You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1068 lines
32 KiB
1068 lines
32 KiB
/*
|
|
* Transmits CubeSat Telemetry at 434.9MHz in AO-7 format
|
|
*
|
|
* Copyright Alan B. Johnston
|
|
*
|
|
* Portions Copyright (C) 2018 Jonathan Brandenburg
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* INA219 Raspberry Pi wiringPi code is based on Adafruit Arduino wire code
|
|
* from https://github.com/adafruit/Adafruit_INA219.
|
|
*/
|
|
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include "status.h"
|
|
#include "ax5043.h"
|
|
#include "ax25.h"
|
|
#include "spi/ax5043spi.h"
|
|
#include <wiringPiI2C.h>
|
|
#include <wiringPi.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
#include "Adafruit_INA219.h" // From Adafruit INA219 library for Arduino
|
|
#include "make_wav.h"
|
|
|
|
#define A 1
|
|
#define B 2
|
|
#define C 3
|
|
#define D 4
|
|
|
|
#define PLUS_X 0
|
|
#define PLUS_Y 1
|
|
#define PLUS_Z 2
|
|
#define BAT 3
|
|
#define MINUS_X 4
|
|
#define MINUS_Y 5
|
|
#define MINUS_Z 6
|
|
#define BUS 7
|
|
#define OFF -1
|
|
|
|
uint32_t tx_freq_hz = 434900000 + FREQUENCY_OFFSET;
|
|
uint32_t tx_channel = 0;
|
|
|
|
ax5043_conf_t hax5043;
|
|
ax25_conf_t hax25;
|
|
|
|
static void init_rf();
|
|
int twosToInt(int val, int len);
|
|
int get_tlm(char *str);
|
|
int get_tlm_fox();
|
|
int encodeA(short int *b, int index, int val);
|
|
int encodeB(short int *b, int index, int val);
|
|
void config_x25();
|
|
void trans_x25();
|
|
int upper_digit(int number);
|
|
int lower_digit(int number);
|
|
|
|
#define S_RATE (48000) // (44100)
|
|
#define BUF_SIZE (S_RATE*10) /* 2 second buffer */
|
|
|
|
// BPSK Settings
|
|
#define BIT_RATE 1200 // 200 for DUV
|
|
#define DUV 0 // 1 for DUV
|
|
#define RS_FRAMES 3 // 3 frames for BPSK, 1 for DUV
|
|
#define PAYLOADS 6 // 1 for DUV
|
|
#define DATA_LEN 78 // 56 for DUV
|
|
#define RS_FRAME_LEN 159 // 64 for DUV
|
|
#define SYNC_BITS 31 // 10 for DUV
|
|
#define SYNC_WORD 0b1000111110011010010000101011101 // 0b0011111010 for DUV
|
|
#define HEADER_LEN 8 // 6 for DUV
|
|
/*
|
|
// DUV Settings
|
|
#define BIT_RATE 200
|
|
#define DUV 1
|
|
#define RS_FRAMES 1
|
|
#define PAYLOADS 1
|
|
#define RS_FRAME_LEN 64
|
|
#define HEADER_LEN 6
|
|
#define DATA_LEN 58
|
|
#define SYNC_BITS 10
|
|
#define SYNC_WORD 0b0011111010
|
|
*/
|
|
|
|
#define PARITY_LEN 32
|
|
|
|
float amplitude = 32767/3; // 20000; // 32767/(10%amp+5%amp+100%amp)
|
|
float freq_Hz = 3000; // 1200
|
|
|
|
int smaller;
|
|
int flip_ctr = 0;
|
|
int phase = 1;
|
|
int ctr = 0;
|
|
void write_to_buffer(int i, int symbol, int val);
|
|
void write_wave();
|
|
#define SAMPLES (S_RATE / BIT_RATE)
|
|
#define FRAME_CNT 5
|
|
|
|
//#define BUF_LEN (FRAME_CNT * (SYNC_BITS + 10 * (8 + 6 * DATA_LEN + 96)) * SAMPLES)
|
|
#define BUF_LEN (FRAME_CNT * (SYNC_BITS + 10 * (HEADER_LEN + RS_FRAMES * (RS_FRAME_LEN + PARITY_LEN))) * SAMPLES)
|
|
short int buffer[BUF_LEN];
|
|
short int data10[8 + RS_FRAMES * (RS_FRAME_LEN + PARITY_LEN)];
|
|
short int data8[8 + RS_FRAMES * (RS_FRAME_LEN + PARITY_LEN)];
|
|
|
|
|
|
struct SensorConfig {
|
|
int fd;
|
|
uint16_t config;
|
|
int calValue;
|
|
int powerMultiplier;
|
|
int currentDivider;
|
|
};
|
|
|
|
struct SensorData {
|
|
double current;
|
|
double voltage;
|
|
double power;
|
|
};
|
|
|
|
/**
|
|
* @brief Read the data from one of the i2c current sensors.
|
|
*
|
|
* Reads the current data from the requested i2c current sensor configuration and
|
|
* stores it into a SensorData struct. An invalid file descriptor (i.e. less than zero)
|
|
* results in a SensorData struct being returned that has both its #current and #power members
|
|
* set to NAN.
|
|
*
|
|
* @param sensor A structure containing sensor configuration including the file descriptor.
|
|
* @return struct SensorData A struct that contains the current, voltage, and power readings
|
|
* from the requested sensor.
