/*
* Transmits CubeSat Telemetry at 434.9MHz in AFSK, FSK, or CW format
*
* Copyright Alan B. Johnston
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
// This code is an Arduino sketch for the Raspberry Pi Pico
// based on the Raspberry Pi Code
#include "cubesatsim.h"
#include "DumbTXSWS.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include "pico/stdlib.h" // stdlib
#include "hardware/irq.h" // interrupts
#include "hardware/pwm.h" // pwm
#include "hardware/sync.h" // wait for interrupt
#include "RPi_Pico_TimerInterrupt.h"
#include
#include "hardware/gpio.h"
#include "hardware/adc.h"
Adafruit_INA219 ina219_1_0x40;
Adafruit_INA219 ina219_1_0x41(0x41);
Adafruit_INA219 ina219_1_0x44(0x44);
Adafruit_INA219 ina219_1_0x45(0x45);
Adafruit_INA219 ina219_2_0x40(0x40);
Adafruit_INA219 ina219_2_0x41(0x41);
Adafruit_INA219 ina219_2_0x44(0x44);
Adafruit_INA219 ina219_2_0x45(0x45);
char payload_str[100];
WiFiServer server(port);
WiFiClient client;
//#define PICO_W // define if Pico W board. Otherwise, compilation fail for Pico or runtime fail if compile as Pico W
void setup() {
new_mode = mode;
Serial.begin(9600);
pinMode(LED_BUILTIN, OUTPUT);
blinkTimes(1);
sleep(5.0);
config_gpio();
EEPROM.begin(512);
#ifndef ARDUINO_ARCH_RP2040
Serial.println("This code is written for the Raspberry Pi Pico hardware.");
#endif
// detect Pi Zero using 3.3V
// if Pi is present, run Payload OK software
// otherwise, run CubeSatSim Pico code
Serial.println("\n\nCubeSatSim Pico v0.1 starting...\n\n");
/*
pinMode(PI_3V3_PIN, INPUT);
Serial.print("Pi 3.3V: ");
Serial.println(digitalRead(PI_3V3_PIN));
if (digitalRead(PI_3V3_PIN) == HIGH) {
Serial.print("Pi Zero present, so running Payload OK code instead of CubeSatSim code.");
start_payload();
while(true) {
payload_OK_only();
}
}
*/
// configure STEM Payload sensors
start_payload(); // above code not working, so forcing it
read_reset_count();
sim_mode = FALSE;
if (sim_mode)
config_simulated_telem();
else
; // configure ina219s
start_ina219();
config_telem();
// setup radio depending on mode
config_radio();
/*
if (check_for_wifi()) {
wifi = true;
configure_wifi();
}
*/
start_button_isr();
/*
char call[] = "AMSAT";
strcpy(callsign, call);
transmit_callsign(callsign);
sleep(5.0);
*/
sampleTime = (unsigned int) millis();
ready = TRUE; // flag for core1 to start looping
Serial.print("s");
Serial.print(" ");
Serial.println(millis());
}
void loop() {
int startSleep = millis();
loop_count++;
if (sim_mode == TRUE)
generate_simulated_telem();
else
// query INA219 sensors and Payload sensors
read_ina219();
read_payload();
// encode as digits (APRS or CW mode) or binary (DUV FSK)
if ((mode == BPSK) || (mode == FSK))
{
get_tlm_fox();
}
else if (mode == AFSK)
{
send_packet();
}
// while ((millis() - sampleTime) < ((unsigned int)samplePeriod)) // - 250)) // was 250 100
while ((millis() - sampleTime) < ((unsigned int)frameTime)) // - 250)) // was 250 100
sleep(0.1); // 25); // 0.5); // 25);
sampleTime = (unsigned int) millis();
// delay(2000);
// test_radio();
if ((mode == FSK) || (mode == BPSK)) {
if (!wifi)
digitalWrite(LED_BUILTIN, LOW);
digitalWrite(MAIN_LED_BLUE, LOW);
// delay(3000);
sleep(0.2); // 2.845); // 3.0);
if (!wifi)
digitalWrite(LED_BUILTIN, HIGH);
digitalWrite(MAIN_LED_BLUE, HIGH);
}
// check to see if the mode has changed
if (mode != new_mode) {
Serial.println("Changing mode");
mode = new_mode; // change modes if button pressed
config_telem();
config_radio();
}
// Calculate loop time
Serial.print("\nLoop time: ");
Serial.println(millis() - startSleep);
}
bool TimerHandler1(struct repeating_timer *t) {
// check for button press
if (digitalRead(MAIN_PB_PIN) == PRESSED) // pushbutton is pressed
process_pushbutton();
if (BOOTSEL) // boot selector button is pressed on Pico
process_bootsel();
if (wifi)
check_for_browser();
return(true);
}
void read_reset_count() {
long stored_reset, reset_flag;
EEPROM.get(16, reset_flag);
if (reset_flag == 0xA07) // not first time, read stored reset count
{
EEPROM.get(20, stored_reset);
reset_count = (int) stored_reset;
Serial.print("Reading reset count from EEPROM as ");
Serial.println(reset_count);
stored_reset += 1; // increment for next boot
EEPROM.put(20, stored_reset);
if (EEPROM.commit()) {
Serial.println("EEPROM successfully committed");
} else {
Serial.println("ERROR! EEPROM commit failed");
}
} else { // first time, store flag and reset count as 0
Serial.println("Storing initial reset count in EEPROM");
Serial.println("Reset count is 0");
reset_flag = 0xA07;
EEPROM.put(16, reset_flag);
stored_reset = 0;
EEPROM.put(20, stored_reset + 1);
if (EEPROM.commit()) {
Serial.println("EEPROM successfully committed");
} else {
Serial.println("ERROR! EEPROM commit failed");
}
}
}
void send_packet() {
// encode telemetry
get_tlm_ao7();
// digitalWrite(LED_BUILTIN, LOW);
Serial.println("Sending APRS packet!");
transmit_on();
send_packet(_FIXPOS_STATUS);
transmit_off();
}
void transmit_on() {
if (mode == AFSK) {
digitalWrite(MAIN_LED_BLUE, HIGH);
digitalWrite(PTT_PIN, LOW);
}
else if (mode == BPSK) {
pwm_set_gpio_level(BPSK_PWM_A_PIN, (config.top + 1) * 0.5);
pwm_set_gpio_level(BPSK_PWM_B_PIN, (config.top + 1) * 0.5);
}
}
void transmit_off() {
digitalWrite(MAIN_LED_BLUE, LOW);
// if ((mode == AFSK) || (mode == FSK))
digitalWrite(PTT_PIN, HIGH);
// else if (mode == BPSK) {
// ITimer0.stopTimer(); // stop isr
pwm_set_gpio_level(BPSK_PWM_A_PIN, 0);
pwm_set_gpio_level(BPSK_PWM_B_PIN, 0);
// }
}
void config_telem() {
frameCnt = 1;
Serial.println("v1 Present with UHF BPF\n");
txLed = 2;
txLedOn = HIGH;
txLedOff = LOW;
vB5 = TRUE;
onLed = 27;
onLedOn = HIGH;
onLedOff = LOW;
transmit = TRUE;
if (mode == FSK) {
Serial.println("Configuring for FSK\n");
bitRate = 200;
delay_time = (1.0 / 200.0);
rsFrames = 1;
payloads = 1;
rsFrameLen = 64;
headerLen = 6;
dataLen = 58;
syncBits = 10;
syncWord = 0b0011111010;
parityLen = 32;
amplitude = 32767 / 3;
sample_rate = 200;
// samples = S_RATE / bitRate;
samples = sample_rate / bitRate;
Serial.println(samples);
bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples);
Serial.println(bufLen);
samplePeriod = (int) (((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen)))) / (float) bitRate) * 1000 - 500);
sleepTime = 0.1;
Serial.println(samplePeriod);
frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms
Serial.println(frameTime);
// printf("\n FSK Mode, %d bits per frame, %d bits per second, %d ms per frame, %d ms sample period\n",
// bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod);
memset(buffer, 0xa5, sizeof(buffer));
} else if (mode == BPSK) {
Serial.println("Configuring for BPSK\n");
bitRate = 1200;
// delay_time = (1.0 / 1200.0);
delay_time = (1.0 / 200.0);
rsFrames = 3;
payloads = 6;
rsFrameLen = 159;
headerLen = 8;
dataLen = 78;
syncBits = 31;
syncWord = 0b1000111110011010010000101011101;
parityLen = 32;
amplitude = 32767;
sample_rate = 1200;
// samples = S_RATE / bitRate;
samples = sample_rate / bitRate;
Serial.println(samples);
// bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples); // * 2; // 2 *
bufLen = 5751; // instead of 5841
Serial.println(bufLen);
// samplePeriod = ((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))))/(float)bitRate) * 1000 - 500;
samplePeriod = ((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))))/(float)bitRate) * 1000; // - 500;
// samplePeriod = 3000;
// sleepTime = 3.0;
//samplePeriod = 2200; // reduce dut to python and sensor querying delays
sleepTime = 2.2f;
Serial.println(samplePeriod);
frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms
Serial.println(frameTime);
// printf("\n BPSK Mode, bufLen: %d, %d bits per frame, %d bits per second, %d ms per frame %d ms sample period\n",
// bufLen, bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod);
// sin_samples = S_RATE/freq_Hz;
// printf("Sin map: ");
// for (int j = 0; j < sin_samples; j++) {
// sin_map[j] = (short int)(amplitude * sin((float)(2 * M_PI * j / sin_samples)));
// printf(" %d", sin_map[j]);
// }
// printf("\n");
// }
memset(buffer, 0xa5, sizeof(buffer));
} else if (mode == AFSK) {
Serial.println("Configuring for AFSK\n");
set_pin(AUDIO_OUT_PIN);
char callsign[] = "W3ZM";
set_callsign(callsign);
char lat_default[] = "0610.55S";
char lon_default[] = "10649.62E";
char sym_ovl_default = 'H';
char sym_tab_default = 'a';
char icon[] = "Ha";
set_lat_lon_icon(lat_default, lon_default, icon);
samplePeriod = 5000;
frameTime = 5000;
bufLen = 1000;
}
// clearing min and max values
Serial.println("Clearing min and max telemetry values");
for (int i = 0; i < 9; i++) {
voltage_min[i] = 1000.0;
current_min[i] = 1000.0;
voltage_max[i] = -1000.0;
current_max[i] = -1000.0;
}
for (int i = 0; i < 17; i++) {
sensor_min[i] = 1000.0;
sensor_max[i] = -1000.0;
// printf("Sensor min and max initialized!");
}
for (int i = 0; i < 3; i++) {
other_min[i] = 1000.0;
other_max[i] = -1000.0;
}
firstTime = TRUE;
}
void get_tlm_ao7() {
// for (int l = 0; l < frameCnt; l++) {
// fflush(stdout);
// fflush(stderr);
int tlm[7][5];
memset(tlm, 0, sizeof tlm);
tlm[1][A] = (int)(voltage[mapping[BUS]] / 15.0 + 0.5) % 100; // Current of 5V supply to Pi
tlm[1][B] = (int)(99.5 - current[mapping[PLUS_X]] / 10.0) % 100; // +X current [4]
tlm[1][C] = (int)(99.5 - current[mapping[MINUS_X]] / 10.0) % 100; // X- current [10]
tlm[1][D] = (int)(99.5 - current[mapping[PLUS_Y]] / 10.0) % 100; // +Y current [7]
tlm[2][A] = (int)(99.5 - current[mapping[MINUS_Y]] / 10.0) % 100; // -Y current [10]
tlm[2][B] = (int)(99.5 - current[mapping[PLUS_Z]] / 10.0) % 100; // +Z current [10] // was 70/2m transponder power, AO-7 didn't have a Z panel
tlm[2][C] = (int)(99.5 - current[mapping[MINUS_Z]] / 10.0) % 100; // -Z current (was timestamp)
tlm[2][D] = (int)(50.5 + current[mapping[BAT]] / 10.0) % 100; // NiMH Battery current
// tlm[3][A] = abs((int)((voltage[mapping[BAT]] * 10.0) - 65.5) % 100);
if (voltage[mapping[BAT]] > 4.6)
tlm[3][A] = (int)((voltage[mapping[BAT]] * 10.0) - 65.5) % 100; // 7.0 - 10.0 V for old 9V battery
else
tlm[3][A] = (int)((voltage[mapping[BAT]] * 10.0) + 44.5) % 100; // 0 - 4.5 V for new 3 cell battery
tlm[3][B] = (int)(voltage[mapping[BUS]] * 10.0) % 100; // 5V supply to Pi
// tlm[4][A] = (int)((95.8 - other[IHU_TEMP]) / 1.48 + 0.5) % 100; // was [B] but didn't display in online TLM spreadsheet
tlm[4][A] = (int)((95.8 - analogReadTemp()) / 1.48 + 0.5) % 100; // was [B] but didn't display in online TLM spreadsheet
tlm[6][B] = 0;
tlm[6][D] = 49 + rand() % 3;
/*
// Display tlm
int k, j;
Serial.print("TLM: ");
for (k = 1; k < 7; k++) {
for (j = 1; j < 5; j++) {
Serial.print(tlm[k][j]);
Serial.print(" ");
}
}
Serial.println(" ");
*/
char str[1000];
char tlm_str[1000];
int channel;
char header_str[] = "hi hi ";
strcpy(str, header_str);
for (channel = 1; channel < 7; channel++) {
sprintf(tlm_str, "%d%d%d %d%d%d %d%d%d %d%d%d ",
channel, upper_digit(tlm[channel][1]), lower_digit(tlm[channel][1]),
channel, upper_digit(tlm[channel][2]), lower_digit(tlm[channel][2]),
channel, upper_digit(tlm[channel][3]), lower_digit(tlm[channel][3]),
channel, upper_digit(tlm[channel][4]), lower_digit(tlm[channel][4]));
// printf("%s",tlm_str);
strcat(str, tlm_str);
}
// print_string(str);
strcat(str, payload_str);
// print_string(str);
// Serial.println(strlen(str));
set_status(str);
// }
}
void generate_simulated_telem() {
double time = ((long int)millis() - time_start) / 1000.0;
if ((time - eclipse_time) > period) {
