,0x49,0x92,0xa3,0xc1,0x05,0x0a,0x14,0x28,0x50,0xa0,0xc7,0x09,0x12,0x24,
0x48,0x90,0xa7,0xc9,0x15,0x2a,0x54,0xa8,0xd7,0x29,0x52,0xa4,0xcf,0x19,0x32,0x64,
0xc8,0x17,0x2e,0x5c,0xb8,0xf7,0x69,0xd2,0x23,0x46,0x8c,0x9f,0xb9,0xf5,0x6d,0xda,
0x33,0x66,0xcc,0x1f,0x3e,0x7c,0xf8,0x77,0xee,0x5b,0xb6,0xeb,0x51,0xa2,0xc3,0x00,
};
// GF log lookup table. Special value represents log(0)
static unsigned char CCSDS_index_of[NN+1] = {
A0, 0, 1, 99, 2,198,100,106, 3,205,199,188,101,126,107, 42,
4,141,206, 78,200,212,189,225,102,221,127, 49,108, 32, 43,243,
5, 87,142,232,207,172, 79,131,201,217,213, 65,190,148,226,180,
103, 39,222,240,128,177, 50, 53,109, 69, 33, 18, 44, 13,244, 56,
6,155, 88, 26,143,121,233,112,208,194,173,168, 80,117,132, 72,
202,252,218,138,214, 84, 66, 36,191,152,149,249,227, 94,181, 21,
104, 97, 40,186,223, 76,241, 47,129,230,178, 63, 51,238, 54, 16,
110, 24, 70,166, 34,136, 19,247, 45,184, 14, 61,245,164, 57, 59,
7,158,156,157, 89,159, 27, 8,144, 9,122, 28,234,160,113, 90,
209, 29,195,123,174, 10,169,145, 81, 91,118,114,133,161, 73,235,
203,124,253,196,219, 30,139,210,215,146, 85,170, 67, 11, 37,175,
192,115,153,119,150, 92,250, 82,228,236, 95, 74,182,162, 22,134,
105,197, 98,254, 41,125,187,204,224,211, 77,140,242, 31, 48,220,
130,171,231, 86,179,147, 64,216, 52,176,239, 38, 55, 12, 17, 68,
111,120, 25,154, 71,116,167,193, 35, 83,137,251, 20, 93,248,151,
46, 75,185, 96, 15,237, 62,229,246,135,165, 23, 58,163, 60,183,
};
// Only half the coefficients are given here because the
// generator polynomial is palindromic; G0 = G32, G1 = G31, etc.
// Only G16 is unique
static unsigned char CCSDS_poly[] = {
0,249, 59, 66, 4, 43,126,251, 97, 30, 3,213, 50, 66,170, 5,
24,
};
static inline int modnn(int x){
while (x >= NN) {
x -= NN;
x = (x >> 8) + (x & NN);
}
return x;
}
// Update Reed-Solomon encoder
// parity -> 32-byte reed-solomon encoder state; clear this to zero before each frame
void update_rs(
unsigned char parity[32], // 32-byte encoder state; zero before each frame
unsigned char c) // Current data byte to update
{
unsigned char feedback;
int j,t;
assert(parity != NULL);
feedback = CCSDS_index_of[c ^ parity[0]];
if(feedback != A0){ // only if feedback is non-zero
// Take advantage of palindromic polynomial to halve the multiplies
// Do G1...G15, which is the same as G17...G31
for(j=1;j<(int)(NP/2);j++){
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
parity[j] ^= t;
parity[NP-j] ^= t;
}
// Do G16, which is used in only parity[16]
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
parity[j] ^= t;
}
// shift left
memmove(&parity[0],&parity[1],NP-1);
// G0 is 1 in alpha form, 0 in index form; don't need to multiply by it
parity[NP-1] = CCSDS_alpha_to[feedback];
//taskYIELD();
}
#define SYNC (0x0fa) // K.28.5, RD=-1
void write_little_endian(unsigned int word, int num_bytes, FILE *wav_file)
{
unsigned buf;
while(num_bytes>0)
{ buf = word & 0xff;
fwrite(&buf, 1,1, wav_file);
num_bytes--;
word >>= 8;
}
}
void config_radio()
{
pinMode(LED_BUILTIN, OUTPUT);
pinMode(PTT_PIN, OUTPUT); // PTT active LOW
digitalWrite(PTT_PIN, HIGH);
pinMode(PD_PIN, OUTPUT); // PD active HIGH