|
|
*/
|
|
struct SensorData read_sensor_data(struct SensorConfig sensor) {
|
|
struct SensorData data = {
|
|
.current = NAN,
|
|
.voltage = NAN,
|
|
.power = NAN };
|
|
|
|
if (sensor.fd < 0) {
|
|
return data;
|
|
}
|
|
// doesn't read negative currents accurately, shows -0.1mA
|
|
wiringPiI2CWriteReg16(sensor.fd, INA219_REG_CALIBRATION, sensor.calValue);
|
|
wiringPiI2CWriteReg16(sensor.fd, INA219_REG_CONFIG, sensor.config);
|
|
wiringPiI2CWriteReg16(sensor.fd, INA219_REG_CALIBRATION, sensor.calValue);
|
|
int value = wiringPiI2CReadReg16(sensor.fd, INA219_REG_CURRENT);
|
|
data.current = (float) twosToInt(value, 16) / (float) sensor.currentDivider;
|
|
|
|
wiringPiI2CWrite(sensor.fd, INA219_REG_BUSVOLTAGE);
|
|
delay(1); // Max 12-bit conversion time is 586us per sample
|
|
value = (wiringPiI2CRead(sensor.fd) << 8 ) | wiringPiI2CRead (sensor.fd);
|
|
data.voltage = ((float)(value >> 3) * 4) / 1000;
|
|
// power has very low resolution, seems to step in 512mW values
|
|
data.power = (float) wiringPiI2CReadReg16(sensor.fd, INA219_REG_POWER) * (float) sensor.powerMultiplier;
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* @brief Configures an i2c current sensor.
|
|
*
|
|
* Calculates the configuration values of the i2c sensor so that
|
|
* current, voltage, and power can be read using read_sensor_data.
|
|
* Supports 16V 400mA and 16V 2.0A settings.
|
|
*
|
|
* @param sensor A file descriptor that can be used to read from the sensor.
|
|
* @param milliAmps The mA configuration, either 400mA or 2A are supported.
|
|
* @return struct SensorConfig A struct that contains the configuraton of the sensor.
|
|
*/
|
|
//struct SensorConfig config_sensor(int sensor, int milliAmps) {
|
|
struct SensorConfig config_sensor(char *bus, int address, int milliAmps) {
|
|
struct SensorConfig data;
|
|
|
|
if (access(bus, W_OK | R_OK) < 0) { // Test if I2C Bus is missing
|
|
printf("ERROR: %s bus not present \n", bus);
|
|
data.fd = OFF;
|
|
return (data);
|
|
}
|
|
|
|
data.fd = wiringPiI2CSetupInterface(bus, address);
|
|
|
|
data.config = INA219_CONFIG_BVOLTAGERANGE_32V |
|
|
INA219_CONFIG_GAIN_1_40MV |
|
|
INA219_CONFIG_BADCRES_12BIT |
|
|
INA219_CONFIG_SADCRES_12BIT_1S_532US |
|
|
INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS;
|
|
|
|
if (milliAmps == 400) { // INA219 16V 400mA configuration
|
|
data.calValue = 8192;
|
|
data.powerMultiplier = 1;
|
|
data.currentDivider = 20; // 40; in Adafruit config
|
|
}
|
|
else { // INA219 16V 2A configuration
|
|
data.calValue = 40960;
|
|
data.powerMultiplier = 2;
|
|
data.currentDivider = 10; // 20; in Adafruit config
|
|
}
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
printf("Sensor %s %x configuration: %d %d %d %d %d\n", bus, address, data.fd,
|
|
data.config, data.calValue, data.currentDivider, data.powerMultiplier);
|
|
#endif
|
|
return data;
|
|
}
|
|
|
|
struct SensorConfig sensor[8]; // 7 current sensors in Solar Power PCB plus one in MoPower UPS V2
|
|
struct SensorData reading[8]; // 7 current sensors in Solar Power PCB plus one in MoPower UPS V2
|
|
struct SensorConfig tempSensor;
|
|
|
|
char src_addr[5] = "";
|
|
char dest_addr[5] = "CQ";
|
|
|
|
int main(int argc, char *argv[]) {
|
|
|
|
if (argc > 1) {
|
|
strcpy(src_addr, argv[1]);
|
|
}
|
|
|
|
wiringPiSetup ();
|
|
pinMode (0, OUTPUT);
|
|
|
|
//setSpiChannel(SPI_CHANNEL);
|
|
//setSpiSpeed(SPI_SPEED);
|
|
//initializeSpi();
|
|
|
|
tempSensor = config_sensor("/dev/i2c-3", 0x48, 0);
|
|
|
|
sensor[PLUS_X] = config_sensor("/dev/i2c-1", 0x40, 400);
|
|
sensor[PLUS_Y] = config_sensor("/dev/i2c-1", 0x41, 400);
|
|
sensor[PLUS_Z] = config_sensor("/dev/i2c-1", 0x44, 400);
|
|
sensor[BAT] = config_sensor("/dev/i2c-1", 0x45, 400);
|
|
sensor[BUS] = config_sensor("/dev/i2c-1", 0x4a, 2000);
|
|
sensor[MINUS_X] = config_sensor("/dev/i2c-0", 0x40, 400);
|
|
sensor[MINUS_Y] = config_sensor("/dev/i2c-0", 0x41, 400);
|
|
sensor[MINUS_Z] = config_sensor("/dev/i2c-0", 0x44, 400);
|
|
|
|
int ret;
|
|
uint8_t data[1024];
|
|
|
|