eclipse = (eclipse == 1) ? 0 : 1;
eclipse_time = time;
Serial.println("\n\nSwitching eclipse mode! \n\n");
}
double Xi = eclipse * amps_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-2, 2);
double Yi = eclipse * amps_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-2, 2);
double Zi = eclipse * amps_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-2, 2);
double Xv = eclipse * volts_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-0.2, 0.2);
double Yv = eclipse * volts_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-0.2, 0.2);
double Zv = 2.0 * eclipse * volts_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-0.2, 0.2);
// printf("Yi: %f Zi: %f %f %f Zv: %f \n", Yi, Zi, amps_max[2], angle[2], Zv);
current[mapping[PLUS_X]] = (Xi >= 0) ? Xi : 0;
current[mapping[MINUS_X]] = (Xi >= 0) ? 0 : ((-1.0f) * Xi);
current[mapping[PLUS_Y]] = (Yi >= 0) ? Yi : 0;
current[mapping[MINUS_Y]] = (Yi >= 0) ? 0 : ((-1.0f) * Yi);
current[mapping[PLUS_Z]] = (Zi >= 0) ? Zi : 0;
current[mapping[MINUS_Z]] = (Zi >= 0) ? 0 : ((-1.0f) * Zi);
voltage[mapping[PLUS_X]] = (Xv >= 1) ? Xv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_X]] = (Xv <= -1) ? ((-1.0f) * Xv) : rnd_float(0.9, 1.1);
voltage[mapping[PLUS_Y]] = (Yv >= 1) ? Yv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_Y]] = (Yv <= -1) ? ((-1.0f) * Yv) : rnd_float(0.9, 1.1);
voltage[mapping[PLUS_Z]] = (Zv >= 1) ? Zv : rnd_float(0.9, 1.1);
voltage[mapping[MINUS_Z]] = (Zv <= -1) ? ((-1.0f) * Zv) : rnd_float(0.9, 1.1);
// printf("temp: %f Time: %f Eclipse: %d : %f %f | %f %f | %f %f\n",tempS, time, eclipse, voltage[map[PLUS_X]], voltage[map[MINUS_X]], voltage[map[PLUS_Y]], voltage[map[MINUS_Y]], current[map[PLUS_Z]], current[map[MINUS_Z]]);
tempS += (eclipse > 0) ? ((temp_max - tempS) / 50.0f) : ((temp_min - tempS) / 50.0f);
tempS += +rnd_float(-1.0, 1.0);
// IHUcpuTemp = (int)((tempS + rnd_float(-1.0, 1.0)) * 10 + 0.5);
other[IHU_TEMP] = tempS;
voltage[mapping[BUS]] = rnd_float(5.0, 5.005);
current[mapping[BUS]] = rnd_float(158, 171);
// float charging = current[map[PLUS_X]] + current[map[MINUS_X]] + current[map[PLUS_Y]] + current[map[MINUS_Y]] + current[map[PLUS_Z]] + current[map[MINUS_Z]];
float charging = eclipse * (fabs(amps_max[0] * 0.707) + fabs(amps_max[1] * 0.707) + rnd_float(-4.0, 4.0));
current[mapping[BAT]] = ((current[mapping[BUS]] * voltage[mapping[BUS]]) / batt) - charging;
// printf("charging: %f bat curr: %f bus curr: %f bat volt: %f bus volt: %f \n",charging, current[map[BAT]], current[map[BUS]], batt, voltage[map[BUS]]);
batt -= (batt > 3.5) ? current[mapping[BAT]] / 30000 : current[mapping[BAT]] / 3000;
if (batt < 3.0) {
batt = 3.0;
SafeMode = 1;
printf("Safe Mode!\n");
} else
SafeMode= 0;
if (batt > 4.5)
batt = 4.5;
voltage[mapping[BAT]] = batt + rnd_float(-0.01, 0.01);
// end of simulated telemetry
}
void config_simulated_telem()
{
sim_mode = TRUE;
Serial.println("Simulated telemetry mode!\n");
srand((unsigned int)time(0));
axis[0] = rnd_float(-0.2, 0.2);
if (axis[0] == 0)
axis[0] = rnd_float(-0.2, 0.2);
axis[1] = rnd_float(-0.2, 0.2);
axis[2] = (rnd_float(-0.2, 0.2) > 0) ? 1.0 : -1.0;
angle[0] = (float) atan(axis[1] / axis[2]);
angle[1] = (float) atan(axis[2] / axis[0]);
angle[2] = (float) atan(axis[1] / axis[0]);
volts_max[0] = rnd_float(4.5, 5.5) * (float) sin(angle[1]);
volts_max[1] = rnd_float(4.5, 5.5) * (float) cos(angle[0]);
volts_max[2] = rnd_float(4.5, 5.5) * (float) cos(angle[1] - angle[0]);
float amps_avg = rnd_float(150, 300);
amps_max[0] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) sin(angle[1]);
amps_max[1] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[0]);
amps_max[2] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[1] - angle[0]);
batt = rnd_float(3.8, 4.3);
speed = rnd_float(1.0, 2.5);
eclipse = (rnd_float(-1, +4) > 0) ? 1.0 : 0.0;
period = rnd_float(150, 300);
tempS = rnd_float(20, 55);
temp_max = rnd_float(50, 70);
temp_min = rnd_float(10, 20);
// #ifdef DEBUG_LOGGING
// for (int i = 0; i < 3; i++)
// printf("axis: %f angle: %f v: %f i: %f \n", axis[i], angle[i], volts_max[i], amps_max[i]);
// printf("batt: %f speed: %f eclipse_time: %f eclipse: %f period: %f temp: %f max: %f min: %f\n", batt, speed, eclipse_time, eclipse, period, tempS, temp_max, temp_min);
// #endif
time_start = (long int) millis();
eclipse_time = (long int)(millis() / 1000.0);
if (eclipse == 0.0)
eclipse_time -= period / 2; // if starting in eclipse, shorten interval
// }
// tx_freq_hz -= tx_channel * 50000;
}
void get_tlm_fox() {
// Serial.println("get_tlm_fox");
int i;
long int sync = syncWord;
smaller = (int) (S_RATE / (2 * freq_Hz));
short int b[dataLen];
short int b_max[dataLen];
short int b_min[dataLen];
memset(b, 0, sizeof(b));
memset(b_max, 0, sizeof(b_max));
memset(b_min, 0, sizeof(b_min));
short int h[headerLen];
memset(h, 0, sizeof(h));
// memset(buffer, 0xa5, sizeof(buffer));
short int rs_frame[rsFrames][223];
unsigned char parities[rsFrames][parityLen], inputByte;
int id, frm_type = 0x01, NormalModeFailure = 0, groundCommandCount = 0;
int PayloadFailure1 = 0, PayloadFailure2 = 0;
int PSUVoltage = 0, PSUCurrent = 0, Resets = 0, Rssi = 2048;
int batt_a_v = 0, batt_b_v = 0, batt_c_v = 0, battCurr = 0;
int posXv = 0, negXv = 0, posYv = 0, negYv = 0, posZv = 0, negZv = 0;
int posXi = 0, negXi = 0, posYi = 0, negYi = 0, posZi = 0, negZi = 0;
int head_offset = 0;
short int buffer_test[bufLen];
int buffSize;
buffSize = (int) sizeof(buffer_test);
parse_payload();
// for (int n = 0; n < 17; n++)
// sensor[n] = 1.0;
if (mode == FSK)
id = 7;
else
id = 0; // 99 in h[6]
// Serial.println("About to do frame loop");
// for (int frames = 0; frames < FRAME_CNT; frames++)
for (int frames = 0; frames < frameCnt; frames++) {
// Serial.println("Frame loop");
// if (mode == FSK)
{ // just moved
for (int count1 = 0; count1 < 8; count1++) {
if (voltage[count1] < voltage_min[count1])
voltage_min[count1] = voltage[count1];
if (current[count1] < current_min[count1])
current_min[count1] = current[count1];
if (voltage[count1] > voltage_max[count1])
voltage_max[count1] = voltage[count1];
if (current[count1] > current_max[count1])
current_max[count1] = current[count1];
// printf("Vmin %4.2f Vmax %4.2f Imin %4.2f Imax %4.2f \n", voltage_min[count1], voltage_max[count1], current_min[count1], current_max[count1]);
// Serial.print(voltage_min[count1]);
// Serial.print(" ");
}
// Serial.println(" ");
for (int count1 = 0; count1 < 3; count1++) {
if (other[count1] < other_min[count1])
other_min[count1] = other[count1];
if (other[count1] > other_max[count1])
other_max[count1] = other[count1];
// Serial.print(other_min[count1]);
// Serial.print(" ");
}
// Serial.println(" ");
if (mode == FSK)
{
// Serial.println("Starting");
if (loop_count % 32 == 0) { // was 8 /// was loop now loop_count
Serial.println("Sending MIN frame");
frm_type = 0x03;
for (int count1 = 0; count1 < 17; count1++) {
if (count1 < 3)
other[count1] = other_min[count1];
if (count1 < 8) {
voltage[count1] = voltage_min[count1];
current[count1] = current_min[count1];
}
if (sensor_min[count1] != 1000.0) // make sure values are valid
sensor[count1] = sensor_min[count1];
}
}
if ((loop_count + 16) % 32 == 0) { // was 8
Serial.println("Sending MAX frame");
frm_type = 0x02;
for (int count1 = 0; count1 < 17; count1++) {
if (count1 < 3)
other[count1] = other_max[count1];
if (count1 < 8) {
voltage[count1] = voltage_max[count1];
current[count1] = current_max[count1];
}
if (sensor_max[count1] != -1000.0) // make sure values are valid
sensor[count1] = sensor_max[count1];
}
}
// Serial.println("Here");
}
else
frm_type = 0x02; // BPSK always send MAX MIN frame
}
// Serial.println("Continuing");
sensor_payload[0] = 0; // clear for next payload
// if (mode == FSK) { // remove this
// }
memset(rs_frame, 0, sizeof(rs_frame));
memset(parities, 0, sizeof(parities));
// Serial.println("After memset");
uptime = (int)(millis() / 1000.0);
h[0] = (short int) ((h[0] & 0xf8) | (id & 0x07)); // 3 bits
// Serial.println("After h[0]");
if (uptime != 0) // if uptime is 0, leave reset count at 0
{
// Serial.println("After uptime test");
h[0] = (short int) ((h[0] & 0x07) | ((reset_count & 0x1f) << 3));
h[1] = (short int) ((reset_count >> 5) & 0xff);
h[2] = (short int) ((h[2] & 0xf8) | ((reset_count >> 13) & 0x07));
}
h[2] = (short int) ((h[2] & 0x0e) | ((uptime & 0x1f) << 3));
h[3] = (short int) ((uptime >> 5) & 0xff);
h[4] = (short int) ((uptime >> 13) & 0xff);
h[5] = (short int) ((h[5] & 0xf0) | ((uptime >> 21) & 0x0f));
h[5] = (short int) ((h[5] & 0x0f) | (frm_type << 4));
// Serial.println("h[5]");
if (mode == BPSK)
h[6] = 99;
posXi = (int)(current[mapping[PLUS_X]] + 0.5) + 2048;
posYi = (int)(current[mapping[PLUS_Y]] + 0.5) + 2048;
posZi = (int)(current[mapping[PLUS_Z]] + 0.5) + 2048;
negXi = (int)(current[mapping[MINUS_X]] + 0.5) + 2048;
negYi = (int)(current[mapping[MINUS_Y]] + 0.5) + 2048;
negZi = (int)(current[mapping[MINUS_Z]] + 0.5) + 2048;
posXv = (int)(voltage[mapping[PLUS_X]] * 100);
posYv = (int)(voltage[mapping[PLUS_Y]] * 100);
posZv = (int)(voltage[mapping[PLUS_Z]] * 100);
negXv = (int)(voltage[mapping[MINUS_X]] * 100);
negYv = (int)(voltage[mapping[MINUS_Y]] * 100);
negZv = (int)(voltage[mapping[MINUS_Z]] * 100);
batt_c_v = (int)(voltage[mapping[BAT]] * 100);
battCurr = (int)(current[mapping[BAT]] + 0.5) + 2048;
PSUVoltage = (int)(voltage[mapping[BUS]] * 100);
PSUCurrent = (int)(current[mapping[BUS]] + 0.5) + 2048;
/*
Serial.print("voltage[PLUS_X] = ");
Serial.println(voltage[PLUS_X]);
Serial.print("voltage[mapping[PLUS_X]] = ");
Serial.println(voltage[mapping[PLUS_X]]);
Serial.print("posXv = ");
Serial.println(posXv);
*/
// if (payload == ON)
STEMBoardFailure = 0;
// read payload sensor if available
// Serial.println("Before encoding");
encodeA(b, 0 + head_offset, batt_a_v);
// Serial.println("After encoding");
encodeB(b, 1 + head_offset, batt_b_v);
encodeA(b, 3 + head_offset, batt_c_v);
encodeB(b, 4 + head_offset, (int)(sensor[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b, 6 + head_offset, (int)(sensor[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b, 7 + head_offset, (int)(sensor[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b, 9 + head_offset, battCurr);
encodeB(b, 10 + head_offset, (int)(sensor[TEMP] * 10 + 0.5)); // Temp
// Serial.println("A");
if (mode == FSK) {
encodeA(b, 12 + head_offset, posXv);
encodeB(b, 13 + head_offset, negXv);
encodeA(b, 15 + head_offset, posYv);
encodeB(b, 16 + head_offset, negYv);
encodeA(b, 18 + head_offset, posZv);
encodeB(b, 19 + head_offset, negZv);
encodeA(b, 21 + head_offset, posXi);
encodeB(b, 22 + head_offset, negXi);
encodeA(b, 24 + head_offset, posYi);
encodeB(b, 25 + head_offset, negYi);
encodeA(b, 27 + head_offset, posZi);
encodeB(b, 28 + head_offset, negZi);
// Serial.println("B");
} else // BPSK
{
encodeA(b, 12 + head_offset, posXv);
encodeB(b, 13 + head_offset, posYv);
encodeA(b, 15 + head_offset, posZv);
encodeB(b, 16 + head_offset, negXv);
encodeA(b, 18 + head_offset, negYv);
encodeB(b, 19 + head_offset, negZv);
encodeA(b, 21 + head_offset, posXi);
encodeB(b, 22 + head_offset, posYi);
encodeA(b, 24 + head_offset, posZi);
encodeB(b, 25 + head_offset, negXi);
encodeA(b, 27 + head_offset, negYi);
encodeB(b, 28 + head_offset, negZi);
encodeA(b_max, 12 + head_offset, (int)(voltage_max[mapping[PLUS_X]] * 100));
encodeB(b_max, 13 + head_offset, (int)(voltage_max[mapping[PLUS_Y]] * 100));