digitalWrite(PD_PIN, HIGH);
pinMode(TEMPERATURE_PIN, INPUT);
pinMode(AUDIO_IN_PIN, INPUT);
DumbTXSWS mySerial(SWTX_PIN); // TX pin
mySerial.begin(9600);
for (int i = 0; i < 5; i++) {
sleep(0.5); // delay(500);
// Serial1.println("AT+DMOSETGROUP=0,434.9100,434.9100,1,2,1,1\r");
mySerial.println("AT+DMOSETGROUP=0,434.9000,434.9000,1,2,1,1\r");
}
if (mode == FSK)
transmit_on();
// start pwm
// start_pwm();
}
void test_radio()
{
// send a carrier for 3 seconds
Serial.println("Testing radio...\n\n");
digitalWrite(MAIN_LED_BLUE, HIGH);
digitalWrite(PTT_PIN, LOW);
sleep(3.0); // delay(3000);
digitalWrite(PTT_PIN, HIGH);
digitalWrite(MAIN_LED_BLUE, LOW);
}
void read_ina219()
{
float shuntvoltage = 0;
float busvoltage = 0;
float current_mA = 0;
float loadvoltage = 0;
shuntvoltage = ina219_1_0x40.getShuntVoltage_mV();
busvoltage = ina219_1_0x40.getBusVoltage_V();
current_mA = ina219_1_0x40.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("1 0x40 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[0] = loadvoltage;
current[0] = current_mA;
}
void read_sensors()
{
}
// Returns lower digit of a number which must be less than 99
//
int lower_digit(int number) {
int digit = 0;
if (number < 100)
digit = number - ((int)(number / 10) * 10);
else
Serial.println("ERROR: Not a digit in lower_digit!\n");
return digit;
}
// Returns upper digit of a number which must be less than 99
//
int upper_digit(int number) {
int digit = 0;
if (number < 100)
digit = (int)(number / 10);
else
Serial.println("ERROR: Not a digit in upper_digit!\n");
return digit;
}
void print_string(char *string)
{
int count = 0;
while ((count < 250) && (string[count] != 0))
{
Serial.print(string[count++]);
}
Serial.println(" ");
}
void start_payload() {
Serial1.begin(115200); // Pi UART faster speed
Serial.println("Starting payload!");
blink_setup();
blink(500);
sleep(0.25); // delay(250);
blink(500);
sleep(0.25); // delay(250);
led_set(greenLED, HIGH);
sleep(0.25); // delay(250);
led_set(greenLED, LOW);
led_set(blueLED, HIGH);
sleep(0.25); // delay(250);
led_set(blueLED, LOW);
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1)) / 100.0;
float yOffset = ((float)eeprom_word_read(2)) / 100.0;
float zOffset = ((float)eeprom_word_read(3)) / 100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
pinMode(greenLED, OUTPUT);
pinMode(blueLED, OUTPUT);
}
void read_payload()
{
// if ((Serial.available() > 0)|| first_time == true)
{
blink(50);
char result = Serial.read();
char header[] = "OK BME280 ";
char str[100];
strcpy(payload_str, header);
// print_string(str);
if (bmePresent)
// sprintf(str, "%4.2f %6.2f %6.2f %5.2f ",
sprintf(str, "%.1f %.2f %.1f %.2f ",
bme.readTemperature(), bme.readPressure() / 100.0, bme.readAltitude(SEALEVELPRESSURE_HPA), bme.readHumidity());
else
sprintf(str, "OK BME280 0.0 0.0 0.0 0.0 ");
strcat(payload_str, str);
// print_string(payload_str);
mpu6050.update();
// sprintf(str, " MPU6050 %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f ",
sprintf(str, " MPU6050 %.1f %.1f %.1f %.1f %.1f %.1f ",
mpu6050.getGyroX(), mpu6050.getGyroY(), mpu6050.getGyroZ(), mpu6050.getAccX(), mpu6050.getAccY(), mpu6050.getAccZ());