tx_freq_hz -= tx_channel * 50000;
|
|
|
|
//init_rf();
|
|
|
|
ax25_init(&hax25, (uint8_t *) dest_addr, '1', (uint8_t *) src_addr, '1',
|
|
AX25_PREAMBLE_LEN,
|
|
AX25_POSTAMBLE_LEN);
|
|
|
|
/* Infinite loop */
|
|
for (;;) {
|
|
sleep(1); // Delay 1 second
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
fprintf(stderr,"INFO: Getting TLM Data\n");
|
|
#endif
|
|
|
|
char str[1000];
|
|
// uint8_t b[64];
|
|
char header_str[] = "\x03\xf0";
|
|
strcpy(str, header_str);
|
|
|
|
printf("%s-1>%s-1:", (uint8_t *)src_addr, (uint8_t *)dest_addr);
|
|
|
|
// get_tlm(str);
|
|
get_tlm_fox();
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
fprintf(stderr,"INFO: Preparing X.25 packet\n");
|
|
#endif
|
|
// printf("%s \n", b);
|
|
/*
|
|
digitalWrite (0, LOW);
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
fprintf(stderr,"INFO: Transmitting X.25 packet\n");
|
|
#endif
|
|
memcpy(data, str, strnlen(str, 256));
|
|
ret = ax25_tx_frame(&hax25, &hax5043, data, strnlen(str, 256));
|
|
if (ret) {
|
|
fprintf(stderr,
|
|
"ERROR: Failed to transmit AX.25 frame with error code %d\n",
|
|
ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
ax5043_wait_for_transmit();
|
|
|
|
digitalWrite (0, HIGH);
|
|
|
|
if (ret) {
|
|
fprintf(stderr,
|
|
"ERROR: Failed to transmit entire AX.25 frame with error code %d\n",
|
|
ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
*/
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void init_rf() {
|
|
int ret;
|
|
#ifdef DEBUG_LOGGING
|
|
fprintf(stderr,"Initializing AX5043\n");
|
|
#endif
|
|
ret = ax5043_init(&hax5043, XTAL_FREQ_HZ, VCO_INTERNAL);
|
|
if (ret != PQWS_SUCCESS) {
|
|
fprintf(stderr,
|
|
"ERROR: Failed to initialize AX5043 with error code %d\n", ret);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
// Returns lower digit of a number which must be less than 99
|
|
//
|
|
int lower_digit(int number) {
|
|
|
|
int digit = 0;
|
|
if (number < 100)
|
|
digit = number - ((int)(number/10) * 10);
|
|
else
|
|
fprintf(stderr,"ERROR: Not a digit in lower_digit!\n");
|
|
return digit;
|
|
}
|
|
|
|
// Returns upper digit of a number which must be less than 99
|
|
//
|
|
int upper_digit(int number) {
|
|
|
|
int digit = 0;
|
|
if (number < 100)
|
|
digit = (int)(number/10);
|
|
else
|
|
fprintf(stderr,"ERROR: Not a digit in upper_digit!\n");
|
|
return digit;
|
|
}
|
|
|
|
int get_tlm(char *str) {
|
|
|
|
int tlm[7][5];
|
|
memset(tlm, 0, sizeof tlm);
|
|
|
|
// Reading I2C voltage and current sensors
|
|
int count;
|
|
for (count = 0; count < 8; count++)
|
|
{
|
|
reading[count] = read_sensor_data(sensor[count]);
|
|
#ifdef DEBUG_LOGGING
|
|
printf("Read sensor[%d] % 4.2fV % 6.1fmA % 6.1fmW \n",
|
|
count, reading[count].voltage, reading[count].current, reading[count].power);
|
|
#endif
|
|
}
|
|
|
|
tlm[1][A] = (int)(reading[BUS].voltage /15.0 + 0.5) % 100; // Current of 5V supply to Pi
|
|
tlm[1][B] = (int) (99.5 - reading[PLUS_X].current/10.0) % 100; // +X current [4]
|
|
tlm[1][C] = (int) (99.5 - reading[MINUS_X].current/10.0) % 100; // X- current [10]
|
|
tlm[1][D] = (int) (99.5 - reading[PLUS_Y].current/10.0) % 100; // +Y current [7]
|
|
|
|
tlm[2][A] = (int) (99.5 - reading[MINUS_Y].current/10.0) % 100; // -Y current [10]
|
|
tlm[2][B] = (int) (99.5 - reading[PLUS_Z].current/10.0) % 100; // +Z current [10] // was 70/2m transponder power, AO-7 didn't have a Z panel
|
|
tlm[2][C] = (int) (99.5 - reading[MINUS_Z].current/10.0) % 100; // -Z current (was timestamp)
|
|
tlm[2][D] = (int)(50.5 + reading[BAT].current/10.0) % 100; // NiMH Battery current
|
|
|
|
tlm[3][A] = abs((int)((reading[BAT].voltage * 10.0) - 65.5) % 100);
|
|
tlm[3][B] = (int)(reading[BUS].voltage * 10.0) % 100; // 5V supply to Pi
|
|
|
|
if (tempSensor.fd != OFF) {
|
|
int tempValue = wiringPiI2CReadReg16(tempSensor.fd, 0);
|
|
uint8_t upper = (uint8_t) (tempValue >> 8);
|
|
uint8_t lower = (uint8_t) (tempValue & 0xff);
|
|
float temp = (float)lower + ((float)upper / 0x100);
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