encodeA(b_max, 15 + head_offset, (int)(voltage_max[mapping[PLUS_Z]] * 100));
encodeB(b_max, 16 + head_offset, (int)(voltage_max[mapping[MINUS_X]] * 100));
encodeA(b_max, 18 + head_offset, (int)(voltage_max[mapping[MINUS_Y]] * 100));
encodeB(b_max, 19 + head_offset, (int)(voltage_max[mapping[MINUS_Z]] * 100));
encodeA(b_max, 21 + head_offset, (int)(current_max[mapping[PLUS_X]] + 0.5) + 2048);
encodeB(b_max, 22 + head_offset, (int)(current_max[mapping[PLUS_Y]] + 0.5) + 2048);
encodeA(b_max, 24 + head_offset, (int)(current_max[mapping[PLUS_Z]] + 0.5) + 2048);
encodeB(b_max, 25 + head_offset, (int)(current_max[mapping[MINUS_X]] + 0.5) + 2048);
encodeA(b_max, 27 + head_offset, (int)(current_max[mapping[MINUS_Y]] + 0.5) + 2048);
encodeB(b_max, 28 + head_offset, (int)(current_max[mapping[MINUS_Z]] + 0.5) + 2048);
encodeA(b_max, 9 + head_offset, (int)(current_max[mapping[BAT]] + 0.5) + 2048);
encodeA(b_max, 3 + head_offset, (int)(voltage_max[mapping[BAT]] * 100));
encodeA(b_max, 30 + head_offset, (int)(voltage_max[mapping[BUS]] * 100));
encodeB(b_max, 46 + head_offset, (int)(current_max[mapping[BUS]] + 0.5) + 2048);
encodeB(b_max, 37 + head_offset, (int)(other_max[RSSI] + 0.5) + 2048);
encodeA(b_max, 39 + head_offset, (int)(other_max[IHU_TEMP] * 10 + 0.5));
encodeB(b_max, 31 + head_offset, ((int)(other_max[SPIN] * 10)) + 2048);
if (sensor_min[0] != 1000.0) // make sure values are valid
{
encodeB(b_max, 4 + head_offset, (int)(sensor_max[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b_max, 6 + head_offset, (int)(sensor_max[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b_max, 7 + head_offset, (int)(sensor_max[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b_max, 33 + head_offset, (int)(sensor_max[PRES] + 0.5)); // Pressure
encodeB(b_max, 34 + head_offset, (int)(sensor_max[ALT] * 10.0 + 0.5)); // Altitude
encodeB(b_max, 40 + head_offset, (int)(sensor_max[GYRO_X] + 0.5) + 2048);
encodeA(b_max, 42 + head_offset, (int)(sensor_max[GYRO_Y] + 0.5) + 2048);
encodeB(b_max, 43 + head_offset, (int)(sensor_max[GYRO_Z] + 0.5) + 2048);
encodeA(b_max, 48 + head_offset, (int)(sensor_max[XS1] * 10 + 0.5) + 2048);
encodeB(b_max, 49 + head_offset, (int)(sensor_max[XS2] * 10 + 0.5) + 2048);
encodeB(b_max, 10 + head_offset, (int)(sensor_max[TEMP] * 10 + 0.5));
encodeA(b_max, 45 + head_offset, (int)(sensor_max[HUMI] * 10 + 0.5));
}
else
{
encodeB(b_max, 4 + head_offset, 2048); // 0
encodeA(b_max, 6 + head_offset, 2048); // 0
encodeB(b_max, 7 + head_offset, 2048); // 0
encodeB(b_max, 40 + head_offset, 2048);
encodeA(b_max, 42 + head_offset, 2048);
encodeB(b_max, 43 + head_offset, 2048);
encodeA(b_max, 48 + head_offset, 2048);
encodeB(b_max, 49 + head_offset, 2048);
}
encodeA(b_min, 12 + head_offset, (int)(voltage_min[mapping[PLUS_X]] * 100));
encodeB(b_min, 13 + head_offset, (int)(voltage_min[mapping[PLUS_Y]] * 100));
encodeA(b_min, 15 + head_offset, (int)(voltage_min[mapping[PLUS_Z]] * 100));
encodeB(b_min, 16 + head_offset, (int)(voltage_min[mapping[MINUS_X]] * 100));
encodeA(b_min, 18 + head_offset, (int)(voltage_min[mapping[MINUS_Y]] * 100));
encodeB(b_min, 19 + head_offset, (int)(voltage_min[mapping[MINUS_Z]] * 100));
encodeA(b_min, 21 + head_offset, (int)(current_min[mapping[PLUS_X]] + 0.5) + 2048);
encodeB(b_min, 22 + head_offset, (int)(current_min[mapping[PLUS_Y]] + 0.5) + 2048);
encodeA(b_min, 24 + head_offset, (int)(current_min[mapping[PLUS_Z]] + 0.5) + 2048);
encodeB(b_min, 25 + head_offset, (int)(current_min[mapping[MINUS_X]] + 0.5) + 2048);
encodeA(b_min, 27 + head_offset, (int)(current_min[mapping[MINUS_Y]] + 0.5) + 2048);
encodeB(b_min, 28 + head_offset, (int)(current_min[mapping[MINUS_Z]] + 0.5) + 2048);
encodeA(b_min, 9 + head_offset, (int)(current_min[mapping[BAT]] + 0.5) + 2048);
encodeA(b_min, 3 + head_offset, (int)(voltage_min[mapping[BAT]] * 100));
encodeA(b_min, 30 + head_offset, (int)(voltage_min[mapping[BUS]] * 100));
encodeB(b_min, 46 + head_offset, (int)(current_min[mapping[BUS]] + 0.5) + 2048);
encodeB(b_min, 31 + head_offset, ((int)(other_min[SPIN] * 10)) + 2048);
encodeB(b_min, 37 + head_offset, (int)(other_min[RSSI] + 0.5) + 2048);
encodeA(b_min, 39 + head_offset, (int)(other_min[IHU_TEMP] * 10 + 0.5));
if (sensor_min[0] != 1000.0) // make sure values are valid
{
encodeB(b_min, 4 + head_offset, (int)(sensor_min[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel
encodeA(b_min, 6 + head_offset, (int)(sensor_min[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel
encodeB(b_min, 7 + head_offset, (int)(sensor_min[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel
encodeA(b_min, 33 + head_offset, (int)(sensor_min[PRES] + 0.5)); // Pressure
encodeB(b_min, 34 + head_offset, (int)(sensor_min[ALT] * 10.0 + 0.5)); // Altitude
encodeB(b_min, 40 + head_offset, (int)(sensor_min[GYRO_X] + 0.5) + 2048);
encodeA(b_min, 42 + head_offset, (int)(sensor_min[GYRO_Y] + 0.5) + 2048);
encodeB(b_min, 43 + head_offset, (int)(sensor_min[GYRO_Z] + 0.5) + 2048);
encodeA(b_min, 48 + head_offset, (int)(sensor_min[XS1] * 10 + 0.5) + 2048);
encodeB(b_min, 49 + head_offset, (int)(sensor_min[XS2] * 10 + 0.5) + 2048);
encodeB(b_min, 10 + head_offset, (int)(sensor_min[TEMP] * 10 + 0.5));
encodeA(b_min, 45 + head_offset, (int)(sensor_min[HUMI] * 10 + 0.5));
}
else
{
encodeB(b_min, 4 + head_offset, 2048); // 0
encodeA(b_min, 6 + head_offset, 2048); // 0
encodeB(b_min, 7 + head_offset, 2048); // 0
encodeB(b_min, 40 + head_offset, 2048);
encodeA(b_min, 42 + head_offset, 2048);
encodeB(b_min, 43 + head_offset, 2048);
encodeA(b_min, 48 + head_offset, 2048);
encodeB(b_min, 49 + head_offset, 2048);
}
}
// Serial.println("C");
encodeA(b, 30 + head_offset, PSUVoltage);
encodeB(b, 31 + head_offset, ((int)(other[SPIN] * 10)) + 2048);
encodeA(b, 33 + head_offset, (int)(sensor[PRES] + 0.5)); // Pressure
encodeB(b, 34 + head_offset, (int)(sensor[ALT] * 10.0 + 0.5)); // Altitude
encodeA(b, 36 + head_offset, Resets);
encodeB(b, 37 + head_offset, (int)(other[RSSI] + 0.5) + 2048);
encodeA(b, 39 + head_offset, (int)(other[IHU_TEMP] * 10 + 0.5));
encodeB(b, 40 + head_offset, (int)(sensor[GYRO_X] + 0.5) + 2048);
encodeA(b, 42 + head_offset, (int)(sensor[GYRO_Y] + 0.5) + 2048);
encodeB(b, 43 + head_offset, (int)(sensor[GYRO_Z] + 0.5) + 2048);
encodeA(b, 45 + head_offset, (int)(sensor[HUMI] * 10 + 0.5)); // in place of sensor1
encodeB(b, 46 + head_offset, PSUCurrent);
encodeA(b, 48 + head_offset, (int)(sensor[XS1] * 10 + 0.5) + 2048);
encodeB(b, 49 + head_offset, (int)(sensor[XS2] * 10 + 0.5) + 2048);
// Serial.println("D");
int status = STEMBoardFailure + SafeMode * 2 + sim_mode * 4 + PayloadFailure1 * 8 +
(i2c_bus0 == OFF) * 16 + (i2c_bus1 == OFF) * 32 + (i2c_bus3 == OFF) * 64 + (camera == OFF) * 128 + groundCommandCount * 256;
encodeA(b, 51 + head_offset, status);
encodeB(b, 52 + head_offset, rxAntennaDeployed + txAntennaDeployed * 2);
// Serial.println("E");
if (txAntennaDeployed == 0) {
txAntennaDeployed = 1;
// Serial.println("TX Antenna Deployed!");
}
// Serial.println("F");
if (mode == BPSK) { // wod field experiments
unsigned long val = 0xffff;
encodeA(b, 64 + head_offset, 0xff & val);
encodeA(b, 65 + head_offset, val >> 8);
encodeA(b, 63 + head_offset, 0x00);
encodeA(b, 62 + head_offset, 0x01);
encodeB(b, 74 + head_offset, 0xfff);
}
// Serial.println("Finished encoding");
short int data10[headerLen + rsFrames * (rsFrameLen + parityLen)];
short int data8[headerLen + rsFrames * (rsFrameLen + parityLen)];
int ctr1 = 0;
int ctr3 = 0;
for (i = 0; i < rsFrameLen; i++) {
for (int j = 0; j < rsFrames; j++) {
if (!((i == (rsFrameLen - 1)) && (j == 2))) // skip last one for BPSK
{
if (ctr1 < headerLen) {
rs_frame[j][i] = h[ctr1];
update_rs(parities[j], h[ctr1]);
// printf("header %d rs_frame[%d][%d] = %x \n", ctr1, j, i, h[ctr1]);
data8[ctr1++] = rs_frame[j][i];
// printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
} else {
if (mode == FSK)
{
rs_frame[j][i] = b[ctr3 % dataLen];
update_rs(parities[j], b[ctr3 % dataLen]);
} else // BPSK
if ((int)(ctr3/dataLen) == 3)
{
rs_frame[j][i] = b_max[ctr3 % dataLen];
update_rs(parities[j], b_max[ctr3 % dataLen]);
}
else if ((int)(ctr3/dataLen) == 4)
{
rs_frame[j][i] = b_min[ctr3 % dataLen];
update_rs(parities[j], b_min[ctr3 % dataLen]);
}
else
{
rs_frame[j][i] = b[ctr3 % dataLen];
update_rs(parities[j], b[ctr3 % dataLen]);
}
{
}
// printf("%d rs_frame[%d][%d] = %x %d \n",
// ctr1, j, i, b[ctr3 % DATA_LEN], ctr3 % DATA_LEN);
data8[ctr1++] = rs_frame[j][i];
// printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]);
ctr3++;
}
}
}
}
///#ifdef DEBUG_LOGGING
// printf("\nAt end of data8 write, %d ctr1 values written\n\n", ctr1);
/*
printf("Parities ");
for (int m = 0; m < parityLen; m++) {
printf("%d ", parities[0][m]);
}
printf("\n");
*/
/// #endif
int ctr2 = 0;
memset(data10, 0, sizeof(data10));
for (i = 0; i < dataLen * payloads + headerLen; i++) // 476 for BPSK
{
data10[ctr2] = (Encode_8b10b[rd][((int) data8[ctr2])] & 0x3ff);
nrd = (Encode_8b10b[rd][((int) data8[ctr2])] >> 10) & 1;
// printf ("data10[%d] = encoded data8[%d] = %x \n",
// ctr2, ctr2, data10[ctr2]);
/* if (firstTime) {
Serial.print(data10[ctr2], HEX);
Serial.print(" ");
}
*/
rd = nrd; // ^ nrd;
ctr2++;
}
// {
for (i = 0; i < parityLen; i++) {
for (int j = 0; j < rsFrames; j++) {
if ((uptime != 0) || (i != 0)) // don't correctly update parties if uptime is 0 so the frame will fail the FEC check and be discarded
data10[ctr2++] = (Encode_8b10b[rd][((int) parities[j][i])] & 0x3ff);
nrd = (Encode_8b10b[rd][((int) parities[j][i])] >> 10) & 1;
// printf ("data10[%d] = encoded parities[%d][%d] = %x \n",
// ctr2 - 1, j, i, data10[ctr2 - 1]);
/* if (firstTime) {
Serial.print(data10[ctr2-1], HEX); // added -1 due to ++
Serial.print(" ");
}
*/
rd = nrd;
}
}
// }
/// #ifdef DEBUG_LOGGING
// printf("\nAt end of data10 write, %d ctr2 values written\n\n", ctr2);
/// #endif
int data;
int val;
//int offset = 0;
/// #ifdef DEBUG_LOGGING
// printf("\nAt start of buffer loop, syncBits %d samples %d ctr %d\n", syncBits, samples, ctr);
/// #endif
for (i = 1; i <= syncBits * samples; i++) {
write_wave(ctr, buffer);
// printf("%d ",ctr);
if ((i % samples) == 0) {
int bit = syncBits - i / samples + 1;
val = sync;
data = val & 1 << (bit - 1);
// printf ("%d i: %d new frame %d sync bit %d = %d \n",
// ctr/SAMPLES, i, frames, bit, (data > 0) );
if (mode == FSK) {
phase = ((data != 0) * 2) - 1;
// printf("Sending a %d\n", phase);
} else {
if (data == 0) {
phase *= -1;
// if ((ctr - smaller) > 0) {
// for (int j = 1; j <= smaller; j++)
// buffer[ctr - j] = buffer[ctr - j] * 0.4;
// }
// flip_ctr = ctr;
}
}
}
}
/// #ifdef DEBUG_LOGGING
// printf("\n\nValue of ctr after header: %d Buffer Len: %d\n\n", ctr, buffSize);
/// #endif
// Serial.println(10 * (headerLen + dataLen * payloads + rsFrames * parityLen) * samples);
for (i = 1; i <= (10 * (headerLen + dataLen * payloads + rsFrames * parityLen) * samples); i++) // 572
// for (i = 1; i <= ((headerLen + dataLen * payloads + rsFrames * parityLen) * samples); i++) // Not 10 * anymore 572
{
write_wave(ctr, buffer);
if ((i % samples) == 0) {
int symbol = (int)((i - 1) / (samples * 10));
int bit = 10 - (i - symbol * samples * 10) / samples + 1;
val = data10[symbol];
data = val & 1 << (bit - 1);
// printf ("%d i: %d new frame %d data10[%d] = %x bit %d = %d \n",
// ctr/SAMPLES, i, frames, symbol, val, bit, (data > 0) );
// Serial.print(data, BIN); // Debugging print!!!