strcat(payload_str, str);
print_string(payload_str);
if (result == 'R') {
Serial.println("OK");
delay(100);
first_time = true;
setup();
}
else if (result == 'C') {
Serial.println("Clearing stored gyro offsets in EEPROM\n");
eeprom_word_write(0, 0x00);
first_time = true;
setup();
}
// if ((result == '?') || first_time == true)
if (true)
{
first_time = false;
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
sensorValue = analogRead(A3);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
Serial.println(Sensor1);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = analogRead(A3);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
// delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}
void blink_setup()
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
pinMode(PB9, OUTPUT);
pinMode(PB8, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
pinMode(greenLED, OUTPUT);
pinMode(blueLED,OUTPUT);
#endif
}
void blink(int length)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
#if defined ARDUINO_ARCH_RP2040
digitalWrite(25, LOW); // set the built-in LED ON
#endif
sleep(length/1000.0); // delay(length); // wait for a lenth of time
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED0; //TX LED macro to turn LED ON
#endif
#if defined ARDUINO_ARCH_RP2040
digitalWrite(25, HIGH); // set the built-in LED off
#endif
}
void led_set(int ledPin, bool state)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
if (ledPin == greenLED)
digitalWrite(PB9, state);
else if (ledPin == blueLED)
digitalWrite(PB8, state);
#endif
#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040
digitalWrite(ledPin, state);
#endif
}
void start_ina219() {
pinMode(MAIN_INA219, OUTPUT);
digitalWrite(MAIN_INA219, HIGH);
ina219_1_0x40.begin();
ina219_1_0x41.begin();
ina219_1_0x44.begin();
ina219_1_0x45.begin();
Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();
ina219_2_0x40.begin(&Wire1);
ina219_2_0x41.begin(&Wire1);
ina219_2_0x44.begin(&Wire1);
ina219_2_0x45.begin(&Wire1);
ina219_1_0x40.setCalibration_16V_400mA();
ina219_1_0x41.setCalibration_16V_400mA();
ina219_1_0x44.setCalibration_16V_400mA();
ina219_1_0x45.setCalibration_16V_400mA();
ina219_2_0x40.setCalibration_16V_400mA();
ina219_2_0x41.setCalibration_16V_400mA();
ina219_2_0x44.setCalibration_16V_400mA();
ina219_2_0x45.setCalibration_16V_400mA();
}
void start_pwm() {
// based on code https://github.com/rgrosset/pico-pwm-audio
//
Serial.println("Starting pwm!");
pwm_value = 128 - pwm_amplitude;
set_sys_clock_khz(125000, true);
gpio_set_function(AUDIO_OUT_PIN, GPIO_FUNC_PWM);
int audio_pin_slice = pwm_gpio_to_slice_num(AUDIO_OUT_PIN);
// Setup PWM interrupt to fire when PWM cycle is complete
pwm_clear_irq(audio_pin_slice);
pwm_set_irq_enabled(audio_pin_slice, true);
// set the handle function above
irq_set_exclusive_handler(PWM_IRQ_WRAP, pwm_interrupt_handler);
irq_set_enabled(PWM_IRQ_WRAP, true);
// Setup PWM for audio output
pwm_config config = pwm_get_default_config();
/* Base clock 176,000,000 Hz divide by wrap 250 then the clock divider further divides
* to set the interrupt rate.