printf("Temp Sensor Read: %6.1f\n", temp);
|
|
#endif
|
|
|
|
tlm[4][A] = (int)((95.8 - temp)/1.48 + 0.5) % 100;
|
|
}
|
|
|
|
FILE *cpuTempSensor = fopen("/sys/class/thermal/thermal_zone0/temp", "r");
|
|
if (cpuTempSensor) {
|
|
double cpuTemp;
|
|
fscanf (cpuTempSensor, "%lf", &cpuTemp);
|
|
cpuTemp /= 1000;
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
printf("CPU Temp Read: %6.1f\n", cpuTemp);
|
|
#endif
|
|
|
|
tlm[4][B] = (int)((95.8 - cpuTemp)/1.48 + 0.5) % 100;
|
|
fclose (cpuTempSensor);
|
|
}
|
|
|
|
tlm[6][B] = 0 ;
|
|
tlm[6][D] = 49 + rand() % 3;
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
// Display tlm
|
|
int k, j;
|
|
for (k = 1; k < 7; k++) {
|
|
for (j = 1; j < 5; j++) {
|
|
printf(" %2d ", tlm[k][j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
char tlm_str[1000];
|
|
|
|
char header_str[] = "hi hi ";
|
|
strcpy(str, header_str);
|
|
// printf("%s-1>%s-1:hi hi ", (uint8_t *)src_addr, (uint8_t *)dest_addr);
|
|
|
|
int channel;
|
|
for (channel = 1; channel < 7; channel++) {
|
|
sprintf(tlm_str, "%d%d%d %d%d%d %d%d%d %d%d%d ",
|
|
channel, upper_digit(tlm[channel][1]), lower_digit(tlm[channel][1]),
|
|
channel, upper_digit(tlm[channel][2]), lower_digit(tlm[channel][2]),
|
|
channel, upper_digit(tlm[channel][3]), lower_digit(tlm[channel][3]),
|
|
channel, upper_digit(tlm[channel][4]), lower_digit(tlm[channel][4]));
|
|
// printf("%s",tlm_str);
|
|
strcat(str, tlm_str);
|
|
}
|
|
// printf("\n");
|
|
|
|
return;
|
|
}
|
|
|
|
int get_tlm_fox() {
|
|
|
|
// memset(b, 0, 64);
|
|
|
|
// Reading I2C voltage and current sensors
|
|
int count;
|
|
for (count = 0; count < 8; count++)
|
|
{
|
|
reading[count] = read_sensor_data(sensor[count]);
|
|
#ifdef DEBUG_LOGGING
|
|
printf("Read sensor[%d] % 4.2fV % 6.1fmA % 6.1fmW \n",
|
|
count, reading[count].voltage, reading[count].current, reading[count].power);
|
|
#endif
|
|
}
|
|
int reset_count;
|
|
float uptime_sec;
|
|
long int uptime;
|
|
char call[5];
|
|
|
|
FILE* config_file = fopen("sim.cfg","r");
|
|
if (config_file == NULL)
|
|
{
|
|
printf("Creating config file.");
|
|
config_file = fopen("sim.cfg","w");
|
|
fprintf(config_file, "%s %d", "KU2Y", 100);
|
|
fclose(config_file);
|
|
config_file = fopen("sim.cfg","r");
|
|
}
|
|
|
|
char* cfg_buf[100];
|
|
fscanf(config_file, "%s %d", call, &reset_count);
|
|
fclose(config_file);
|
|
printf("%s %d\n", call, reset_count);
|
|
|
|
reset_count = (reset_count + 1) % 0xffff;
|
|
|
|
config_file = fopen("sim.cfg","w");
|
|
fprintf(config_file, "%s %d", call, reset_count);
|
|
fclose(config_file);
|
|
config_file = fopen("sim.cfg","r");
|
|
|
|
FILE* uptime_file = fopen("/proc/uptime", "r");
|
|
fscanf(uptime_file, "%f", &uptime_sec);
|
|
uptime = (int) uptime_sec;
|
|
printf("Reset Count: %d Uptime since Reset: %ld \n", reset_count, uptime);
|
|
fclose(uptime_file);
|
|
|
|
int i;
|
|
long int sync = SYNC_WORD;
|
|
|
|
smaller = S_RATE/(2 * freq_Hz);
|
|
/*
|
|
short int b[DATA_LEN] = {0x00,0x7E,0x03,
|
|
0x00,0x00,0x00,0x00,0xE6,0x01,0x00,0x27,0xD1,0x02,
|
|
0xE5,0x40,0x04,0x18,0xE1,0x04,0x00,0x00,0x00,0x00,0x00,0x00,
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
|
0x00,0x00,0x00,0x03,0x02,0x00,0x00,0x00,0x00,0x00,0x00,
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
|
|
|
|
short int h[HEADER_LEN] = {0x05,0x00,0x00,0x00,0x00,0x10,0x00,0x00};
|
|
*/
|
|
|
|
short int b[DATA_LEN];
|
|
memset(b, 0, sizeof(b));
|
|
|
|
short int h[HEADER_LEN];
|
|
memset(h, 0, sizeof(h));
|
|
|
|
short int b10[DATA_LEN], h10[HEADER_LEN];
|
|
short int rs_frame[RS_FRAMES][223];
|
|
unsigned char parities[RS_FRAMES][PARITY_LEN],inputByte;
|
|
|
|
int id = 5, frm_type = 0x01, TxTemp = 0, IHUcpuTemp = 0;
|
|
int batt_a_v = 0, batt_b_v = 0, batt_c_v = 8.95 * 100, battCurr = 48.6 * 10;
|
|
int posXv = 296, negXv = 45, posYv = 220, negYv = 68,
|
|
posZv = 280, negZv = 78;
|
|
int head_offset = 0; // 6;
|
|
|
|
encodeA(b, 0 + head_offset, batt_a_v);
|
|
encodeB(b, 1 + head_offset, batt_b_v);
|
|
encodeA(b, 3 + head_offset, batt_c_v);
