from rtlsdr import RtlSdr import numpy as np import matplotlib.pyplot as plt # Create a sample signal (sum of two sine waves) sampling_rate = 1024e3 # 250e3 # Hz duration = 65536/sampling_rate # 1 # seconds # t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) # frequency1 = 50 # Hz # frequency2 = 120 # Hz # signal = 0.7 * np.sin(2 * np.pi * frequency1 * t) + np.sin(2 * np.pi * frequency2 * t) sdr = RtlSdr() # configure device sdr.sample_rate = sampling_rate # 250e3 # 2.4e6 center_frequency = 434.8e6 sdr.center_freq = center_frequency sdr.gain = 4 sdr.direct_sampling = False # signal = sdr.read_samples(64*1024) #256 signal = sdr.read_samples(duration*sampling_rate).real #256 print(f"Center frequency is {center_frequency}") sdr.close() # Compute the FFT fft_result = np.fft.fft(signal) # Calculate the frequencies corresponding to the FFT output n = len(signal) frequencies = np.fft.fftfreq(n, d=1/sampling_rate) # Take the absolute value for amplitude spectrum and consider only the positive frequencies positive_frequencies_indices = np.where(frequencies >= 0) positive_frequencies = frequencies[positive_frequencies_indices] amplitude_spectrum = 2/n * np.abs(fft_result[positive_frequencies_indices]) # Normalize for amplitude # Plotting the results plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(t, signal) plt.title('Time Domain Signal') plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.subplot(1, 2, 2) plt.stem(positive_frequencies, amplitude_spectrum, markerfmt=" ", basefmt="-b") plt.title('Frequency Domain (FFT)') plt.xlabel('Frequency (Hz)') plt.ylabel('Amplitude') plt.grid(True) plt.tight_layout() plt.show() print(amplitude_spectrum) x = amplitude_spectrum print(x) min_value = min(x) max_value = max(x) #freq_min = np.argmax(min_value) print(np.argmax(x)) print(np.argmax(x)*(150e3 - 10e3)/(9770 - 709)) print(sampling_rate) print(center_frequency) offset = (np.argmax(x)*(150e3 - 10e3)/(9770 - 709)) freq_max = center_frequency + offset print(f"The maximum signal is {max_value} at frequency {freq_max}") #print(f"The minimum signal is {min_value} at frequency {freq_min}") print(min_value) print(max_value)