// Serial.print(" ");
if (mode == FSK) {
phase = ((data != 0) * 2) - 1;
// printf("Sending a %d\n", phase);
} else {
if (data == 0) {
phase *= -1;
// if ((ctr - smaller) > 0) {
// for (int j = 1; j <= smaller; j++)
// buffer[ctr - j] = buffer[ctr - j] * 0.4;
// }
// flip_ctr = ctr;
}
}
// Serial.println("AA");
}
// Serial.println("BB");
}
// Serial.println("CC");
}
Serial.println(" ");
Serial.print("get_fox_tlm returning with counter: ");
Serial.println(ctr);
if (firstTime) {
Serial.println(" ");
firstTime = FALSE;
}
}
void write_wave(int i, short int *buffer)
{
if (mode == FSK)
{
// if ((ctr - flip_ctr) < smaller) // No wave shaping
// buffer[ctr++] = (short int)(0.1 * phase * (ctr - flip_ctr) / smaller);
// else
buffer[ctr++] = (short int)(0.25 * amplitude * phase);
// Serial.print(buffer[ctr - 1]);
// Serial.print(" ");
}
else
{
// if ((ctr - flip_ctr) < smaller)
// buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
// buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples] / 2);
// else
// buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE)));
// buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples]); }
buffer[ctr++] = (short int)(phase);
}
// printf("%d %d \n", i, buffer[ctr - 1]);
// if (ctr > BUFFER_SIZE) {
// ctr = ctr - BUFFER_SIZE;
if (ctr > bufLen) {
ctr = ctr - bufLen;
Serial.print("\r");
Serial.print(" ");
Serial.println(millis());
}
}
int encodeA(short int *b, int index, int val) {
// printf("Encoding A\n");
b[index] = val & 0xff;
b[index + 1] = (short int) ((b[index + 1] & 0xf0) | ((val >> 8) & 0x0f));
return 0;
}
int encodeB(short int *b, int index, int val) {
// printf("Encoding B\n");
b[index] = (short int) ((b[index] & 0x0f) | ((val << 4) & 0xf0));
b[index + 1] = (val >> 4 ) & 0xff;
return 0;
}
int twosToInt(int val,int len) { // Convert twos compliment to integer
// from https://www.raspberrypi.org/forums/viewtopic.php?t=55815
if(val & (1 << (len - 1)))
val = val - (1 << len);
return(val);
}
float rnd_float(double min,double max) { // returns 2 decimal point random number
int val = (rand() % ((int)(max*100) - (int)(min*100) + 1)) + (int)(min*100);
float ret = ((float)(val)/100);
return(ret);
}
float toAprsFormat(float input) {
// converts decimal coordinate (latitude or longitude) to APRS DDMM.MM format
int dd = (int) input;
int mm1 = (int)((input - dd) * 60.0);
int mm2 = (int)((input - dd - (float)mm1/60.0) * 60.0 * 60.0);
float output = dd * 100 + mm1 + (float)mm2 * 0.01;
return(output);
}
/*
* TelemEncoding.c
*
Fox-1 telemetry encoder
January 2014 Phil Karn KA9Q
This file has two external functions:
void update_rs(unsigned char parity[32],unsigned char data);
int encode_8b10b(int *state,int data).
update_rs() is the Reed-Solomon encoder. Its first argument is the 32-byte
encoder shift register, the second is the 8-bit data byte being encoded. It updates
the shift register in place and returns void. At the end of each frame, it contains
the parities ready for transmission, starting with parity[0].
Be sure to zero this array before each new frame!
encode_8b10b() is the 8b10b encoder. Its first argument is a pointer to a single integer
with the 1-bit encoder state (the current run disparity, or RD). Initialize it to 0
JUST ONCE at startup (not between frames).
The second argument is the data byte being encoded. It updates the state and returns
an integer containing the 10-bit encoded word, right justified.
Transmit this word from left to right.
The data argument is an int so it can hold the special value -1 to indicate end of frame;
it generates the 8b10b control word K.28.5, which is used as an inter-frame flag.
Some assert() calls are made to verify legality of arguments. These can be turned off in
production code.
sample frame transmission code:
unsigned char data[64]; // Data block to be sent
unsigned char parity[32]; // RS parities
void transmit_word(int); // User provided transmit function: 10 bits of data in bits 9....0
int state,i;
state = 0; // Only once at startup, not between frames
memset(parity,0,sizeof(parity); // Do this before every frame
// Transmit the data, updating the RS encoder
for(i=0;i<64;i++){
update_rs(parity,data[i]);
transmit_word(encode_8b10b(&state,data[i]);
}
// get the RS parities
for(i=0;i<32;i++)
transmit_word(encode_8b10b(&state,parity[i]);
transmit_word(encode_8b10b(&state,-1); // Transmit end-of-frame flag
*/
#include
//#include "Fox.h"
//#include "TelemEncoding.h"
#include
#include
#ifndef NULL
#define NULL ((void *)0)
#endif
#define NN (0xff) // Frame size in symbols
#define A0 (NN) // special value for log(0)
int Encode_8b10b[][256] = {
// RD = -1 cases
{
/* 00 */ 0x274,
/* 01 */ 0x1d4,
/* 02 */ 0x2d4,
/* 03 */ 0x71b,
/* 04 */ 0x354,
/* 05 */ 0x69b,
/* 06 */ 0x59b,
/* 07 */ 0x78b,
/* 08 */ 0x394,
/* 09 */ 0x65b,
/* 0a */ 0x55b,
/* 0b */ 0x74b,
/* 0c */ 0x4db,
/* 0d */ 0x6cb,
/* 0e */ 0x5cb,
/* 0f */ 0x174,
/* 10 */ 0x1b4,
/* 11 */ 0x63b,
/* 12 */ 0x53b,
/* 13 */ 0x72b,
/* 14 */ 0x4bb,
/* 15 */ 0x6ab,
/* 16 */ 0x5ab,
/* 17 */ 0x3a4,
/* 18 */ 0x334,
/* 19 */ 0x66b,
/* 1a */ 0x56b,
/* 1b */ 0x364,
/* 1c */ 0x4eb,
/* 1d */ 0x2e4,
/* 1e */ 0x1e4,
/* 1f */ 0x2b4,
/* 20 */ 0x679,
/* 21 */ 0x5d9,
/* 22 */ 0x6d9,
/* 23 */ 0x319,
/* 24 */ 0x759,
/* 25 */ 0x299,
/* 26 */ 0x199,
/* 27 */ 0x389,
/* 28 */ 0x799,
/* 29 */ 0x259,
/* 2a */ 0x159,
/* 2b */ 0x349,
/* 2c */ 0x0d9,
/* 2d */ 0x2c9,
/* 2e */ 0x1c9,
/* 2f */ 0x579,
/* 30 */ 0x5b9,
/* 31 */ 0x239,
/* 32 */ 0x139,
/* 33 */ 0x329,
/* 34 */ 0x0b9,
/* 35 */ 0x2a9,
/* 36 */ 0x1a9,
/* 37 */ 0x7a9,
/* 38 */ 0x739,
/* 39 */ 0x269,
/* 3a */ 0x169,
/* 3b */ 0x769,
/* 3c */ 0x0e9,
/* 3d */ 0x6e9,
/* 3e */ 0x5e9,
/* 3f */ 0x6b9,
/* 40 */ 0x675,
/* 41 */ 0x5d5,
/* 42 */ 0x6d5,
/* 43 */ 0x315,
/* 44 */ 0x755,
/* 45 */ 0x295,
/* 46 */ 0x195,
/* 47 */ 0x385,
/* 48 */ 0x795,
/* 49 */ 0x255,
/* 4a */ 0x155,
/* 4b */ 0x345,
/* 4c */ 0x0d5,
/* 4d */ 0x2c5,
/* 4e */ 0x1c5,
/* 4f */ 0x575,
/* 50 */ 0x5b5,
/* 51 */ 0x235,
/* 52 */ 0x135,
/* 53 */ 0x325,
/* 54 */ 0x0b5,
/* 55 */ 0x2a5,
/* 56 */ 0x1a5,
/* 57 */ 0x7a5,
/* 58 */ 0x735,
/* 59 */ 0x265,
/* 5a */ 0x165,
/* 5b */ 0x765,
/* 5c */ 0x0e5,
/* 5d */ 0x6e5,
/* 5e */ 0x5e5,
/* 5f */ 0x6b5,
/* 60 */ 0x673,
/* 61 */ 0x5d3,
/* 62 */ 0x6d3,
/* 63 */ 0x31c,
/* 64 */ 0x753,
/* 65 */ 0x29c,
/* 66 */ 0x19c,
/* 67 */ 0x38c,
/* 68 */ 0x793,
/* 69 */ 0x25c,
/* 6a */ 0x15c,
/* 6b */ 0x34c,
/* 6c */ 0x0dc,
/* 6d */ 0x2cc,
/* 6e */ 0x1cc,
/* 6f */ 0x573,
/* 70 */ 0x5b3,
/* 71 */ 0x23c,
/* 72 */ 0x13c,
/* 73 */ 0x32c,
/* 74 */ 0x0bc,
/* 75 */ 0x2ac,
/* 76 */ 0x1ac,
/* 77 */ 0x7a3,
/* 78 */ 0x733,
/* 79 */ 0x26c,
/* 7a */ 0x16c,
/* 7b */ 0x763,
/* 7c */ 0x0ec,
/* 7d */ 0x6e3,
/* 7e */ 0x5e3,
/* 7f */ 0x6b3,
/* 80 */ 0x272,
/* 81 */ 0x1d2,
/* 82 */ 0x2d2,
/* 83 */ 0x71d,
/* 84 */ 0x352,
/* 85 */ 0x69d,
/* 86 */ 0x59d,
/* 87 */ 0x78d,
/* 88 */ 0x392,
/* 89 */ 0x65d,
/* 8a */ 0x55d,
/* 8b */ 0x74d,
/* 8c */ 0x4dd,
/* 8d */ 0x6cd,
/* 8e */ 0x5cd,
/* 8f */ 0x172,
/* 90 */ 0x1b2,
/* 91 */ 0x63d,
/* 92 */ 0x53d,
/* 93 */ 0x72d,
/* 94 */ 0x4bd,
/* 95 */ 0x6ad,
/* 96 */ 0x5ad,
/* 97 */ 0x3a2,
/* 98 */ 0x332,
/* 99 */ 0x66d,
/* 9a */ 0x56d,
/* 9b */ 0x362,
/* 9c */ 0x4ed,
/* 9d */ 0x2e2,
/* 9e */ 0x1e2,
/* 9f */ 0x2b2,
/* a0 */ 0x67a,
/* a1 */ 0x5da,
/* a2 */ 0x6da,
/* a3 */ 0x31a,
/* a4 */ 0x75a,
/* a5 */ 0x29a,
/* a6 */ 0x19a,
/* a7 */ 0x38a,
/* a8 */ 0x79a,
/* a9 */ 0x25a,
/* aa */ 0x15a,
/* ab */ 0x34a,
/* ac */ 0x0da,
/* ad */ 0x2ca,
/* ae */ 0x1ca,
/* af */ 0x57a,
/* b0 */ 0x5ba,
/* b1 */ 0x23a,
/* b2 */ 0x13a,
/* b3 */ 0x32a,
/* b4 */ 0x0ba,
/* b5 */ 0x2aa,
/* b6 */ 0x1aa,
/* b7 */ 0x7aa,
/* b8 */ 0x73a,
/* b9 */ 0x26a,
/* ba */ 0x16a,
/* bb */ 0x76a,
/* bc */ 0x0ea,
/* bd */ 0x6ea,
/* be */ 0x5ea,
/* bf */ 0x6ba,
/* c0 */ 0x676,
/* c1 */ 0x5d6,
/* c2 */ 0x6d6,