|
|
encodeA(b, 9 + head_offset, battCurr);
|
|
encodeA(b, 12 + head_offset,posXv);
|
|
encodeB(b, 13 + head_offset,posYv);
|
|
encodeA(b, 15 + head_offset,posZv);
|
|
encodeB(b, 16 + head_offset,negXv);
|
|
encodeA(b, 18 + head_offset,negYv);
|
|
encodeB(b, 19 + head_offset,negZv);
|
|
|
|
for (int frames = 0; frames < FRAME_CNT; frames++)
|
|
{
|
|
memset(rs_frame,0,sizeof(rs_frame));
|
|
memset(parities,0,sizeof(parities));
|
|
|
|
FILE *uptime_file = fopen("/proc/uptime", "r");
|
|
fscanf(uptime_file, "%f", &uptime_sec);
|
|
uptime = (int) uptime_sec;
|
|
fclose(uptime_file);
|
|
printf("Reset Count: %d Uptime since Reset: %ld \n", reset_count, uptime);
|
|
|
|
h[0] = (h[0] & 0xf8) | (id & 0x07); // 3 bits
|
|
printf("h[0] %x\n", h[0]);
|
|
h[0] = (h[0] & 0x07)| ((reset_count & 0x1f) << 3);
|
|
printf("h[0] %x\n", h[0]);
|
|
h[1] = (reset_count >> 5) & 0xff;
|
|
printf("h[1] %x\n", h[1]);
|
|
h[2] = (h[2] & 0xf8) | ((reset_count >> 13) & 0x07);
|
|
printf("h[2] %x\n", h[2]);
|
|
h[2] = (h[2] & 0x0e) | ((uptime & 0x1f) << 3);
|
|
printf("h[2] %x\n", h[2]);
|
|
h[3] = (uptime >> 5) & 0xff;
|
|
h[4] = (uptime >> 13) & 0xff;
|
|
h[5] = (h[5] & 0xf0) | ((uptime >> 21) & 0x0f);
|
|
h[5] = (h[5] & 0x0f) | (frm_type << 4);
|
|
|
|
batt_c_v += 10;
|
|
battCurr -= 10;
|
|
encodeA(b, 3 + head_offset, batt_c_v);
|
|
encodeA(b, 9 + head_offset, battCurr);
|
|
|
|
int ctr1 = 0;
|
|
int ctr3 = 0;
|
|
for (i = 0; i < RS_FRAME_LEN; i++)
|
|
{
|
|
for (int j = 0; j < RS_FRAMES ; j++)
|
|
{
|
|
if (!((i == (RS_FRAME_LEN - 1)) && (j == 2))) // skip last one for BPSK
|
|
{
|
|
if (ctr1 < HEADER_LEN)
|
|
{
|
|
rs_frame[j][i] = h[ctr1];
|
|
update_rs(parities[j], h[ctr1]);
|
|
printf("header %d rs_frame[%d][%d] = %x \n", ctr1, j, i, h[ctr1]);
|
|
data8[ctr1++] = rs_frame[j][i];
|
|
printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
|
|
}
|
|
else
|
|
{
|
|
rs_frame[j][i] = b[ctr3 % DATA_LEN];
|
|
update_rs(parities[j], b[ctr3 % DATA_LEN]);
|
|
printf("%d rs_frame[%d][%d] = %x %d \n",
|
|
ctr1, j, i, b[ctr3 % DATA_LEN], ctr3 % DATA_LEN);
|
|
data8[ctr1++] = rs_frame[j][i];
|
|
printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
|
|
ctr3++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("Parities ");
|
|
for (int m = 0; m < PARITY_LEN; m++) {
|
|
printf("%d ", parities[0][m]);
|
|
}
|
|
printf("\n");
|
|
|
|
int ctr2 = 0;
|
|
memset(data10,0,sizeof(data10));
|
|
int rd = 0;
|
|
int nrd;
|
|
|
|
for (i = 0; i < DATA_LEN * PAYLOADS + HEADER_LEN; i++) // 476 for BPSK
|
|
{
|
|
data10[ctr2] = (Encode_8b10b[rd][((int)data8[ctr2])] & 0x3ff);
|
|
nrd = (Encode_8b10b[rd][((int)data8[ctr2])] >> 10) & 1;
|
|
printf ("data10[%d] = encoded data8[%d] = %x \n",
|
|
ctr2, ctr2, data10[ctr2]);
|
|
|
|
rd = nrd; // ^ nrd;
|
|
ctr2++;
|
|
}
|
|
|
|
for (i = 0; i < PARITY_LEN; i++)
|
|
{
|
|
for (int j = 0; j < RS_FRAMES; j++)
|
|
{
|
|
data10[ctr2++] = (Encode_8b10b[rd][((int)parities[j][i])] & 0x3ff);
|
|
nrd = (Encode_8b10b[rd][((int)parities[j][i])] >> 10) & 1;
|
|
printf ("data10[%d] = encoded parities[%d][%d] = %x \n",
|
|
ctr2 - 1, j, i, data10[ctr2 - 1]);
|
|
|
|
rd = nrd;
|
|
}
|
|
}
|
|
|
|
int data;
|
|
int val;
|
|
int offset = 0;
|
|
|
|
for (i = 1; i <= SYNC_BITS * SAMPLES; i++)
|
|
{
|
|
write_wave(ctr);
|
|
if ( (i % SAMPLES) == 0) {
|
|
int bit = SYNC_BITS - i/SAMPLES + 1;
|
|
val = sync;
|
|
data = val & 1 << (bit - 1);
|
|
printf ("%d i: %d new frame %d sync bit %d = %d \n",
|
|
ctr/SAMPLES, i, frames, bit, (data > 0) );
|
|
if (DUV)
|
|
{
|
|
phase = ((data != 0) * 2) - 1;
|
|
printf("Sending a %d\n", phase);
|
|
}
|
|
else
|
|
{
|
|
if (data == 0) {
|
|
phase *= -1;
|
|
if ( (ctr - smaller) > 0)
|
|
{
|
|
for (int j = 1; j <= smaller; j++)
|
|
buffer[ctr - j] = buffer[ctr - j] * 0.4;
|
|
}
|
|
flip_ctr = ctr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 1;
|
|
i <= (10 * (HEADER_LEN + DATA_LEN * PAYLOADS + RS_FRAMES * PARITY_LEN) * SAMPLES); i++) // 572
|
|
{
|
|
write_wave(ctr);
|
|
if ( (i % SAMPLES) == 0) {
|
|