*
* 11 KHz is fine for speech. Phone lines generally sample at 8 KHz
*
*
* So clkdiv should be as follows for given sample rate
* 8.0f for 11 KHz
* 4.0f for 22 KHz
* 2.0f for 44 KHz etc
*/
pwm_config_set_clkdiv(&config, 8.0); //16.0); // 8.0f); was 16 for some reason
pwm_config_set_wrap(&config, 178); // 250);
pwm_init(audio_pin_slice, &config, true);
pwm_set_gpio_level(AUDIO_OUT_PIN, 0);
}
/*
void pwm_interrupt_handler() {
// based on code https://github.com/rgrosset/pico-pwm-audio
//
pwm_clear_irq(pwm_gpio_to_slice_num(AUDIO_OUT_PIN));
// if (wav_position < (WAV_DATA_LENGTH<<3) - 1) {
if (wav_position > (BUFFER_SIZE - 1)) {
// set pwm level
// allow the pwm value to repeat for 8 cycles this is >>3
pwm_set_gpio_level(AUDIO_OUT_PIN, buffer[wav_position]);
wav_position++;
} else {
// reset to start
wav_position = 0;
}
}
*/
void pwm_interrupt_handler() {
pwm_clear_irq(pwm_gpio_to_slice_num(AUDIO_OUT_PIN));
pwm_counter++;
if (pwm_counter > pwm_counter_max) {
pwm_counter -= pwm_counter_max;
// if (random(0,2) == 1)
// pwm_rnd_bit *= (-1.0);
pwm_rnd_bit = (buffer[wav_position] > 0) ? 1 : 0;
// Serial.print(pwm_rnd_bit);
// Serial.print(" ");
if ((pwm_value == (128 - pwm_amplitude)) && (pwm_rnd_bit == 1)) {
pwm_value = 128 + pwm_amplitude;
// Serial.print("-");
}
else {
pwm_value = 128 - pwm_amplitude;
// Serial.print("_");
}
pwm_set_gpio_level(AUDIO_OUT_PIN, pwm_value);
// Serial.println("wav_position: ");
// Serial.println(wav_position);
if (wav_position++ > BUFFER_SIZE) { // 300) {
wav_position = wav_position - BUFFER_SIZE;
// Serial.print("R");
}
}
}
void setup1() {
Serial.begin(9600);
sleep(10.0);
if (mode == FSK)
{
pinMode(AUDIO_OUT_PIN, OUTPUT);
Serial.println("Setup1 for FSK mode");
// digitalWrite(AUDIO_OUT_PIN, HIGH);
// delay(500);
// digitalWrite(AUDIO_OUT_PIN, LOW);
// delay(500);
// digitalWrite(AUDIO_OUT_PIN, HIGH);
// delay(500);
// digitalWrite(AUDIO_OUT_PIN, LOW);
// delay(500);
}
while(!ready) // wait for core0 to start
sleep(0.1);
Serial.print("S");
Serial.print(" ");
Serial.println(millis());
}
void loop1() {
// if (pwm_counter > pwm_counter_max) {
// pwm_counter -= pwm_counter_max;
if (mode == FSK)
{
pwm_rnd_bit = (buffer[wav_position] > 0) ? HIGH: LOW;
digitalWrite(AUDIO_OUT_PIN, pwm_rnd_bit);
// pwm_rnd_bit = (buffer[wav_position] > 0) ? 1 : 0;
/*
if (pwm_rnd_bit == 1) {
Serial.print("-");
}
else {
Serial.print("_");
}
*/
// pwm_set_gpio_level(AUDIO_OUT_PIN, pwm_value);
// Serial.println("wav_position: ");
// Serial.println(wav_position);
if (wav_position++ > BUFFER_SIZE) { // 300) {
wav_position = wav_position - BUFFER_SIZE;
Serial.print("R");
Serial.print(" ");
Serial.println(millis()); }
}
delay(5); //2 1);
// check pushbutton
int pb_value;
pb_value = digitalRead(MAIN_PB_PIN);
if (pb_value == PRESSED)
process_pushbutton();
}
void sleep(float time) {
unsigned long time_ms = (unsigned long)(time * 1000.0);
unsigned long startSleep = millis();
while ((millis() - startSleep) < time_ms) {
delay(100);
}
}
void process_pushbutton() {
int release = FALSE;
sleep(1.0);
int pb_value = digitalRead(MAIN_PB_PIN);
if (pb_value == RELEASED) {
Serial.println("PB: Reboot!");
release = TRUE;
}
blinkTimes(1);
sleep(1.5);
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to AFSK");
release = TRUE;
}
if (release == FALSE) {
blinkTimes(2);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to FSK");