/* c3 */ 0x316,
/* c4 */ 0x756,
/* c5 */ 0x296,
/* c6 */ 0x196,
/* c7 */ 0x386,
/* c8 */ 0x796,
/* c9 */ 0x256,
/* ca */ 0x156,
/* cb */ 0x346,
/* cc */ 0x0d6,
/* cd */ 0x2c6,
/* ce */ 0x1c6,
/* cf */ 0x576,
/* d0 */ 0x5b6,
/* d1 */ 0x236,
/* d2 */ 0x136,
/* d3 */ 0x326,
/* d4 */ 0x0b6,
/* d5 */ 0x2a6,
/* d6 */ 0x1a6,
/* d7 */ 0x7a6,
/* d8 */ 0x736,
/* d9 */ 0x266,
/* da */ 0x166,
/* db */ 0x766,
/* dc */ 0x0e6,
/* dd */ 0x6e6,
/* de */ 0x5e6,
/* df */ 0x6b6,
/* e0 */ 0x271,
/* e1 */ 0x1d1,
/* e2 */ 0x2d1,
/* e3 */ 0x71e,
/* e4 */ 0x351,
/* e5 */ 0x69e,
/* e6 */ 0x59e,
/* e7 */ 0x78e,
/* e8 */ 0x391,
/* e9 */ 0x65e,
/* ea */ 0x55e,
/* eb */ 0x74e,
/* ec */ 0x4de,
/* ed */ 0x6ce,
/* ee */ 0x5ce,
/* ef */ 0x171,
/* f0 */ 0x1b1,
/* f1 */ 0x637,
/* f2 */ 0x537,
/* f3 */ 0x72e,
/* f4 */ 0x4b7,
/* f5 */ 0x6ae,
/* f6 */ 0x5ae,
/* f7 */ 0x3a1,
/* f8 */ 0x331,
/* f9 */ 0x66e,
/* fa */ 0x56e,
/* fb */ 0x361,
/* fc */ 0x4ee,
/* fd */ 0x2e1,
/* fe */ 0x1e1,
/* ff */ 0x2b1,
}, // RD = +1 cases
{
/* 00 */ 0x58b,
/* 01 */ 0x62b,
/* 02 */ 0x52b,
/* 03 */ 0x314,
/* 04 */ 0x4ab,
/* 05 */ 0x294,
/* 06 */ 0x194,
/* 07 */ 0x074,
/* 08 */ 0x46b,
/* 09 */ 0x254,
/* 0a */ 0x154,
/* 0b */ 0x344,
/* 0c */ 0x0d4,
/* 0d */ 0x2c4,
/* 0e */ 0x1c4,
/* 0f */ 0x68b,
/* 10 */ 0x64b,
/* 11 */ 0x234,
/* 12 */ 0x134,
/* 13 */ 0x324,
/* 14 */ 0x0b4,
/* 15 */ 0x2a4,
/* 16 */ 0x1a4,
/* 17 */ 0x45b,
/* 18 */ 0x4cb,
/* 19 */ 0x264,
/* 1a */ 0x164,
/* 1b */ 0x49b,
/* 1c */ 0x0e4,
/* 1d */ 0x51b,
/* 1e */ 0x61b,
/* 1f */ 0x54b,
/* 20 */ 0x189,
/* 21 */ 0x229,
/* 22 */ 0x129,
/* 23 */ 0x719,
/* 24 */ 0x0a9,
/* 25 */ 0x699,
/* 26 */ 0x599,
/* 27 */ 0x479,
/* 28 */ 0x069,
/* 29 */ 0x659,
/* 2a */ 0x559,
/* 2b */ 0x749,
/* 2c */ 0x4d9,
/* 2d */ 0x6c9,
/* 2e */ 0x5c9,
/* 2f */ 0x289,
/* 30 */ 0x249,
/* 31 */ 0x639,
/* 32 */ 0x539,
/* 33 */ 0x729,
/* 34 */ 0x4b9,
/* 35 */ 0x6a9,
/* 36 */ 0x5a9,
/* 37 */ 0x059,
/* 38 */ 0x0c9,
/* 39 */ 0x669,
/* 3a */ 0x569,
/* 3b */ 0x099,
/* 3c */ 0x4e9,
/* 3d */ 0x119,
/* 3e */ 0x219,
/* 3f */ 0x149,
/* 40 */ 0x185,
/* 41 */ 0x225,
/* 42 */ 0x125,
/* 43 */ 0x715,
/* 44 */ 0x0a5,
/* 45 */ 0x695,
/* 46 */ 0x595,
/* 47 */ 0x475,
/* 48 */ 0x065,
/* 49 */ 0x655,
/* 4a */ 0x555,
/* 4b */ 0x745,
/* 4c */ 0x4d5,
/* 4d */ 0x6c5,
/* 4e */ 0x5c5,
/* 4f */ 0x285,
/* 50 */ 0x245,
/* 51 */ 0x635,
/* 52 */ 0x535,
/* 53 */ 0x725,
/* 54 */ 0x4b5,
/* 55 */ 0x6a5,
/* 56 */ 0x5a5,
/* 57 */ 0x055,
/* 58 */ 0x0c5,
/* 59 */ 0x665,
/* 5a */ 0x565,
/* 5b */ 0x095,
/* 5c */ 0x4e5,
/* 5d */ 0x115,
/* 5e */ 0x215,
/* 5f */ 0x145,
/* 60 */ 0x18c,
/* 61 */ 0x22c,
/* 62 */ 0x12c,
/* 63 */ 0x713,
/* 64 */ 0x0ac,
/* 65 */ 0x693,
/* 66 */ 0x593,
/* 67 */ 0x473,
/* 68 */ 0x06c,
/* 69 */ 0x653,
/* 6a */ 0x553,
/* 6b */ 0x743,
/* 6c */ 0x4d3,
/* 6d */ 0x6c3,
/* 6e */ 0x5c3,
/* 6f */ 0x28c,
/* 70 */ 0x24c,
/* 71 */ 0x633,
/* 72 */ 0x533,
/* 73 */ 0x723,
/* 74 */ 0x4b3,
/* 75 */ 0x6a3,
/* 76 */ 0x5a3,
/* 77 */ 0x05c,
/* 78 */ 0x0cc,
/* 79 */ 0x663,
/* 7a */ 0x563,
/* 7b */ 0x09c,
/* 7c */ 0x4e3,
/* 7d */ 0x11c,
/* 7e */ 0x21c,
/* 7f */ 0x14c,
/* 80 */ 0x58d,
/* 81 */ 0x62d,
/* 82 */ 0x52d,
/* 83 */ 0x312,
/* 84 */ 0x4ad,
/* 85 */ 0x292,
/* 86 */ 0x192,
/* 87 */ 0x072,
/* 88 */ 0x46d,
/* 89 */ 0x252,
/* 8a */ 0x152,
/* 8b */ 0x342,
/* 8c */ 0x0d2,
/* 8d */ 0x2c2,
/* 8e */ 0x1c2,
/* 8f */ 0x68d,
/* 90 */ 0x64d,
/* 91 */ 0x232,
/* 92 */ 0x132,
/* 93 */ 0x322,
/* 94 */ 0x0b2,
/* 95 */ 0x2a2,
/* 96 */ 0x1a2,
/* 97 */ 0x45d,
/* 98 */ 0x4cd,
/* 99 */ 0x262,
/* 9a */ 0x162,
/* 9b */ 0x49d,
/* 9c */ 0x0e2,
/* 9d */ 0x51d,
/* 9e */ 0x61d,
/* 9f */ 0x54d,
/* a0 */ 0x18a,
/* a1 */ 0x22a,
/* a2 */ 0x12a,
/* a3 */ 0x71a,
/* a4 */ 0x0aa,
/* a5 */ 0x69a,
/* a6 */ 0x59a,
/* a7 */ 0x47a,
/* a8 */ 0x06a,
/* a9 */ 0x65a,
/* aa */ 0x55a,
/* ab */ 0x74a,
/* ac */ 0x4da,
/* ad */ 0x6ca,
/* ae */ 0x5ca,
/* af */ 0x28a,
/* b0 */ 0x24a,
/* b1 */ 0x63a,
/* b2 */ 0x53a,
/* b3 */ 0x72a,
/* b4 */ 0x4ba,
/* b5 */ 0x6aa,
/* b6 */ 0x5aa,
/* b7 */ 0x05a,
/* b8 */ 0x0ca,
/* b9 */ 0x66a,
/* ba */ 0x56a,
/* bb */ 0x09a,
/* bc */ 0x4ea,
/* bd */ 0x11a,
/* be */ 0x21a,
/* bf */ 0x14a,
/* c0 */ 0x186,
/* c1 */ 0x226,
/* c2 */ 0x126,
/* c3 */ 0x716,
/* c4 */ 0x0a6,
/* c5 */ 0x696,
/* c6 */ 0x596,
/* c7 */ 0x476,
/* c8 */ 0x066,
/* c9 */ 0x656,
/* ca */ 0x556,
/* cb */ 0x746,
/* cc */ 0x4d6,
/* cd */ 0x6c6,
/* ce */ 0x5c6,
/* cf */ 0x286,
/* d0 */ 0x246,
/* d1 */ 0x636,
/* d2 */ 0x536,
/* d3 */ 0x726,
/* d4 */ 0x4b6,
/* d5 */ 0x6a6,
/* d6 */ 0x5a6,
/* d7 */ 0x056,
/* d8 */ 0x0c6,
/* d9 */ 0x666,
/* da */ 0x566,
/* db */ 0x096,
/* dc */ 0x4e6,
/* dd */ 0x116,
/* de */ 0x216,
/* df */ 0x146,
/* e0 */ 0x58e,
/* e1 */ 0x62e,
/* e2 */ 0x52e,
/* e3 */ 0x311,
/* e4 */ 0x4ae,
/* e5 */ 0x291,
/* e6 */ 0x191,
/* e7 */ 0x071,
/* e8 */ 0x46e,
/* e9 */ 0x251,
/* ea */ 0x151,
/* eb */ 0x348,
/* ec */ 0x0d1,
/* ed */ 0x2c8,
/* ee */ 0x1c8,
/* ef */ 0x68e,
/* f0 */ 0x64e,
/* f1 */ 0x231,
/* f2 */ 0x131,
/* f3 */ 0x321,
/* f4 */ 0x0b1,
/* f5 */ 0x2a1,
/* f6 */ 0x1a1,
/* f7 */ 0x45e,
/* f8 */ 0x4ce,
/* f9 */ 0x261,
/* fa */ 0x161,
/* fb */ 0x49e,
/* fc */ 0x0e1,
/* fd */ 0x51e,
/* fe */ 0x61e,
/* ff */ 0x54e,
} };
// GF Antilog lookup table table
static unsigned char CCSDS_alpha_to[NN+1] = {
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x87,0x89,0x95,0xad,0xdd,0x3d,0x7a,0xf4,
0x6f,0xde,0x3b,0x76,0xec,0x5f,0xbe,0xfb,0x71,0xe2,0x43,0x86,0x8b,0x91,0xa5,0xcd,
0x1d,0x3a,0x74,0xe8,0x57,0xae,0xdb,0x31,0x62,0xc4,0x0f,0x1e,0x3c,0x78,0xf0,0x67,
0xce,0x1b,0x36,0x6c,0xd8,0x37,0x6e,0xdc,0x3f,0x7e,0xfc,0x7f,0xfe,0x7b,0xf6,0x6b,
0xd6,0x2b,0x56,0xac,0xdf,0x39,0x72,0xe4,0x4f,0x9e,0xbb,0xf1,0x65,0xca,0x13,0x26,
0x4c,0x98,0xb7,0xe9,0x55,0xaa,0xd3,0x21,0x42,0x84,0x8f,0x99,0xb5,0xed,0x5d,0xba,
0xf3,0x61,0xc2,0x03,0x06,0x0c,0x18,0x30,0x60,0xc0,0x07,0x0e,0x1c,0x38,0x70,0xe0,
0x47,0x8e,0x9b,0xb1,0xe5,0x4d,0x9a,0xb3,0xe1,0x45,0x8a,0x93,0xa1,0xc5,0x0d,0x1a,
0x34,0x68,0xd0,0x27,0x4e,0x9c,0xbf,0xf9,0x75,0xea,0x53,0xa6,0xcb,0x11,0x22,0x44,
0x88,0x97,0xa9,0xd5,0x2d,0x5a,0xb4,0xef,0x59,0xb2,0xe3,0x41,0x82,0x83,0x81,0x85,
0x8d,0x9d,0xbd,0xfd,0x7d,0xfa,0x73,0xe6,0x4b,0x96,0xab,0xd1,0x25,0x4a,0x94,0xaf,
0xd9,0x35,0x6a,0xd4,0x2f,0x5e,0xbc,0xff,0x79,0xf2,0x63,0xc6,0x0b,0x16,0x2c,0x58,
0xb0,0xe7,0x49,0x92,0xa3,0xc1,0x05,0x0a,0x14,0x28,0x50,0xa0,0xc7,0x09,0x12,0x24,
0x48,0x90,0xa7,0xc9,0x15,0x2a,0x54,0xa8,0xd7,0x29,0x52,0xa4,0xcf,0x19,0x32,0x64,
0xc8,0x17,0x2e,0x5c,0xb8,0xf7,0x69,0xd2,0x23,0x46,0x8c,0x9f,0xb9,0xf5,0x6d,0xda,
0x33,0x66,0xcc,0x1f,0x3e,0x7c,0xf8,0x77,0xee,0x5b,0xb6,0xeb,0x51,0xa2,0xc3,0x00,
};
// GF log lookup table. Special value represents log(0)
static unsigned char CCSDS_index_of[NN+1] = {
A0, 0, 1, 99, 2,198,100,106, 3,205,199,188,101,126,107, 42,
4,141,206, 78,200,212,189,225,102,221,127, 49,108, 32, 43,243,
5, 87,142,232,207,172, 79,131,201,217,213, 65,190,148,226,180,
103, 39,222,240,128,177, 50, 53,109, 69, 33, 18, 44, 13,244, 56,
6,155, 88, 26,143,121,233,112,208,194,173,168, 80,117,132, 72,
202,252,218,138,214, 84, 66, 36,191,152,149,249,227, 94,181, 21,
104, 97, 40,186,223, 76,241, 47,129,230,178, 63, 51,238, 54, 16,
110, 24, 70,166, 34,136, 19,247, 45,184, 14, 61,245,164, 57, 59,
7,158,156,157, 89,159, 27, 8,144, 9,122, 28,234,160,113, 90,
209, 29,195,123,174, 10,169,145, 81, 91,118,114,133,161, 73,235,
203,124,253,196,219, 30,139,210,215,146, 85,170, 67, 11, 37,175,
192,115,153,119,150, 92,250, 82,228,236, 95, 74,182,162, 22,134,
105,197, 98,254, 41,125,187,204,224,211, 77,140,242, 31, 48,220,
130,171,231, 86,179,147, 64,216, 52,176,239, 38, 55, 12, 17, 68,
111,120, 25,154, 71,116,167,193, 35, 83,137,251, 20, 93,248,151,
46, 75,185, 96, 15,237, 62,229,246,135,165, 23, 58,163, 60,183,
};
// Only half the coefficients are given here because the
// generator polynomial is palindromic; G0 = G32, G1 = G31, etc.