int symbol = (int)((i - 1)/ (SAMPLES * 10));
|
|
int bit = 10 - (i - symbol * SAMPLES * 10) / SAMPLES + 1;
|
|
val = data10[symbol];
|
|
data = val & 1 << (bit - 1);
|
|
printf ("%d i: %d new frame %d data10[%d] = %x bit %d = %d \n",
|
|
ctr/SAMPLES, i, frames, symbol, val, bit, (data > 0) );
|
|
if (DUV)
|
|
{
|
|
phase = ((data != 0) * 2) - 1;
|
|
printf("Sending a %d\n", phase);
|
|
}
|
|
else
|
|
{
|
|
if (data == 0) {
|
|
phase *= -1;
|
|
if ( (ctr - smaller) > 0)
|
|
{
|
|
for (int j = 1; j <= smaller; j ++)
|
|
buffer[ctr - j] = buffer[ctr - j] * 0.4;
|
|
}
|
|
flip_ctr = ctr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
write_wav("make_wav_gen7.wav", BUF_LEN, buffer, S_RATE);
|
|
|
|
if (tempSensor.fd != OFF) {
|
|
int tempValue = wiringPiI2CReadReg16(tempSensor.fd, 0);
|
|
uint8_t upper = (uint8_t) (tempValue >> 8);
|
|
uint8_t lower = (uint8_t) (tempValue & 0xff);
|
|
float temp = (float)lower + ((float)upper / 0x100);
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
printf("Temp Sensor Read: %6.1f\n", temp);
|
|
#endif
|
|
|
|
TxTemp = (int)((temp * 10.0) + 0.5);
|
|
encodeB(b, 34 + head_offset, TxTemp);
|
|
|
|
}
|
|
FILE *cpuTempSensor = fopen("/sys/class/thermal/thermal_zone0/temp", "r");
|
|
if (cpuTempSensor) {
|
|
double cpuTemp;
|
|
fscanf (cpuTempSensor, "%lf", &cpuTemp);
|
|
cpuTemp /= 1000;
|
|
|
|
#ifdef DEBUG_LOGGING
|
|
printf("CPU Temp Read: %6.1f\n", cpuTemp);
|
|
#endif
|
|
|
|
IHUcpuTemp = (int)((cpuTemp * 10.0) + 0.5);
|
|
encodeA(b, 39 + head_offset, IHUcpuTemp);
|
|
}
|
|
|
|
for (count = 0; count < 64; count++) {
|
|
printf("%02X", b[count]);
|
|
}
|
|
printf("\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
// wav file generation code
|
|
|
|
/* make_wav.c
|
|
* Creates a WAV file from an array of ints.
|
|
* Output is monophonic, signed 16-bit samples
|
|
* copyright
|
|
* Fri Jun 18 16:36:23 PDT 2010 Kevin Karplus
|
|
* Creative Commons license Attribution-NonCommercial
|
|
* http://creativecommons.org/licenses/by-nc/3.0/
|
|
*
|
|
* Edited by Dolin Sergey. dlinyj@gmail.com
|
|
* April 11 12:58 2014
|
|
*/
|
|
|
|
// gcc -o make_enc_wav make_enc_wav.c -lm
|
|
// ./make_enc_wav
|
|
|
|
/*
|
|
* TelemEncoding.h
|
|
*
|
|
* Created on: Feb 3, 2014
|
|
* Author: fox
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
//#include "make_wav.h"
|
|
|
|
#define false 0
|
|
#define true 1
|
|
|
|
//static int twosToInt(int val,int len);
|
|
//static int encodeB(short int *b, int index, int val);
|
|
//static int encodeA(short int *b, int index, int val);
|
|
|
|
static int NOT_FRAME = /* 0fa */ 0xfa & 0x3ff;
|
|
static int FRAME = /* 0fa */ ~0xfa & 0x3ff;
|
|
|
|
/*
|
|
* TelemEncoding.c
|
|
*
|
|
Fox-1 telemetry encoder
|
|
January 2014 Phil Karn KA9Q
|
|
|
|
This file has two external functions:
|
|
void update_rs(unsigned char parity[32],unsigned char data);
|
|
int encode_8b10b(int *state,int data).
|
|
|
|
update_rs() is the Reed-Solomon encoder. Its first argument is the 32-byte
|
|
encoder shift register, the second is the 8-bit data byte being encoded. It updates
|
|
the shift register in place and returns void. At the end of each frame, it contains
|
|
the parities ready for transmission, starting with parity[0].
|
|
Be sure to zero this array before each new frame!
|
|
|
|
encode_8b10b() is the 8b10b encoder. Its first argument is a pointer to a single integer
|
|
with the 1-bit encoder state (the current run disparity, or RD). Initialize it to 0
|
|
JUST ONCE at startup (not between frames).
|
|
The second argument is the data byte being encoded. It updates the state and returns
|
|
an integer containing the 10-bit encoded word, right justified.
|
|
Transmit this word from left to right.
|
|
|
|
The data argument is an int so it can hold the special value -1 to indicate end of frame;
|
|
it generates the 8b10b control word K.28.5, which is used as an inter-frame flag.
|
|
|
|
Some assert() calls are made to verify legality of arguments. These can be turned off in
|
|
production code.
