You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CubeSatSim/codecAO40.c

530 lines
16 KiB

#include <string.h>
#include "codecAO40.h"
/* ---------------------- */
/* AO40 Encoder - Decoder */
/* ---------------------- */
/* Scramble and RS encode 256 byte blocks of data into 5200 bits
* or Descramble and RS decode 5200 bits into the 256 bytes of data
*
* --------------------------------------------------------------------------
* This decoder has evolved extensively through the work of Phil Karn. It draws
* on his own ideas and optimisations, and on the work of others. The lineage
* is as below, and parts of the authors' notices are included here. (JRM)
* AO40 encoder / decoder
* Copyright 2002 Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
* Reed-Solomon coding and decoding
* Phil Karn (karn@ka9q.ampr.org) September 1996
*
* This file is derived from the program "new_rs_erasures.c" by Robert
* Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy
* (harit@spectra.eng.hawaii.edu), Aug 1995
* --------------------------------------------------------------------------
*
* From the RM-Z & HT program:
* The encoding and decoding methods are based on the
* book "Error Control Coding: Fundamentals and Applications",
* by Lin and Costello, Prentice Hall, 1983, ISBN 0-13-283796-X
* Portions of this program are from a Reed-Solomon encoder/decoder
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89.
* --------------------------------------------------------------------------
*
* From the 1989/1991 SR program (also based on Lin and Costello):
* This program may be freely modified and/or given to whoever wants it.
* A condition of such distribution is that the author's contribution be
* acknowledged by his name being left in the comments heading the program,
* Simon Rockliff, 26th June 1991
*
*/
/* Defines for RS Decoder(s) */
#ifndef min
#define min(a,b) ((a) < (b) ? (a) : (b))
#endif
/*
CCodecAO40::CCodecAO40(void)
{
}
CCodecAO40::~CCodecAO40(void)
{
}
*/
//int CCodecAO40::mod255(int x) {
int mod255(int x) {
while (x >= 255) {
x -= 255;
x = (x >> 8) + (x & 255);
}
return x;
}
//int CCodecAO40::decode_rs_8(char *data, int *eras_pos, int no_eras){
int decode_rs_8(char *data, int *eras_pos, int no_eras){
int deg_lambda, el, deg_omega;
int i, j, r,k;
unsigned char u,q,tmp,num1,num2,den,discr_r;
unsigned char lambda[NROOTS+1], s[NROOTS]; /* Err+Eras Locator poly and syndrome poly */
unsigned char b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
unsigned char root[NROOTS], reg[NROOTS+1], loc[NROOTS];
int syn_error, count;
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
for(i=0;i<NROOTS;i++)
s[i] = data[0];
for(j=1;j<NN;j++){
for(i=0;i<NROOTS;i++){
if(s[i] == 0){
s[i] = data[j];
} else {
s[i] = data[j] ^ ALPHA_TO[mod255(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
}
}
}
/* Convert syndromes to index form, checking for nonzero condition */
syn_error = 0;
for(i=0;i<NROOTS;i++){
syn_error |= s[i];
s[i] = INDEX_OF[s[i]];
}
if (!syn_error) {
/* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
count = 0;
goto finish;
}
memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
lambda[0] = 1;
if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
lambda[1] = ALPHA_TO[mod255(PRIM*(NN-1-eras_pos[0]))];
for (i = 1; i < no_eras; i++) {
u = mod255(PRIM*(NN-1-eras_pos[i]));
for (j = i+1; j > 0; j--) {
tmp = INDEX_OF[lambda[j - 1]];
if(tmp != A0)
lambda[j] ^= ALPHA_TO[mod255(u + tmp)];
}
}
}
for(i=0;i<NROOTS+1;i++)
b[i] = INDEX_OF[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= NROOTS) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++){
if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
discr_r ^= ALPHA_TO[mod255(INDEX_OF[lambda[i]] + s[r-i-1])];
}
}
discr_r = INDEX_OF[discr_r]; /* Index form */
if (discr_r == A0) {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,NROOTS*sizeof(b[0]));
b[0] = A0;
} else {
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0 ; i < NROOTS; i++) {
if(b[i] != A0)
t[i+1] = lambda[i+1] ^ ALPHA_TO[mod255(discr_r + b[i])];
else
t[i+1] = lambda[i+1];
}
if (2 * el <= r + no_eras - 1) {
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= NROOTS; i++)
b[i] = (lambda[i] == 0) ? A0 : mod255(INDEX_OF[lambda[i]] - discr_r + NN);
} else {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,NROOTS*sizeof(b[0]));
b[0] = A0;
}
memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for(i=0;i<NROOTS+1;i++){
lambda[i] = INDEX_OF[lambda[i]];
if(lambda[i] != A0)
deg_lambda = i;
}
/* Find roots of the error+erasure locator polynomial by Chien search */
memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1,k=IPRIM-1; i <= NN; i++,k = mod255(k+IPRIM)) {
q = 1; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--){
if (reg[j] != A0) {
reg[j] = mod255(reg[j] + j);
q ^= ALPHA_TO[reg[j]];
}
}
if (q != 0)
continue; /* Not a root */
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = k;
/* If we've already found max possible roots,
* abort the search to save time
*/
if(++count == deg_lambda)
break;
}
if (deg_lambda != count) {
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
count = -1;
goto finish;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**NROOTS). in index form. Also find deg(omega).
