/* * Transmits CubeSat Telemetry at 434.9MHz in AFSK, FSK, BPSK, or CW format * Or transmits SSTV stored images or Pi camera iamges. * * Copyright Alan B. Johnston * * Portions Copyright (C) 2018 Jonathan Brandenburg * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "main.h" int main(int argc, char * argv[]) { char resbuffer[1000]; const char testStr[] = "cat /proc/cpuinfo | grep 'Revision' | awk '{print $3}' | sed 's/^1000//' | grep '902120'"; FILE *file_test = sopen(testStr); // see if Pi Zero 2 fgets(resbuffer, 1000, file_test); // fprintf(stderr, "test result: %s\n", resbuffer); fclose(file_test); // fprintf(stderr, " %x ", resbuffer[0]); // fprintf(stderr, " %x ", resbuffer[1]); if (resbuffer[1] != 0) { sleep(5); // try sleep at start to help boot voltageThreshold = 3.7; printf("Pi Zero 2 detected"); } printf("\n\nCubeSatSim v1.2 starting...\n\n"); FILE * rpitx_stop = popen("sudo systemctl stop rpitx", "r"); pclose(rpitx_stop); FILE * file_deletes = popen("sudo rm /home/pi/CubeSatSim/ready /home/pi/CubeSatSim/cwready > /dev/null", "r"); pclose(file_deletes); printf("Test bus 1\n"); fflush(stdout); i2c_bus1 = (test_i2c_bus(1) != -1) ? 1 : OFF; printf("Test bus 3\n"); fflush(stdout); i2c_bus3 = (test_i2c_bus(3) != -1) ? 3 : OFF; printf("Finished testing\n"); fflush(stdout); // sleep(2); FILE * rpitx_restart = popen("sudo systemctl restart rpitx", "r"); pclose(rpitx_restart); mode = FSK; frameCnt = 1; if (argc > 1) { // strcpy(src_addr, argv[1]); if ( * argv[1] == 'b') { mode = BPSK; printf("Mode BPSK\n"); } else if ( * argv[1] == 'a') { mode = AFSK; printf("Mode AFSK\n"); } else if ( * argv[1] == 'm') { mode = CW; printf("Mode CW\n"); } else { printf("Mode FSK\n"); } if (argc > 2) { // printf("String is %s %s\n", *argv[2], argv[2]); loop = atoi(argv[2]); loop_count = loop; } printf("Looping %d times \n", loop); if (argc > 3) { if ( * argv[3] == 'n') { cw_id = OFF; printf("No CW id\n"); } } } else { FILE * mode_file = fopen("/home/pi/CubeSatSim/.mode", "r"); if (mode_file != NULL) { char mode_string; mode_string = fgetc(mode_file); fclose(mode_file); printf("Mode file /home/pi/CubeSatSim/.mode contains %c\n", mode_string); if ( mode_string == 'b') { mode = BPSK; printf("Mode is BPSK\n"); } else if ( mode_string == 'a') { mode = AFSK; printf("Mode is AFSK\n"); } else if ( mode_string == 's') { mode = SSTV; printf("Mode is SSTV\n"); } else if ( mode_string == 'm') { mode = CW; printf("Mode is CW\n"); } else { printf("Mode is FSK\n"); } } } // Open configuration file with callsign and reset count FILE * config_file = fopen("/home/pi/CubeSatSim/sim.cfg", "r"); if (config_file == NULL) { printf("Creating config file."); config_file = fopen("/home/pi/CubeSatSim/sim.cfg", "w"); fprintf(config_file, "%s %d", " ", 100); fclose(config_file); config_file = fopen("/home/pi/CubeSatSim/sim.cfg", "r"); } // char * cfg_buf[100]; fscanf(config_file, "%s %d %f %f %s", call, & reset_count, & lat_file, & long_file, sim_yes); fclose(config_file); printf("Config file /home/pi/CubeSatSim/sim.cfg contains %s %d %f %f %s\n", call, reset_count, lat_file, long_file, sim_yes); reset_count = (reset_count + 1) % 0xffff; if ((fabs(lat_file) > 0) && (fabs(lat_file) < 90.0) && (fabs(long_file) > 0) && (fabs(long_file) < 180.0)) { printf("Valid latitude and longitude in config file\n"); // convert to APRS DDMM.MM format latitude = toAprsFormat(lat_file); longitude = toAprsFormat(long_file); printf("Lat/Long in APRS DDMM.MM format: %f/%f\n", latitude, longitude); } else { // set default latitude = toAprsFormat(latitude); longitude = toAprsFormat(longitude); } if (strcmp(sim_yes, "yes") == 0) sim_mode = TRUE; wiringPiSetup(); if (mode == AFSK) { // Check for SPI and AX-5043 Digital Transceiver Board FILE * file = popen("sudo raspi-config nonint get_spi", "r"); // printf("getc: %c \n", fgetc(file)); if (fgetc(file) == 48) { printf("SPI is enabled!\n"); FILE * file2 = popen("ls /dev/spidev0.* 2>&1", "r"); printf("Result getc: %c \n", getc(file2)); if (fgetc(file2) != 'l') { printf("SPI devices present!\n"); // } setSpiChannel(SPI_CHANNEL); setSpiSpeed(SPI_SPEED); initializeSpi(); ax25_init( & hax25, (uint8_t * ) dest_addr, 11, (uint8_t * ) call, 11, AX25_PREAMBLE_LEN, AX25_POSTAMBLE_LEN); if (init_rf()) { printf("AX5043 successfully initialized!\n"); ax5043 = TRUE; cw_id = OFF; // mode = AFSK; // cycle = OFF; printf("Mode AFSK with AX5043\n"); transmit = TRUE; // sleep(10); // just in case CW ID is sent } else printf("AX5043 not present!\n"); pclose(file2); } } pclose(file); } txLed = 0; // defaults for vB3 board without TFB txLedOn = LOW; txLedOff = HIGH; if (!ax5043) { pinMode(2, INPUT); pullUpDnControl(2, PUD_UP); if (digitalRead(2) != HIGH) { printf("vB3 with TFB Present\n"); vB3 = TRUE; txLed = 3; txLedOn = LOW; txLedOff = HIGH; onLed = 0; onLedOn = LOW; onLedOff = HIGH; transmit = TRUE; } else { pinMode(3, INPUT); pullUpDnControl(3, PUD_UP); if (digitalRead(3) != HIGH) { printf("vB4 Present with UHF BPF\n"); txLed = 2; txLedOn = HIGH; txLedOff = LOW; vB4 = TRUE; onLed = 0; onLedOn = HIGH; onLedOff = LOW; transmit = TRUE; } else { pinMode(26, INPUT); pullUpDnControl(26, PUD_UP); if (digitalRead(26) != HIGH) { printf("v1 Present with UHF BPF\n"); txLed = 2; txLedOn = HIGH; txLedOff = LOW; vB5 = TRUE; onLed = 27; onLedOn = HIGH; onLedOff = LOW; transmit = TRUE; } else { pinMode(23, INPUT); pullUpDnControl(23, PUD_UP); if (digitalRead(23) != HIGH) { printf("v1 Present with VHF BPF\n"); txLed = 2; txLedOn = HIGH; txLedOff = LOW; vB5 = TRUE; onLed = 27; onLedOn = HIGH; onLedOff = LOW; printf("VHF BPF not yet supported so no transmit\n"); transmit = FALSE; } } } } } pinMode(txLed, OUTPUT); digitalWrite(txLed, txLedOff); #ifdef DEBUG_LOGGING printf("Tx LED Off\n"); #endif pinMode(onLed, OUTPUT); digitalWrite(onLed, onLedOn); #ifdef DEBUG_LOGGING printf("Power LED On\n"); #endif config_file = fopen("sim.cfg", "w"); fprintf(config_file, "%s %d %8.4f %8.4f %s", call, reset_count, lat_file, long_file, sim_yes); // fprintf(config_file, "%s %d", call, reset_count); fclose(config_file); config_file = fopen("sim.cfg", "r"); if (vB4) { map[BAT] = BUS; map[BUS] = BAT; snprintf(busStr, 10, "%d %d", i2c_bus1, test_i2c_bus(0)); } else if (vB5) { map[MINUS_X] = MINUS_Y; map[PLUS_Z] = MINUS_X; map[MINUS_Y] = PLUS_Z; if (access("/dev/i2c-11", W_OK | R_OK) >= 0) { // Test if I2C Bus 11 is present printf("/dev/i2c-11 is present\n\n"); snprintf(busStr, 10, "%d %d", test_i2c_bus(1), test_i2c_bus(11)); } else { snprintf(busStr, 10, "%d %d", i2c_bus1, i2c_bus3); } } else { map[BUS] = MINUS_Z; map[BAT] = BUS; map[PLUS_Z] = BAT; map[MINUS_Z] = PLUS_Z; snprintf(busStr, 10, "%d %d", i2c_bus1, test_i2c_bus(0)); voltageThreshold = 8.0; } // check for camera // char cmdbuffer1[1000]; FILE * file4 = popen("vcgencmd get_camera", "r"); fgets(cmdbuffer, 1000, file4); char camera_present[] = "supported=1 detected=1"; // printf("strstr: %s \n", strstr( & cmdbuffer1, camera_present)); camera = (strstr( (const char *)& cmdbuffer, camera_present) != NULL) ? ON : OFF; // printf("Camera result:%s camera: %d \n", & cmdbuffer1, camera); pclose(file4); #ifdef DEBUG_LOGGING printf("INFO: I2C bus status 0: %d 1: %d 3: %d camera: %d\n", i2c_bus0, i2c_bus1, i2c_bus3, camera); #endif FILE * file5 = popen("sudo rm /home/pi/CubeSatSim/camera_out.jpg > /dev/null 2>&1", "r"); file5 = popen("sudo rm /home/pi/CubeSatSim/camera_out.jpg.wav > /dev/null 2>&1", "r"); pclose(file5); // try connecting to STEM Payload board using UART // /boot/config.txt and /boot/cmdline.txt must be set correctly for this to work if (!ax5043 && !vB3 && !(mode == CW) && !(mode == SSTV)) // don't test for payload if AX5043 is present or CW or SSTV modes { payload = OFF; if ((uart_fd = serialOpen("/dev/ttyAMA0", 115200)) >= 0) { // was 9600 char c; int charss = (char) serialDataAvail(uart_fd); if (charss != 0) printf("Clearing buffer of %d chars \n", charss); while ((charss--> 0)) c = (char) serialGetchar(uart_fd); // clear buffer unsigned int waitTime; int i; for (i = 0; i < 2; i++) { if (payload != ON) { serialPutchar(uart_fd, 'R'); printf("Querying payload with R to reset\n"); waitTime = millis() + 500; while ((millis() < waitTime) && (payload != ON)) { if (serialDataAvail(uart_fd)) { printf("%c", c = (char) serialGetchar(uart_fd)); fflush(stdout); if (c == 'O') { printf("%c", c = (char) serialGetchar(uart_fd)); fflush(stdout); if (c == 'K') payload = ON; } } printf("\n"); // sleep(0.75); } } } if (payload == ON) { printf("\nSTEM Payload is present!\n"); sleep(2); // delay to give payload time to get ready } else { printf("\nSTEM Payload not present!\n -> Is STEM Payload programed and Serial1 set to 115200 baud?\n"); } } else { fprintf(stderr, "Unable to open UART: %s\n -> Did you configure /boot/config.txt and /boot/cmdline.txt?\n", strerror(errno)); } } if ((i2c_bus3 == OFF) || (sim_mode == TRUE)) { sim_mode = TRUE; printf("Simulated telemetry mode!\n"); srand((unsigned int)time(0)); axis[0] = rnd_float(-0.2, 0.2); if (axis[0] == 0) axis[0] = rnd_float(-0.2, 0.2); axis[1] = rnd_float(-0.2, 0.2); axis[2] = (rnd_float(-0.2, 0.2) > 0) ? 