|
|
|
|
|
|
sample frame transmission code:
|
|
|
|
unsigned char data[64]; // Data block to be sent
|
|
unsigned char parity[32]; // RS parities
|
|
void transmit_word(int); // User provided transmit function: 10 bits of data in bits 9....0
|
|
int state,i;
|
|
|
|
state = 0; // Only once at startup, not between frames
|
|
memset(parity,0,sizeof(parity); // Do this before every frame
|
|
// Transmit the data, updating the RS encoder
|
|
for(i=0;i<64;i++){
|
|
update_rs(parity,data[i]);
|
|
transmit_word(encode_8b10b(&state,data[i]);
|
|
}
|
|
// Transmit the RS parities
|
|
for(i=0;i<32;i++)
|
|
transmit_word(encode_8b10b(&state,parity[i]);
|
|
|
|
transmit_word(encode_8b10b(&state,-1); // Transmit end-of-frame flag
|
|
*/
|
|
|
|
|
|
#include <string.h>
|
|
//#include "Fox.h"
|
|
//#include "TelemEncoding.h"
|
|
|
|
#ifndef NULL
|
|
#define NULL ((void *)0)
|
|
#endif
|
|
|
|
#define NN (0xff) // Frame size in symbols
|
|
#define A0 (NN) // special value for log(0)
|
|
|
|
|
|
// GF Antilog lookup table table
|
|
static unsigned char CCSDS_alpha_to[NN+1] = {
|
|
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x87,0x89,0x95,0xad,0xdd,0x3d,0x7a,0xf4,
|
|
0x6f,0xde,0x3b,0x76,0xec,0x5f,0xbe,0xfb,0x71,0xe2,0x43,0x86,0x8b,0x91,0xa5,0xcd,
|
|
0x1d,0x3a,0x74,0xe8,0x57,0xae,0xdb,0x31,0x62,0xc4,0x0f,0x1e,0x3c,0x78,0xf0,0x67,
|
|
0xce,0x1b,0x36,0x6c,0xd8,0x37,0x6e,0xdc,0x3f,0x7e,0xfc,0x7f,0xfe,0x7b,0xf6,0x6b,
|
|
0xd6,0x2b,0x56,0xac,0xdf,0x39,0x72,0xe4,0x4f,0x9e,0xbb,0xf1,0x65,0xca,0x13,0x26,
|
|
0x4c,0x98,0xb7,0xe9,0x55,0xaa,0xd3,0x21,0x42,0x84,0x8f,0x99,0xb5,0xed,0x5d,0xba,
|
|
0xf3,0x61,0xc2,0x03,0x06,0x0c,0x18,0x30,0x60,0xc0,0x07,0x0e,0x1c,0x38,0x70,0xe0,
|
|
0x47,0x8e,0x9b,0xb1,0xe5,0x4d,0x9a,0xb3,0xe1,0x45,0x8a,0x93,0xa1,0xc5,0x0d,0x1a,
|
|
0x34,0x68,0xd0,0x27,0x4e,0x9c,0xbf,0xf9,0x75,0xea,0x53,0xa6,0xcb,0x11,0x22,0x44,
|
|
0x88,0x97,0xa9,0xd5,0x2d,0x5a,0xb4,0xef,0x59,0xb2,0xe3,0x41,0x82,0x83,0x81,0x85,
|
|
0x8d,0x9d,0xbd,0xfd,0x7d,0xfa,0x73,0xe6,0x4b,0x96,0xab,0xd1,0x25,0x4a,0x94,0xaf,
|
|
0xd9,0x35,0x6a,0xd4,0x2f,0x5e,0xbc,0xff,0x79,0xf2,0x63,0xc6,0x0b,0x16,0x2c,0x58,
|
|
0xb0,0xe7,0x49,0x92,0xa3,0xc1,0x05,0x0a,0x14,0x28,0x50,0xa0,0xc7,0x09,0x12,0x24,
|
|
0x48,0x90,0xa7,0xc9,0x15,0x2a,0x54,0xa8,0xd7,0x29,0x52,0xa4,0xcf,0x19,0x32,0x64,
|
|
0xc8,0x17,0x2e,0x5c,0xb8,0xf7,0x69,0xd2,0x23,0x46,0x8c,0x9f,0xb9,0xf5,0x6d,0xda,
|
|
0x33,0x66,0xcc,0x1f,0x3e,0x7c,0xf8,0x77,0xee,0x5b,0xb6,0xeb,0x51,0xa2,0xc3,0x00,
|
|
};
|
|
|
|
// GF log lookup table. Special value represents log(0)
|
|
static unsigned char CCSDS_index_of[NN+1] = {
|
|
A0, 0, 1, 99, 2,198,100,106, 3,205,199,188,101,126,107, 42,
|
|
4,141,206, 78,200,212,189,225,102,221,127, 49,108, 32, 43,243,
|
|
5, 87,142,232,207,172, 79,131,201,217,213, 65,190,148,226,180,
|
|
103, 39,222,240,128,177, 50, 53,109, 69, 33, 18, 44, 13,244, 56,
|
|
6,155, 88, 26,143,121,233,112,208,194,173,168, 80,117,132, 72,
|
|
202,252,218,138,214, 84, 66, 36,191,152,149,249,227, 94,181, 21,
|
|
104, 97, 40,186,223, 76,241, 47,129,230,178, 63, 51,238, 54, 16,
|
|
110, 24, 70,166, 34,136, 19,247, 45,184, 14, 61,245,164, 57, 59,
|
|
7,158,156,157, 89,159, 27, 8,144, 9,122, 28,234,160,113, 90,
|
|
209, 29,195,123,174, 10,169,145, 81, 91,118,114,133,161, 73,235,
|
|
203,124,253,196,219, 30,139,210,215,146, 85,170, 67, 11, 37,175,
|
|
192,115,153,119,150, 92,250, 82,228,236, 95, 74,182,162, 22,134,
|
|
105,197, 98,254, 41,125,187,204,224,211, 77,140,242, 31, 48,220,
|
|
130,171,231, 86,179,147, 64,216, 52,176,239, 38, 55, 12, 17, 68,
|
|
111,120, 25,154, 71,116,167,193, 35, 83,137,251, 20, 93,248,151,
|
|
46, 75,185, 96, 15,237, 62,229,246,135,165, 23, 58,163, 60,183,
|
|
};
|
|
|
|
// Only half the coefficients are given here because the
|
|
// generator polynomial is palindromic; G0 = G32, G1 = G31, etc.