*/
deg_omega = 0;
for (i = 0; i < NROOTS;i++){
tmp = 0;
j = (deg_lambda < i) ? deg_lambda : i;
for(;j >= 0; j--){
if ((s[i - j] != A0) && (lambda[j] != A0))
tmp ^= ALPHA_TO[mod255(s[i - j] + lambda[j])];
}
if(tmp != 0)
deg_omega = i;
omega[i] = INDEX_OF[tmp];
}
omega[NROOTS] = A0;
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count-1; j >=0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != A0)
num1 ^= ALPHA_TO[mod255(omega[i] + i * root[j])];
}
num2 = ALPHA_TO[mod255(root[j] * (FCR - 1) + NN)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
if(lambda[i+1] != A0)
den ^= ALPHA_TO[mod255(lambda[i+1] + i * root[j])];
}
if (den == 0) {
count = -1;
goto finish;
}
/* Apply error to data */
if (num1 != 0) {
data[loc[j]] ^= ALPHA_TO[mod255(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
}
}
finish:
if(eras_pos != NULL){
for(i=0;i<count;i++)
eras_pos[i] = loc[i];
}
return count;
}
/* ---------- */
/* Re-encoder */
/* ---------- */
/* Reference encoder for proposed coded AO-40 telemetry format - v1.0 7 Jan 2002
* Copyright 2002, Phil Karn, KA9Q
* This software may be used under the terms of the GNU Public License (GPL)
*/
/* Adapted from the above enc_ref.c as used by the spacecraft (JRM) */
/* Write one binary channel symbol into the interleaver frame and update the pointers */
//void CCodecAO40::interleave_symbol(int c)
void interleave_symbol(int c)
{
int row,col;
col=m_ileaver_index/COLUMNS;
row=m_ileaver_index%COLUMNS;
if(c)
{
m_encoded[row*ROWS+col] = 1;
}
m_ileaver_index++;
}
/* Convolutionally encode and interleave one byte */
//void CCodecAO40::encode_and_interleave(unsigned char c,int cnt){
void encode_and_interleave(unsigned char c,int cnt){
while(cnt-- != 0)
{
m_conv_sr = (m_conv_sr << 1) | (c >> 7);
c <<= 1;
interleave_symbol( Partab[m_conv_sr & CPOLYA]);
interleave_symbol(!Partab[m_conv_sr & CPOLYB]); /* Second encoder symbol is inverted */
}
}
/* Scramble a byte, convolutionally encode and interleave into frame */
//void CCodecAO40::scramble_and_encode(unsigned char c){
void scramble_and_encode(unsigned char c){
c ^= Scrambler[m_encoded_bytes]; /* Scramble byte */
encode_and_interleave(c,8); /* RS encode and place into reencode buffer */
}
/* Encodes the 256 byte source block RSdecdata[] into 5200 byte block of symbols
* results stored in m_encoded.
* On success encoded buffer is returned, an zeroed buffer on failure
*/
//const unsigned char *CCodecAO40::encode(unsigned char *source_bytes, int byte_count)
const unsigned char *encode(unsigned char *source_bytes, int byte_count)
{
if(BLOCKSIZE != byte_count || NULL == source_bytes )
{
memset(m_encoded, 0, BLOCKSIZE);
return m_encoded;
}
init_encoder();
for(int i=0;i<BLOCKSIZE;i++)
{
encode_byte(source_bytes[i]) ;
}
for(int i=0;i<64;i++)
{
encode_parity();
}
return m_encoded;
}
/* The original three C user's entry points now follow. They are:
init_encoder() Called once before using system.
encode_byte(unsigned char c) Called with each user byte (i.e. 256 calls)
encode_parity() Called 64 times to finish off
*/
/* This function initializes the encoder. */
//void CCodecAO40::init_encoder(void){
void init_encoder(void){
int i,j,sr;
m_encoded_bytes = 0;
m_conv_sr = 0;
m_ileaver_index = COLUMNS; /* Sync vector is in first column; data starts here */
for(j=0;j<RSBLOCKS;j++) /* Flush parity array */
{
for(i=0;i<NROOTS;i++)
{
m_RS_block[j][i] = 0;
}
}
/* Clear re-encoded array */
for(i=0;i<SYMPBLOCK;i++)
{
m_encoded[i] = 0;
}
/* Generate sync vector, interleave into re-encode array, 1st column */
sr = 0x7f;
for(i=0;i<65;i++)
{
if(sr & 64)
{
m_encoded[ROWS*i] = 1; /* Every 80th symbol is a sync bit */
}
sr = (sr << 1) | Partab[sr & SYNC_POLY];
}
}
/* This function is called with each user data byte to be encoded into the
* current frame. It should be called in sequence 256 times per frame, followed
* by 64 calls to encode_parity().