release = TRUE;
}
if (release == FALSE) {
blinkTimes(3);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to BPSK");
release = TRUE;
}
if (release == FALSE) {
digitalWrite(MAIN_PB_PIN, LOW);
blinkTimes(4);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to SSTV");
release = TRUE;
}
if (release == FALSE) {
digitalWrite(MAIN_PB_PIN, LOW);
blinkTimes(5);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to CW");
release = TRUE;
}
if (release == FALSE) {
Serial.println("PB: Shutdown!");
digitalWrite(MAIN_PB_PIN, LOW);
sleep(0.5);
digitalWrite(MAIN_PB_PIN, HIGH);
sleep(0.5);
digitalWrite(MAIN_PB_PIN, LOW);
sleep(0.5);
digitalWrite(MAIN_PB_PIN, HIGH);
sleep(0.5);
digitalWrite(MAIN_PB_PIN, LOW);
sleep(0.5);
digitalWrite(MAIN_PB_PIN, HIGH);
sleep(0.5);
}
/*
GPIO.output(powerPin, 0); # blink once
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(1.5)
if (GPIO.input(26) and (release == False)):
print("switch to AFSK")
f = open("/home/pi/CubeSatSim/.mode", "w")
f.write("a")
f.close()
os.system("sudo systemctl restart cubesatsim")
release = True;
if (release == False):
GPIO.output(powerPin, 0); # blink twice
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1);
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(1.5)
if (GPIO.input(26) and (release == False)):
print("switch to FSK")
f = open("/home/pi/CubeSatSim/.mode", "w")
f.write("f")
f.close()
os.system("sudo systemctl restart cubesatsim")
release = True;
if (release == False):
GPIO.output(powerPin, 0); # blink three times
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1);
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(1.5)
if (GPIO.input(26) and (release == False)):
print("switch to BPSK")
f = open("/home/pi/CubeSatSim/.mode", "w")
f.write("b")
f.close()
os.system("sudo systemctl restart cubesatsim")
release = True;
if (release == False):
GPIO.output(powerPin, 0); # blink four times
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1);
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(1.5)
if (GPIO.input(26) and (release == False)):
print("switch to SSTV")
f = open("/home/pi/CubeSatSim/.mode", "w")
f.write("s")
f.close()
os.system("sudo systemctl restart cubesatsim")
release = True;
if (release == False):
GPIO.output(powerPin, 0); # blink five times
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1);
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(0.1)
GPIO.output(powerPin, 0);
time.sleep(0.1);
GPIO.output(powerPin, 1);
time.sleep(1.5)
if (GPIO.input(26) and (release == False)):
print("switch to CW")
f = open("/home/pi/CubeSatSim/.mode", "w")
f.write("m")
f.close()
os.system("sudo systemctl restart cubesatsim")
release = True;
if (release == False):
print("sudo shutdown -h now")
GPIO.setwarnings(False)
GPIO.setup(powerPin, GPIO.OUT)
GPIO.output(powerPin, 0); # blink slowly to indicate shutdown
time.sleep(0.5);
GPIO.output(powerPin, 1);
time.sleep(0.5);
GPIO.output(powerPin, 0);
time.sleep(0.5);
GPIO.output(powerPin, 1);
time.sleep(0.5);
GPIO.output(powerPin, 0);
subprocess.call(['shutdown', '-h', 'now'], shell=False)
if (txPin != 0):
GPIO.setwarnings(False)
GPIO.output(txPin, 0)
*/
}
void blinkTimes(int blinks) {
for (int i = 0; i < blinks; i++) {
digitalWrite(MAIN_PB_PIN, LOW);
sleep(0.1);
digitalWrite(MAIN_PB_PIN, HIGH);
sleep(0.1);
}
}

Powered by TurnKey Linux.