// Only G16 is unique
static unsigned char CCSDS_poly[] = {
0,249, 59, 66, 4, 43,126,251, 97, 30, 3,213, 50, 66,170, 5,
24,
};
static inline int modnn(int x){
while (x >= NN) {
x -= NN;
x = (x >> 8) + (x & NN);
}
return x;
}
// Update Reed-Solomon encoder
// parity -> 32-byte reed-solomon encoder state; clear this to zero before each frame
void update_rs(
unsigned char parity[32], // 32-byte encoder state; zero before each frame
unsigned char c) // Current data byte to update
{
unsigned char feedback;
int j,t;
assert(parity != NULL);
feedback = CCSDS_index_of[c ^ parity[0]];
if(feedback != A0){ // only if feedback is non-zero
// Take advantage of palindromic polynomial to halve the multiplies
// Do G1...G15, which is the same as G17...G31
for(j=1;j<(int)(NP/2);j++){
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
parity[j] ^= t;
parity[NP-j] ^= t;
}
// Do G16, which is used in only parity[16]
t = CCSDS_alpha_to[modnn(feedback + CCSDS_poly[j])];
parity[j] ^= t;
}
// shift left
memmove(&parity[0],&parity[1],NP-1);
// G0 is 1 in alpha form, 0 in index form; don't need to multiply by it
parity[NP-1] = CCSDS_alpha_to[feedback];
//taskYIELD();
}
#define SYNC (0x0fa) // K.28.5, RD=-1
void write_little_endian(unsigned int word, int num_bytes, FILE *wav_file)
{
unsigned buf;
while(num_bytes>0)
{ buf = word & 0xff;
fwrite(&buf, 1,1, wav_file);
num_bytes--;
word >>= 8;
}
}
void config_radio()
{
if (!wifi)
pinMode(LED_BUILTIN, OUTPUT);
pinMode(PTT_PIN, OUTPUT); // PTT active LOW
digitalWrite(PTT_PIN, HIGH);
pinMode(PD_PIN, OUTPUT); // PD active HIGH
digitalWrite(PD_PIN, LOW);
pinMode(TEMPERATURE_PIN, INPUT);
pinMode(AUDIO_IN_PIN, INPUT);
if ((mode == AFSK) || (mode == FSK)) {
digitalWrite(PD_PIN, HIGH); // Enable SR_FRS
DumbTXSWS mySerial(SWTX_PIN); // TX pin
mySerial.begin(9600);
for (int i = 0; i < 5; i++) {
sleep(0.5); // delay(500);
// Serial1.println("AT+DMOSETGROUP=0,434.9100,434.9100,1,2,1,1\r");
// mySerial.println("AT+DMOSETGROUP=0,434.9000,434.9000,1,2,1,1\r");
// mySerial.println("AT+DMOSETGROUP=0,434.9000,434.9000,0,8,0,0\r");
mySerial.println("AT+DMOSETGROUP=0,432.2510,432.2510,0,8,0,0\r");
// sleep(0.5);
// mySerial.println("AT+DMOSETMIC=6,0\r");
}
// } else if (mode == FSK) { // moved to below
// transmit_on();
} else if (mode == BPSK) {
start_pwm();
start_isr();
transmit_on();
}
if (mode == FSK)
transmit_on();
}
void test_radio()
{
// send a carrier for 3 seconds
Serial.println("Testing radio...\n\n");
digitalWrite(MAIN_LED_BLUE, HIGH);
digitalWrite(PTT_PIN, LOW);
sleep(3.0); // delay(3000);
digitalWrite(PTT_PIN, HIGH);
digitalWrite(MAIN_LED_BLUE, LOW);
}
void read_ina219()
{
float shuntvoltage = 0;
float busvoltage = 0;
float current_mA = 0;
float loadvoltage = 0;
if (i2c_bus1) {
shuntvoltage = ina219_1_0x40.getShuntVoltage_mV();
busvoltage = ina219_1_0x40.getBusVoltage_V();
current_mA = ina219_1_0x40.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("1 0x40 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[0] = loadvoltage;
current[0] = current_mA;
shuntvoltage = ina219_1_0x41.getShuntVoltage_mV();
busvoltage = ina219_1_0x41.getBusVoltage_V();
current_mA = ina219_1_0x41.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("1 0x41 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[1] = loadvoltage;
current[1] = current_mA;
shuntvoltage = ina219_1_0x44.getShuntVoltage_mV();
busvoltage = ina219_1_0x44.getBusVoltage_V();
current_mA = ina219_1_0x44.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("1 0x44 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[2] = loadvoltage;
current[2] = current_mA;
shuntvoltage = ina219_1_0x45.getShuntVoltage_mV();
busvoltage = ina219_1_0x45.getBusVoltage_V();
current_mA = ina219_1_0x45.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("1 0x45 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[3] = loadvoltage;
current[3] = current_mA;
}
if (i2c_bus3) {
shuntvoltage = ina219_2_0x40.getShuntVoltage_mV();
busvoltage = ina219_2_0x40.getBusVoltage_V();
current_mA = ina219_2_0x40.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("2 0x40 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[4] = loadvoltage;
current[4] = current_mA;
shuntvoltage = ina219_2_0x41.getShuntVoltage_mV();
busvoltage = ina219_2_0x41.getBusVoltage_V();
current_mA = ina219_2_0x41.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("2 0x41 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[5] = loadvoltage;
current[5] = current_mA;
shuntvoltage = ina219_2_0x44.getShuntVoltage_mV();
busvoltage = ina219_2_0x44.getBusVoltage_V();
current_mA = ina219_2_0x44.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("2 0x44 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[6] = loadvoltage;
current[6] = current_mA;
shuntvoltage = ina219_2_0x45.getShuntVoltage_mV();
busvoltage = ina219_2_0x45.getBusVoltage_V();
current_mA = ina219_2_0x45.getCurrent_mA();
loadvoltage = busvoltage + (shuntvoltage / 1000);
Serial.print("2 0x45 Voltage: ");
Serial.print(loadvoltage);
Serial.print("V Current: ");
Serial.print(current_mA);
Serial.println(" mA");
voltage[7] = loadvoltage;
current[7] = current_mA;
}
}
void read_sensors()
{
}
// Returns lower digit of a number which must be less than 99
//
int lower_digit(int number) {
int digit = 0;
if (number < 100)
digit = number - ((int)(number / 10) * 10);
else
Serial.println("ERROR: Not a digit in lower_digit!\n");
return digit;
}
// Returns upper digit of a number which must be less than 99
//
int upper_digit(int number) {
int digit = 0;
if (number < 100)
digit = (int)(number / 10);
else
Serial.println("ERROR: Not a digit in upper_digit!\n");
return digit;
}
void print_string(char *string)
{
int count = 0;
while ((count < 250) && (string[count] != 0))
{
Serial.print(string[count++]);
}
Serial.println(" ");
}
void start_payload() {
Serial1.begin(115200); // Pi UART faster speed
Serial.println("Starting payload!");
blink_setup();
blink(500);
sleep(0.25); // delay(250);
blink(500);
sleep(0.25); // delay(250);
led_set(greenLED, HIGH);
sleep(0.25); // delay(250);
led_set(greenLED, LOW);
led_set(blueLED, HIGH);
sleep(0.25); // delay(250);
led_set(blueLED, LOW);
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
Wire.begin();
Wire.beginTransmission(0x68);
if (Wire.endTransmission() != 0) {
Serial.println("Could not find a valid MPU6050 sensor, check wiring!");
mpuPresent = 0;
}
else {
mpuPresent = 1;
mpu6050.begin();
long flag;
float xOffset;
float yOffset;
float zOffset;
EEPROM.get(0, flag);
if (flag == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
EEPROM.get(4, xOffset);
EEPROM.get(8, yOffset);
EEPROM.get(12, zOffset);
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
/*
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
*/
flag = 0xA07;
xOffset = mpu6050.getGyroXoffset();
yOffset = mpu6050.getGyroYoffset();
zOffset = mpu6050.getGyroZoffset();
EEPROM.put(0, flag);
EEPROM.put(4, xOffset);
EEPROM.put(8, yOffset);
EEPROM.put(12, zOffset);
if (EEPROM.commit()) {
Serial.println("EEPROM successfully committed");
} else {
Serial.println("ERROR! EEPROM commit failed");
}
Serial.println(" ");
float f;
EEPROM.get(0, flag);
Serial.println(flag, HEX);
EEPROM.get(4, f);
Serial.println(f);
EEPROM.get(8, f);
Serial.println(f);
EEPROM.get(12, f);
Serial.println(f);
}
}
pinMode(greenLED, OUTPUT);
pinMode(blueLED, OUTPUT);
}
void read_payload()
{
payload_str[0] = '\0'; // clear the payload string
// if ((Serial.available() > 0)|| first_time == true)
{
blink(50);
char result = Serial.read();
char header[] = "OK BME280 ";
char str[100];
strcpy(payload_str, header);
// print_string(str);
if (bmePresent)
// sprintf(str, "%4.2f %6.2f %6.2f %5.2f ",
sprintf(str, "%.1f %.2f %.1f %.2f ",
bme.readTemperature(), bme.readPressure() / 100.0, bme.readAltitude(SEALEVELPRESSURE_HPA), bme.readHumidity());
else
sprintf(str, "0.0 0.0 0.0 0.0 ");
strcat(payload_str, str);
if (mpuPresent) {
// print_string(payload_str);
mpu6050.update();
// sprintf(str, " MPU6050 %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f ",
sprintf(str, "MPU6050 %.1f %.1f %.1f %.1f %.1f %.1f ",
mpu6050.getGyroX(), mpu6050.getGyroY(), mpu6050.getGyroZ(), mpu6050.getAccX(), mpu6050.getAccY(), mpu6050.getAccZ());
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
led_set(STEM_LED_GREEN, HIGH);
else
led_set(STEM_LED_GREEN, LOW);
if (rotation > 5)
led_set(STEM_LED_BLUE, HIGH);
else
led_set(STEM_LED_BLUE, LOW);
} else
sprintf(str, "MPU6050 0.0 0.0 0.0 0.0 0.0 0.0 ");
strcat(payload_str, str);
sensorValue = analogRead(TEMPERATURE_PIN);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
// sprintf(str, "XS %.1f %.1f\n", Temp, Sensor1);
sprintf(str, "XS %.1f 0.0\n", Temp);
strcat(payload_str, str);
print_string(payload_str);
/*
if (result == 'R') {
Serial.println("OK");
delay(100);
first_time = true;
setup();
}
else if (result == 'C') {
Serial.println("Clearing stored gyro offsets in EEPROM\n");
EEPROM.put(0, (float)0.0);
first_time = true;
setup();
}
*/
// if ((result == '?') || first_time == true)
/*
if (true)
{
first_time = false;
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
if (mpuPresent) {
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
}
else
Serial.print(" MPU6050 0.0 0.0 0.0 0.0 0.0 0.0 ");
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
Serial.println(Sensor1);
if (mpuPresent) {
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
*/
// }
}
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = analogRead(TEMPERATURE_PIN);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
// delay(100);
}
void payload_OK_only()
{
payload_str[0] = '\0'; // clear the payload string
if ((Serial.available() > 0)|| first_time == true) // commented back in
{
blink(50);
char result = Serial.read();
char header[] = "OK BME280 ";
char str[100];
strcpy(payload_str, header);
// print_string(str);
if (bmePresent)
// sprintf(str, "%4.2f %6.2f %6.2f %5.2f ",
sprintf(str, "%.1f %.2f %.1f %.2f ",
bme.readTemperature(), bme.readPressure() / 100.0, bme.readAltitude(SEALEVELPRESSURE_HPA), bme.readHumidity());
else
sprintf(str, "OK BME280 0.0 0.0 0.0 0.0 ");
strcat(payload_str, str);
if (mpuPresent) {
// print_string(payload_str);
mpu6050.update();
// sprintf(str, " MPU6050 %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f ",
sprintf(str, " MPU6050 %.1f %.1f %.1f %.1f %.1f %.1f ",