*/
//void CCodecAO40::encode_byte(unsigned char c){
void encode_byte(unsigned char c){
unsigned char *rp; /* RS block pointer */
int i;
unsigned char feedback;
/* Update the appropriate Reed-Solomon codeword */
rp = m_RS_block[m_encoded_bytes & 1];
/* Compute feedback term */
feedback = INDEX_OF[c ^ rp[0]];
/* If feedback is non-zero, multiply by each generator polynomial coefficient and
* add to corresponding shift register elements
*/
if(feedback != A0){
int j;
/* This loop exploits the palindromic nature of the generator polynomial
* to halve the number of discrete multiplications
*/
for(j=0;j<15;j++){
unsigned char t;
t = ALPHA_TO[mod255(feedback + RS_poly[j])];
rp[j+1] ^= t; rp[31-j] ^= t;
}
rp[16] ^= ALPHA_TO[mod255(feedback + RS_poly[15])];
}
/* Shift 32 byte RS register one position down */
for(i=0;i<31;i++)
rp[i] = rp[i+1];
/* Handle highest order coefficient, which is unity */
if(feedback != A0){
rp[31] = ALPHA_TO[feedback];
} else {
rp[31] = 0;
}
scramble_and_encode(c);
m_encoded_bytes++;
}
/* This function should be called 64 times after the 256 data bytes
* have been passed to update_encoder. Each call scrambles, encodes and
* interleaves one byte of Reed-Solomon parity.
*/
//void CCodecAO40::encode_parity(void) {
void encode_parity(void) {
unsigned char c;
c = m_RS_block[m_encoded_bytes & 1][(m_encoded_bytes-256)>>1];
scramble_and_encode(c);
if(++m_encoded_bytes == 320){
/* Tail off the convolutional encoder (flush) */
encode_and_interleave(0,6);
}
}
//void CCodecAO40::descramble_to_rsblocks(unsigned char viterbi_decoded[NBITS_OUT], char rsblocks[RSBLOCKS][NN])
void descramble_to_rsblocks(unsigned char viterbi_decoded[NBITS_OUT], char rsblocks[RSBLOCKS][NN])
{
/* interleave into Reed Solomon codeblocks */
memset(rsblocks,0,RSBLOCKS*NN); /* Zero rsblocks array */
int di = 0;
int si = 0;
for(int col=RSPAD;col<NN;col++)
{
for(int row=0;row<RSBLOCKS;row++)
{
rsblocks[row][col] = viterbi_decoded[di++] ^ Scrambler[si++]; /* Remove scrambling */
}
}
}
/* -------- */
/* Decoder */
/* -------- */
/* ------------------- */
/* There are two RS decoders, processing 128 bytes each.
*
* If both RS decoders are SUCCESSFUL
* On exit:
* rs_failures = 0
* rserrs[x] = number of errors corrected; range 0 to 16 (x= 0 or 1)
* Data output is in array RSdecdata[256].
*
* If an RS decoder FAILS
* On exit:
* rs_failures = 1 or 2 (i.e. != 0)
* rserrs[x] contains -1
* Data output should not be used.
*/
//int CCodecAO40::decode(unsigned char vitdecdata[NBITS_OUT], unsigned char *decoded_data)
int decode(unsigned char vitdecdata[NBITS_OUT], unsigned char *decoded_data)
{
int row, col, row_errors, total_errors;
char rsblocks[RSBLOCKS][NN];
descramble_to_rsblocks(vitdecdata, rsblocks);
/* Run RS-decoder(s) */
row_errors = total_errors = 0;
for(row=0; row<RSBLOCKS && row_errors!= -1; row++)
{
// decode row, returns -1 on failure or number of corrected errors
row_errors = decode_rs_8(rsblocks[row],NULL,0);
total_errors += row_errors;
}
if(row_errors != -1)
{
/* if frame decoded OK, deinterleave data from RS codeword(s) */
int j = 0;
for(col=RSPAD;col<KK;col++)
{
for(row=0;row<RSBLOCKS;row++)
{
decoded_data[j++] = rsblocks[row][col];
}
}
}
else
{
total_errors = -1;
}
return total_errors;
}
/* Compairs raw input symbols to current buffer of encoded symbols and counts the errors */
//int CCodecAO40::count_errors(unsigned char *raw_symbols)
int count_errors(unsigned char *raw_symbols)
{
int error_count = 0;
for(int i=0;i<SYMPBLOCK;i++)
{
if ( m_encoded[i] != (raw_symbols[i]>>7) )
{
error_count++ ;
}
}
return error_count;
}

Powered by TurnKey Linux.