|
|
// Only G16 is unique
|
|
static unsigned char CCSDS_poly[] = {
|
|
0,249, 59, 66, 4, 43,126,251, 97, 30, 3,213, 50, 66,170, 5,
|
|
24,
|
|
};
|
|
|
|
|
|
static inline int modnn(int x){
|
|
while (x >= NN) {
|
|
x -= NN;
|
|
x = (x >> 8) + (x & NN);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// Update Reed-Solomon encoder
|
|
// parity -> 32-byte reed-solomon encoder state; clear this to zero before each frame
|
|
void update_rs(
|
|
unsigned char parity[32], // 32-byte encoder state; zero before each frame
|
|
unsigned char c) // Current data byte to update
|
|
{
|
|
unsigned char feedback;
|
|
int j,t;
|
|
|
|
assert(parity != NULL);
|
|
feedback = CCSDS_index_of[c ^ parity[0]];
|
|
if(feedback != A0){ // only if feedback is non-zero
|
|
// Take advantage of palindromic polynomial to halve the multiplies
|
|
// Do G1...G15, which is the same as G17...G31
|
|
for(j=1;j<NP/2;j++){
|
|
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
|
|
parity[j] ^= t;
|
|
parity[NP-j] ^= t;
|
|
}
|
|
// Do G16, which is used in only parity[16]
|
|
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
|
|
parity[j] ^= t;
|
|
}
|
|
// shift left
|
|
memmove(&parity[0],&parity[1],NP-1);
|
|
// G0 is 1 in alpha form, 0 in index form; don't need to multiply by it
|
|
parity[NP-1] = CCSDS_alpha_to[feedback];
|
|
//taskYIELD();
|
|
}
|
|
|
|
#define SYNC (0x0fa) // K.28.5, RD=-1
|
|
|
|
void write_little_endian(unsigned int word, int num_bytes, FILE *wav_file)
|
|
{
|
|
unsigned buf;
|
|
while(num_bytes>0)
|
|
{ buf = word & 0xff;
|
|
fwrite(&buf, 1,1, wav_file);
|
|
num_bytes--;
|
|
word >>= 8;
|
|
}
|
|
}
|
|
|
|
/* information about the WAV file format from
|
|
|
|
http://ccrma.stanford.edu/courses/422/projects/WaveFormat/
|
|
|
|
*/
|
|
|
|
void write_wav(char * filename, unsigned long num_samples, short int * data, int s_rate)
|
|
{
|
|
FILE* wav_file;
|
|
unsigned int sample_rate;
|
|
unsigned int num_channels;
|
|
unsigned int bytes_per_sample;
|
|
unsigned int byte_rate;
|
|
unsigned long i; /* counter for samples */
|
|
|
|
num_channels = 1; /* monoaural */
|
|
bytes_per_sample = 2;
|
|
|
|
if (s_rate<=0) sample_rate = 44100;
|
|
else sample_rate = (unsigned int) s_rate;
|
|
|
|
byte_rate = sample_rate*num_channels*bytes_per_sample;
|
|
|
|
wav_file = fopen(filename, "w");
|
|
assert(wav_file); /* make sure it opened */
|
|
|
|
/* write RIFF header */
|
|
fwrite("RIFF", 1, 4, wav_file);
|
|
write_little_endian(36 + bytes_per_sample* num_samples*num_channels, 4, wav_file);
|
|
fwrite("WAVE", 1, 4, wav_file);
|
|
|
|
/* write fmt subchunk */
|
|
fwrite("fmt ", 1, 4, wav_file);
|
|
write_little_endian(16, 4, wav_file); /* SubChunk1Size is 16 */
|
|
write_little_endian(1, 2, wav_file); /* PCM is format 1 */
|
|
write_little_endian(num_channels, 2, wav_file);
|
|
write_little_endian(sample_rate, 4, wav_file);
|
|
write_little_endian(byte_rate, 4, wav_file);
|
|
write_little_endian(num_channels*bytes_per_sample, 2, wav_file); /* block align */
|
|
write_little_endian(8*bytes_per_sample, 2, wav_file); /* bits/sample */
|
|
|
|
/* write data subchunk */
|
|
fwrite("data", 1, 4, wav_file);
|
|
write_little_endian(bytes_per_sample* num_samples*num_channels, 4, wav_file);
|
|
|
|
for (i=0; i< num_samples; i++)
|
|
{ write_little_endian((unsigned int)(data[i]),bytes_per_sample, wav_file);
|
|
}
|
|
|
|
fclose(wav_file);
|
|
}
|
|
|
|
|
|
|
|
//int main(int argc, char * argv[])
|
|
//{
|
|
|
|
// return 0;
|
|
//}
|
|
|
|
void write_wave(int i)
|
|
{
|
|
if (DUV)
|
|
{
|
|
// if ((ctr - flip_ctr) < smaller)
|
|
// buffer[ctr++] = 0.1 * phase * (ctr - flip_ctr) / smaller;
|
|
// else
|
|
buffer[ctr++] = 0.25 * amplitude * phase;
|
|
}
|
|
else
|
|
{
|
|
if ((ctr - flip_ctr) < smaller)
|
|
buffer[ctr++] = (int)(amplitude * 0.4 * phase *
|
|
sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
|
|
else
|
|
buffer[ctr++] = (int)(amplitude * phase *
|
|
sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
|
|
}
|
|
// printf("%d %d \n", i, buffer[ctr - 1]);
|
|
|
|
}
|
|
|
|
/**
|
|
*
|
|
* FOX 1 Telemetry Decoder
|
|
* @author chris.e.thompson g0kla/ac2cz
|
|
*
|
|
* Copyright (C) 2015 amsat.org
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*
|
|
* Static variables and methods to encode and decode 8b10b
|
|
*
|
|
*
|
|
*/
|
|
|
|
int encodeA(short int *b, int index, int val) {
|
|
// printf("Encoding A\n");
|
|
b[index] = val & 0xff;
|
|
b[index + 1] = (b[index + 1] & 0xf0) | ((val >> 8) & 0x0f);
|
|
return 0;
|
|
}
|
|
|
|
int encodeB(short int *b, int index, int val) {
|
|
// printf("Encoding B\n");
|
|
b[index] = (b[index] & 0x0f) | ((val << 4) & 0xf0);
|
|
b[index + 1] = (val >> 4 ) & 0xff;
|
|
return 0;
|
|
}
|
|
|
|
int twosToInt(int val,int len) { // Convert twos compliment to integer
|
|
// from https://www.raspberrypi.org/forums/viewtopic.php?t=55815
|
|
|
|
if(val & (1 << (len - 1)))
|
|
val = val - (1 << len);
|
|
|
|
return(val);
|
|
}
|