mpu6050.getGyroX(), mpu6050.getGyroY(), mpu6050.getGyroZ(), mpu6050.getAccX(), mpu6050.getAccY(), mpu6050.getAccZ());
strcat(payload_str, str);
// print_string(payload_str);
}
if (result == 'R') {
Serial.println("OK");
delay(100);
first_time = true;
setup();
}
else if (result == 'C') {
Serial.println("Clearing stored gyro offsets in EEPROM\n");
EEPROM.put(0, (float)0.0);
first_time = true;
setup();
}
if ((result == '?') || first_time == true) // commented back in
if (true)
{
first_time = false;
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
if (mpuPresent) {
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
}
sensorValue = analogRead(TEMPERATURE_PIN);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial.print(" XS ");
Serial.print(Temp);
Serial.print(" ");
Serial.println(Sensor1);
if (mpuPresent) {
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
}
if (Serial1.available() > 0) {
blink(50);
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(100);
first_read = true;
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
sensorValue = analogRead(TEMPERATURE_PIN);
//Serial.println(sensorValue);
Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1));
Serial1.print(" XS ");
Serial1.print(Temp);
Serial1.print(" ");
Serial1.println(Sensor2);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (first_read == true) {
first_read = false;
rest = acceleration;
}
if (acceleration > 1.2 * rest)
led_set(greenLED, HIGH);
else
led_set(greenLED, LOW);
if (rotation > 5)
led_set(blueLED, HIGH);
else
led_set(blueLED, LOW);
}
}
delay(100);
}
/*
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}
*/
void blink_setup()
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
pinMode(PB9, OUTPUT);
pinMode(PB8, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
pinMode(greenLED, OUTPUT);
pinMode(blueLED,OUTPUT);
#endif
}
void blink(int length)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
#if defined ARDUINO_ARCH_RP2040
digitalWrite(25, LOW); // set the built-in LED ON
#endif
sleep(length/1000.0); // delay(length); // wait for a lenth of time
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED0; //TX LED macro to turn LED ON
#endif
#if defined ARDUINO_ARCH_RP2040
digitalWrite(25, HIGH); // set the built-in LED off
#endif
}
void led_set(int ledPin, bool state)
{
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
if (ledPin == greenLED)
digitalWrite(PB9, state);
else if (ledPin == blueLED)
digitalWrite(PB8, state);
#endif
#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040
digitalWrite(ledPin, state);
#endif
}
void start_ina219() {
// check if Pi is present by 3.3V voltage
pinMode(PI_3V3_PIN, INPUT);
Serial.print("Pi 3.3V: ");
Serial.println(digitalRead(PI_3V3_PIN));
if (digitalRead(PI_3V3_PIN) == LOW) {
Serial.println("Powering INA219s through 3.3V pin");
pinMode(PI_3V3_PIN, OUTPUT);
digitalWrite(PI_3V3_PIN, HIGH);
} else {
Serial.println("Not powering INA219s since 3.3V is present");
// pinMode(MAIN_INA219, OUTPUT);
// digitalWrite(MAIN_INA219, HIGH);
}
sleep(0.1);
i2c_bus1 = ina219_1_0x40.begin(); // check i2c bus 1
ina219_1_0x41.begin();
ina219_1_0x44.begin();
ina219_1_0x45.begin();
Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();
i2c_bus3 = ina219_2_0x40.begin(&Wire1); // check i2c bus 2
ina219_2_0x41.begin(&Wire1);
ina219_2_0x44.begin(&Wire1);
ina219_2_0x45.begin(&Wire1);
/*
if (i2c_bus1) {
ina219_1_0x40.setCalibration_16V_400mA();
ina219_1_0x41.setCalibration_16V_400mA();
ina219_1_0x44.setCalibration_16V_400mA();
ina219_1_0x45.setCalibration_16V_400mA();
}
if (i2c_bus3) {
ina219_2_0x40.setCalibration_16V_400mA();
ina219_2_0x41.setCalibration_16V_400mA();
ina219_2_0x44.setCalibration_16V_400mA();
ina219_2_0x45.setCalibration_16V_400mA();
}
*/
}
void start_pwm() {
// based on code https://github.com/rgrosset/pico-pwm-audio
// and
// https://qiita.com/keyyum/items/8cb419f5278e13b6db4d
//
Serial.println("Starting pwm f=432.250 MHz!");
// pwm_value = 128 - pwm_amplitude;
// set_sys_clock_khz(125000, true);
set_sys_clock_khz(133000, true);
gpio_set_function(BPSK_PWM_A_PIN, GPIO_FUNC_PWM);
gpio_set_function(BPSK_PWM_B_PIN, GPIO_FUNC_PWM);
bpsk_pin_slice_A = pwm_gpio_to_slice_num(BPSK_PWM_A_PIN);
bpsk_pin_slice_B = pwm_gpio_to_slice_num(BPSK_PWM_B_PIN);
Serial.print(pwm_gpio_to_slice_num(BPSK_PWM_A_PIN));
Serial.print(" ");
Serial.print(pwm_gpio_to_channel(BPSK_PWM_A_PIN));
Serial.print(" ");
Serial.print(pwm_gpio_to_slice_num(BPSK_PWM_B_PIN));
Serial.print(" ");
Serial.print(pwm_gpio_to_channel(BPSK_PWM_B_PIN));
Serial.println(" ");
/*
// Setup PWM interrupt to fire when PWM cycle is complete
pwm_clear_irq(bpsk_pin_slice);
pwm_set_irq_enabled(audio_pin_slice, true);
// set the handle function above
irq_set_exclusive_handler(PWM_IRQ_WRAP, pwm_interrupt_handler);
irq_set_enabled(PWM_IRQ_WRAP, true);
*/
config = pwm_get_default_config();
// pwm_config_set_clkdiv(&config, 8.0); //16.0); // 8.0f); was 16 for some reason
pwm_config_set_clkdiv(&config, 1.0f); // 2.0f); // 1.0f); // 16.0); //1.0f); // 1.0f);
// pwm_config_set_wrap(&config, 178); // 250);
pwm_config_set_wrap(&config, 3); // 255); // 3);
// pwm_config_set_output_polarity( &config, polarity, polarity);
pwm_config_set_output_polarity( &config, true, false);
pwm_init(bpsk_pin_slice_A, &config, true);
pwm_init(bpsk_pin_slice_B, &config, true);
pwm_set_gpio_level(BPSK_PWM_A_PIN, (config.top + 1) * 0.5);
pwm_set_gpio_level(BPSK_PWM_B_PIN, (config.top + 1) * 0.5);
}
/*
void pwm_interrupt_handler() {
// based on code https://github.com/rgrosset/pico-pwm-audio
//
pwm_clear_irq(pwm_gpio_to_slice_num(AUDIO_OUT_PIN));
// if (wav_position < (WAV_DATA_LENGTH<<3) - 1) {
if (wav_position > (BUFFER_SIZE - 1)) {
// set pwm level
// allow the pwm value to repeat for 8 cycles this is >>3
pwm_set_gpio_level(AUDIO_OUT_PIN, buffer[wav_position]);
wav_position++;
} else {
// reset to start
wav_position = 0;
}
}
*/
/*
void pwm_interrupt_handler() {
pwm_clear_irq(pwm_gpio_to_slice_num(AUDIO_OUT_PIN));
pwm_counter++;
if (pwm_counter > pwm_counter_max) {
pwm_counter -= pwm_counter_max;
// if (random(0,2) == 1)
// pwm_rnd_bit *= (-1.0);
pwm_rnd_bit = (buffer[wav_position] > 0) ? 1 : 0;
// Serial.print(pwm_rnd_bit);
// Serial.print(" ");
if ((pwm_value == (128 - pwm_amplitude)) && (pwm_rnd_bit == 1)) {
pwm_value = 128 + pwm_amplitude;
// Serial.print("-");
}
else {
pwm_value = 128 - pwm_amplitude;
// Serial.print("_");
}
pwm_set_gpio_level(AUDIO_OUT_PIN, pwm_value);
// Serial.println("wav_position: ");
// Serial.println(wav_position);
if (wav_position++ > BUFFER_SIZE) { // 300) {
wav_position = wav_position - BUFFER_SIZE;
// Serial.print("R");
}
}
}
*/
/* ///
void setup1() {
Serial.begin(9600);
sleep(5.0);
Serial.println("Setup1");
while(!ready) { // wait for core0 to start
sleep(0.1);
Serial.println(ready);
}
Serial.print("S");
Serial.print(" ");
Serial.println(millis());
}
void loop1() {
Serial.print("l1 ");
Serial.print(wav_position);
Serial.print(" ");
if (mode == FSK)
{
tx_bit = (buffer[wav_position++] > 0) ? HIGH: LOW;
digitalWrite(AUDIO_OUT_PIN, tx_bit);
}
else if (mode == BPSK) {
;
*
tx_bit = (buffer[wav_position++] > 0) ? true: false;
pwm_config_set_output_polarity( &config, tx_bit, tx_bit);
pwm_init(bpsk_pin_slice, &config, true);
pwm_set_gpio_level(BPSK_PWM_PIN, (config.top + 1) * 0.5);
*
}
// if (wav_position++ > BUFFER_SIZE) { // 300) {
// wav_position = wav_position - BUFFER_SIZE;
if (wav_position > bufLen) { // 300) {
wav_position = wav_position - bufLen;
Serial.print("R");
Serial.print(" ");
Serial.println(millis());
}
delay(1); //2 1);
// sleep(delay_time);
// check pushbutton
// int pb_value;
// pb_value = digitalRead(MAIN_PB_PIN);
// Serial.print("PB: ");
// Serial.println(pb_value);
// if (pb_value == PRESSED)
if (digitalRead(MAIN_PB_PIN) == PRESSED)
process_pushbutton();
}
*///
/*
void sleep(float time) { // sleeps for intervals more than 0.1 seconds
unsigned long time_ms = (unsigned long)(time * 1000.0);
unsigned long startSleep = millis();
while ((millis() - startSleep) < time_ms) {
delay(100);
}
}
*/
void sleep(float time) { // sleeps for intervals more than 0.01 milli seconds
unsigned long time_us = (unsigned long)(time * 1000000.0);
unsigned long startSleep = micros();
while ((micros() - startSleep) < time_us) {
// busy_wait_us(100);
delayMicroseconds(100);
}
}
void process_pushbutton() {
// Serial.println("PB pressed!");
int release = FALSE;
if (!wifi)
digitalWrite(LED_BUILTIN, HIGH); // make sure built in LED is on before starting to blink
sleep(1.0);
int pb_value = digitalRead(MAIN_PB_PIN);
if (pb_value == RELEASED) {
Serial.println("PB: Reboot!");
release = TRUE;
}
blinkTimes(1);
sleep(1.5);
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to AFSK");
release = TRUE;
new_mode = AFSK;
// setup();
}
if (release == FALSE) {
blinkTimes(2);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to FSK");
release = TRUE;
// new_mode = FSK;
// setup();
}
if (release == FALSE) {
blinkTimes(3);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to BPSK");
release = TRUE;
new_mode = BPSK;
}
if (release == FALSE) {
blinkTimes(4);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to SSTV");
release = TRUE;
}
if (release == FALSE) {
blinkTimes(5);
sleep(1.5);
}
pb_value = digitalRead(MAIN_PB_PIN);
if ((pb_value == RELEASED) && (release == FALSE)) {
Serial.println("PB: Switch to CW");
release = TRUE;
}
if (release == FALSE) {
Serial.println("PB: Shutdown!");
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
}
if (new_mode != mode)
transmit_off();
sleep(2.0);
}
void process_bootsel() {
// Serial.println("BOOTSEL pressed!");
int release = FALSE;
if (!wifi)
digitalWrite(LED_BUILTIN, HIGH); // make sure built in LED is on before blinking
sleep(1.0);
// int pb_value = digitalRead(MAIN_PB_PIN);
if (!BOOTSEL) {
Serial.println("BOOTSEL: Reboot!");
release = TRUE;
}
blinkTimes(1);
sleep(1.5);
// pb_value = digitalRead(MAIN_PB_PIN);
if ((!BOOTSEL) && (release == FALSE)) {
Serial.println("BOOTSEL: Switch to AFSK");
release = TRUE;
new_mode = AFSK;
// setup();
}
if (release == FALSE) {
blinkTimes(2);
sleep(1.5);
}
// pb_value = digitalRead(MAIN_PB_PIN);
if ((!BOOTSEL) && (release == FALSE)) {
Serial.println("BOOTSEL: Switch to FSK");
release = TRUE;
new_mode = FSK;
// setup();
}
if (release == FALSE) {
blinkTimes(3);
sleep(1.5);
}
// pb_value = digitalRead(MAIN_PB_PIN);
if ((!BOOTSEL) && (release == FALSE)) {
Serial.println("BOOTSEL: Switch to BPSK");
release = TRUE;
new_mode = BPSK;
}
if (release == FALSE) {
blinkTimes(4);
sleep(1.5);
}
// pb_value = digitalRead(MAIN_PB_PIN);
if ((!BOOTSEL) && (release == FALSE)) {
Serial.println("BOOTSEL: Switch to SSTV");
release = TRUE;
}
if (release == FALSE) {
blinkTimes(5);
sleep(1.5);
}
// pb_value = digitalRead(MAIN_PB_PIN);
if ((!BOOTSEL) && (release == FALSE)) {
Serial.println("BOOTSEL: Switch to CW");
release = TRUE;
}
if (release == FALSE) {
Serial.println("BOOTSEL: Shutdown!");
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, LOW);
sleep(0.5);
digitalWrite(MAIN_LED_GREEN, HIGH);
sleep(0.5);
}
if (new_mode != mode)
transmit_off();
sleep(2.0);
}
void blinkTimes(int blinks) {
for (int i = 0; i < blinks; i++) {
digitalWrite(MAIN_LED_GREEN, LOW);
if (!wifi)
digitalWrite(LED_BUILTIN, LOW);
sleep(0.1);
digitalWrite(MAIN_LED_GREEN, HIGH);
if (!wifi)
digitalWrite(LED_BUILTIN, HIGH);
sleep(0.1);
}
}
void blink_pin(int pin, int duration) {
digitalWrite(pin, HIGH);
sleep((float)duration / 1000.00);
digitalWrite(pin, LOW);
}
void config_gpio() {
// set all Pico GPIO pins to input
for (int i = 6; i < 29; i++) {
pinMode(i, INPUT);
}
// set audio out to TXC board
pinMode(AUDIO_OUT_PIN, OUTPUT);
// set LEDs and blink once
if (!wifi)
pinMode(LED_BUILTIN, OUTPUT); // Set LED pin to output
pinMode(MAIN_LED_GREEN, OUTPUT); // Set Main Green LED pin to output
blink_pin(MAIN_LED_GREEN, 150);
digitalWrite(MAIN_LED_GREEN, HIGH); // Leave Green LED on
pinMode(MAIN_LED_BLUE, OUTPUT); // Set Main Blue LED pin to output
blink_pin(MAIN_LED_BLUE, 150);
pinMode(STEM_LED_GREEN, OUTPUT); // Set STEM Green LED pin to output
blink_pin(STEM_LED_GREEN, 150);
pinMode(STEM_LED_BLUE, OUTPUT); // Set STEM Blue LED pin to output
blink_pin(STEM_LED_BLUE, 150);
// set input pins and read
pinMode(MAIN_PB_PIN, INPUT_PULLUP); // Read Main Board push button
pinMode(TXC_PIN, INPUT_PULLUP); // Read TXC to see if present
pinMode(LPF_PIN, INPUT_PULLUP); // Read LPF to see if present
// pinMode(SQUELCH, INPUT); // Squelch from TXC
if (digitalRead(LPF_PIN) == FALSE)
Serial.println("LPF present");
else
Serial.println("LPF not present");
if (digitalRead(TXC_PIN) == FALSE)
Serial.println("TXC present");
else
Serial.println("TXC not present");
// Serial.print("Squelch: ");
// Serial.println(digitalRead(SQUELCH));
Serial.print("Pi 3.3V: ");
Serial.println(digitalRead(PI_3V3_PIN));
// set anlog inputs and read
Serial.print("Diode voltage (temperature): ");
Serial.println(analogRead(TEMPERATURE_PIN));
Serial.print("Audio In: ");
Serial.println(analogRead(AUDIO_IN_PIN));
}
bool TimerHandler0(struct repeating_timer *t) {
if (mode == BPSK) { // only do this if BPSK mode. Should turn off timer interrupt when not BPSK in future
// Serial.print("l1 ");
// Serial.print(wav_position);
// Serial.print(" ");
if (buffer[wav_position++] > 0) {
digitalWrite(BPSK_CONTROL_A, HIGH);
// delayMicroseconds(2);
digitalWrite(BPSK_CONTROL_B, LOW);
} else {
digitalWrite(BPSK_CONTROL_B, HIGH);
// delayMicroseconds(2);
digitalWrite(BPSK_CONTROL_A, LOW);
}
/*
tx_bit = (buffer[wav_position] > 0) ? HIGH: LOW;
digitalWrite(AUDIO_OUT_PIN, tx_bit);
tx_bit = (buffer[wav_position++] > 0) ? true: false;
*/
/*
if (tx_bit)
Serial.print("-");
else
Serial.print("_");
*/
/*
pwm_config_set_output_polarity( &config, tx_bit, tx_bit);
pwm_init(bpsk_pin_slice, &config, true);
pwm_set_gpio_level(BPSK_PWM_PIN, (config.top + 1) * 0.5);
*/
if (wav_position > bufLen) { // 300) {
wav_position = wav_position - bufLen;
// Serial.print("\nR");
// Serial.print(" ");
// Serial.println(millis());
Serial.print("R Microseconds: ");
Serial.println((micros() - micro_timer)/bufLen);
micro_timer = micros();
}
}
/*
if (digitalRead(MAIN_PB_PIN) == PRESSED) // pushbutton is pressed
process_pushbutton();
if (BOOTSEL) // boot selector button is pressed on Pico
process_bootsel();
*/
return true;
}
void start_isr() {
// return;
if (!timer0_on) {
Serial.println("Starting ISR");
pinMode(BPSK_CONTROL_A, OUTPUT);
pinMode(BPSK_CONTROL_B, OUTPUT);
// if (ITimer0.attachInterruptInterval(833, TimerHandler0))
// if (ITimer0.attachInterruptInterval(804, TimerHandler0))
if (ITimer0.attachInterruptInterval(828, TimerHandler0))
// if (ITimer0.attachInterruptInterval(1667, TimerHandler0))
{
Serial.print(F("Starting ITimer0 OK, micros() = ")); Serial.println(micros());
timer0_on = true;
}
else
Serial.println(F("Can't set ITimer0. Select another Timer, freq. or timer"));
}
}
void start_button_isr() {
Serial.println("Starting pushbutton ISR");
if (ITimer1.attachInterruptInterval(10000, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, micros() = "));
Serial.println(micros());
}
else
Serial.println(F("Can't set ITimer1. Select another Timer, freq. or timer"));
}
void client_print_string(char *string)
{
int count = 0;
while ((count < 250) && (string[count] != 0))
{
client.print(string[count++]);
}
client.println(" ");
}
bool check_for_wifi() {
#ifndef PICO_W
return(false); // skip check if not Pico W board or compilation will fail
#endif
// stdio_init_all();
adc_init();
adc_gpio_init(29);
adc_select_input(3);
const float conversion_factor = 3.3f / (1 << 12);
uint16_t result = adc_read();
// Serial.printf("ADC3 value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);
if (result < 0x100) {
Serial.println("\nPico W detected!\n");
return(true);
}
else {
Serial.println("\nPico detected!\n");
return(false);
}
}
void check_for_browser() {
if (!wifi)
return;
client = server.available();
if (!client) {
return;
}
client.printf("CubeSatSim Pico configuration\r\n\r\n");
while (!client.available()) {
delay(10);
}
String req = client.readStringUntil('\n');
// Serial.print("Got: ");
// Serial.println(req);
char * token;
const char question[2] = "?";
const char equal[2] = "=";
const char space[2] = " ";
char reqstr[255];
char str2[255];
char str3[255];
char var[255];
char val[255];
strcpy(val, NULL);
strcpy(reqstr, req.c_str());
token = strtok(reqstr, space);
if (token != NULL) {
// print_string(token);
token = strtok(NULL, space);
if (token != NULL) {
// print_string(token);
strcpy(str2, token);
token = strtok(str2, question);
if (token != NULL) {
// print_string(token);
token = strtok(NULL, question);
if (token != NULL) {
// print_string(token);
strcpy(str3, token);
token = strtok(str3, equal);
if (token != NULL) {
// print_string(token);
strcpy(var, token);
token = strtok(NULL, equal);
if (token != NULL) {
// print_string(token);
strcpy(val, token);
}
}
}
}
}
}
/*
Serial.println(" ");
print_string(var);
print_string(val);
Serial.println(" ");
Serial.println(strlen(val));
*/
if (!strcmp(var, "call") && (strlen(val) > 0)) {
Serial.print("Changing callsign to ");
print_string(val);
client.print("Changing callsign to ");
client_print_string(val);
} else if (!strcmp(var, "mode") && (strlen(val) > 0)) {
Serial.print("Changing mode to ");
Serial.println(atoi(val));
client.print("Changing mode to ");
client.println(atoi(val));
}
// client.println("To change the callsign, add call=W3ZM to the URL");
client.printf("\nTo change the callsign to CALL, type %s:%d/set?call=CALL as the URL", WiFi.localIP().toString().c_str(), port);
client.printf("\nTo change the mode to N, type %s:%d/set?mode=N as the URL\n", WiFi.localIP().toString().c_str(), port);
client.flush();
}
void configure_wifi() {
if (wifi) {
WiFi.mode(WIFI_AP);
WiFi.setHostname("PicoW2");
Serial.printf("Setting up WiFi '%s' with password '%s'\n", ssid, password);
// Serial.printf("\nConnected to WiFi. Connect to server at %s:%d\n", WiFi.localIP().toString().c_str(), port);
const char no_address[] = "(IP unset)";
// if (!strcmp(WiFi.localIP().toString().c_str(), no_address))
// Serial.println("No WiFi");
WiFi.begin(ssid, password);
Serial.println("Starting WiFi");
// while (WiFi.status() != WL_CONNECTED) {
while(!strcmp(WiFi.localIP().toString().c_str(), no_address)) {
// if (!strcmp(WiFi.localIP().toString().c_str(), no_address))
Serial.print("No WiFi ");
Serial.println(WiFi.localIP().toString());
delay(500);
}
delay(5000);
Serial.printf("\nTo configure, connect to server on WiFi at http://%s:%d\n", WiFi.localIP().toString().c_str(), port);
server.begin();
}
}
void transmit_mili(int freq, float duration) { // freq in Hz, duration in milliseconds
unsigned long start = micros();
unsigned long duration_us = duration * 1000;
float period_us = (1.0E6) / (float)(freq);
bool phase = HIGH;
while((micros() - start) < duration_us) {
digitalWrite(AUDIO_OUT_PIN, phase); // ToDo: if no TXC, just turn on PWM carrier
phase = !phase;
sleep(min(start + duration_us - micros(), period_us) / 1.0E6);
}
digitalWrite(AUDIO_OUT_PIN, LOW);
}
void transmit_callsign(char *callsign) {
char de[] = " HI HI DE ";
char id[20];
strcpy(id, de);
strcat(id, callsign);
Serial.print("Transmitting id: ");
print_string(id);
transmit_on();
transmit_string(id);
transmit_off();
}
void transmit_string(char *string) {
int i = 0;
while ((string[i] != '\0') && (i < 256)) {
if (string[i] != ' ')
transmit_char(string[i++]);
else {
sleep((6.0 * (float)morse_timing)/1000.0);
i++;
}
}
}
void transmit_char(char character) {
int i = 0;
while ((morse_table[(toupper(character) - '0') % 44][i] != 0) && (i < 5)) {
// Serial.print(morse_table[(toupper(character) - '0') % 44][i]);
transmit_mili(morse_freq, morse_table[(toupper(character) - '0') % 44][i++] * morse_timing);
sleep((float)(morse_timing)/1000.0);
}
sleep((float)(morse_timing * 3.0)/1000.0);
// Serial.println(" ");
}
void parse_payload() {
if ((payload_str[0] == 'O') && (payload_str[1] == 'K')) // only process if valid payload response
{
int count1;
char * token;
const char space[2] = " ";
token = strtok(payload_str, space);
for (count1 = 0; count1 < 17; count1++) {
if (token != NULL) {
sensor[count1] = (float) atof(token);
// Serial.print("sensor: ");
// Serial.println(sensor[count1]);
token = strtok(NULL, space);
}
}
// printf("\n");
// }
// else
// payload = OFF; // turn off since STEM Payload is not responding
// }
// if ((payload_str[0] == 'O') && (payload_str[1] == 'K')) {
for (int count1 = 0; count1 < 17; count1++) {
if (sensor[count1] < sensor_min[count1])
sensor_min[count1] = sensor[count1];
if (sensor[count1] > sensor_max[count1])
sensor_max[count1] = sensor[count1];
// printf("Smin %f Smax %f \n", sensor_min[count1], sensor_max[count1]);
}
}
}