1.0 : -1.0; angle[0] = (float) atan(axis[1] / axis[2]); angle[1] = (float) atan(axis[2] / axis[0]); angle[2] = (float) atan(axis[1] / axis[0]); volts_max[0] = rnd_float(4.5, 5.5) * (float) sin(angle[1]); volts_max[1] = rnd_float(4.5, 5.5) * (float) cos(angle[0]); volts_max[2] = rnd_float(4.5, 5.5) * (float) cos(angle[1] - angle[0]); float amps_avg = rnd_float(150, 300); amps_max[0] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) sin(angle[1]); amps_max[1] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[0]); amps_max[2] = (amps_avg + rnd_float(-25.0, 25.0)) * (float) cos(angle[1] - angle[0]); batt = rnd_float(3.8, 4.3); speed = rnd_float(1.0, 2.5); eclipse = (rnd_float(-1, +4) > 0) ? 1.0 : 0.0; period = rnd_float(150, 300); tempS = rnd_float(20, 55); temp_max = rnd_float(50, 70); temp_min = rnd_float(10, 20); #ifdef DEBUG_LOGGING for (int i = 0; i < 3; i++) printf("axis: %f angle: %f v: %f i: %f \n", axis[i], angle[i], volts_max[i], amps_max[i]); printf("batt: %f speed: %f eclipse_time: %f eclipse: %f period: %f temp: %f max: %f min: %f\n", batt, speed, eclipse_time, eclipse, period, tempS, temp_max, temp_min); #endif time_start = (long int) millis(); eclipse_time = (long int)(millis() / 1000.0); if (eclipse == 0.0) eclipse_time -= period / 2; // if starting in eclipse, shorten interval } tx_freq_hz -= tx_channel * 50000; if (transmit == FALSE) { fprintf(stderr, "\nNo CubeSatSim Band Pass Filter detected. No transmissions after the CW ID.\n"); fprintf(stderr, " See http://cubesatsim.org/wiki for info about building a CubeSatSim\n\n"); } if (mode == FSK) { bitRate = 200; rsFrames = 1; payloads = 1; rsFrameLen = 64; headerLen = 6; dataLen = 58; syncBits = 10; syncWord = 0b0011111010; parityLen = 32; amplitude = 32767 / 3; samples = S_RATE / bitRate; bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples); samplePeriod = (int) (((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen)))) / (float) bitRate) * 1000 - 500); sleepTime = 0.1f; frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms printf("\n FSK Mode, %d bits per frame, %d bits per second, %d ms per frame, %d ms sample period\n", bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod); } else if (mode == BPSK) { bitRate = 1200; rsFrames = 3; payloads = 6; rsFrameLen = 159; headerLen = 8; dataLen = 78; syncBits = 31; syncWord = 0b1000111110011010010000101011101; parityLen = 32; amplitude = 32767; samples = S_RATE / bitRate; bufLen = (frameCnt * (syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))) * samples); samplePeriod = ((float)((syncBits + 10 * (headerLen + rsFrames * (rsFrameLen + parityLen))))/(float)bitRate) * 1000 - 1800; // samplePeriod = 3000; // sleepTime = 3.0; //samplePeriod = 2200; // reduce dut to python and sensor querying delays sleepTime = 2.2f; frameTime = ((float)((float)bufLen / (samples * frameCnt * bitRate))) * 1000; // frame time in ms printf("\n BPSK Mode, bufLen: %d, %d bits per frame, %d bits per second, %d ms per frame %d ms sample period\n", bufLen, bufLen / (samples * frameCnt), bitRate, frameTime, samplePeriod); sin_samples = S_RATE/freq_Hz; // printf("Sin map: "); for (int j = 0; j < sin_samples; j++) { sin_map[j] = (short int)(amplitude * sin((float)(2 * M_PI * j / sin_samples))); // printf(" %d", sin_map[j]); } printf("\n"); } memset(voltage, 0, sizeof(voltage)); memset(current, 0, sizeof(current)); memset(sensor, 0, sizeof(sensor)); memset(other, 0, sizeof(other)); if (((mode == FSK) || (mode == BPSK))) // && !sim_mode) get_tlm_fox(); // fill transmit buffer with reset count 0 packets that will be ignored firstTime = 1; if (!sim_mode) { strcpy(pythonStr, pythonCmd); strcat(pythonStr, busStr); strcat(pythonConfigStr, pythonStr); strcat(pythonConfigStr, " c"); fprintf(stderr, "pythonConfigStr: %s\n", pythonConfigStr); file1 = sopen(pythonConfigStr); // python sensor polling function fgets(cmdbuffer, 1000, file1); fprintf(stderr, "pythonStr result: %s\n", cmdbuffer); } for (int i = 0; i < 9; i++) { voltage_min[i] = 1000.0; current_min[i] = 1000.0; voltage_max[i] = -1000.0; current_max[i] = -1000.0; } for (int i = 0; i < 17; i++) { sensor_min[i] = 1000.0; sensor_max[i] = -1000.0; // printf("Sensor min and max initialized!"); } for (int i = 0; i < 3; i++) { other_min[i] = 1000.0; other_max[i] = -1000.0; } long int loopTime; loopTime = millis(); while (loop-- != 0) { fflush(stdout); fflush(stderr); // frames_sent++; sensor_payload[0] = 0; memset(voltage, 0, sizeof(voltage)); memset(current, 0, sizeof(current)); memset(sensor, 0, sizeof(sensor)); memset(other, 0, sizeof(other)); FILE * uptime_file = fopen("/proc/uptime", "r"); fscanf(uptime_file, "%f", & uptime_sec); uptime = (int) (uptime_sec + 0.5); // printf("Uptime sec: %f \n", uptime_sec); // #ifdef DEBUG_LOGGING printf("INFO: Reset Count: %d Uptime since Reset: %ld \n", reset_count, uptime); // #endif fclose(uptime_file); printf("++++ Loop time: %5.3f sec +++++\n", (millis() - loopTime)/1000.0); fflush(stdout); loopTime = millis(); if (sim_mode) { // simulated telemetry double time = ((long int)millis() - time_start) / 1000.0; if ((time - eclipse_time) > period) { eclipse = (eclipse == 1) ? 0 : 1; eclipse_time = time; printf("\n\nSwitching eclipse mode! \n\n"); } double Xi = eclipse * amps_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-2, 2); double Yi = eclipse * amps_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-2, 2); double Zi = eclipse * amps_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-2, 2); double Xv = eclipse * volts_max[0] * (float) sin(2.0 * 3.14 * time / (46.0 * speed)) + rnd_float(-0.2, 0.2); double Yv = eclipse * volts_max[1] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + (3.14 / 2.0)) + rnd_float(-0.2, 0.2); double Zv = 2.0 * eclipse * volts_max[2] * (float) sin((2.0 * 3.14 * time / (46.0 * speed)) + 3.14 + angle[2]) + rnd_float(-0.2, 0.2); // printf("Yi: %f Zi: %f %f %f Zv: %f \n", Yi, Zi, amps_max[2], angle[2], Zv); current[map[PLUS_X]] = (Xi >= 0) ? Xi : 0; current[map[MINUS_X]] = (Xi >= 0) ? 0 : ((-1.0f) * Xi); current[map[PLUS_Y]] = (Yi >= 0) ? Yi : 0; current[map[MINUS_Y]] = (Yi >= 0) ? 0 : ((-1.0f) * Yi); current[map[PLUS_Z]] = (Zi >= 0) ? Zi : 0; current[map[MINUS_Z]] = (Zi >= 0) ? 0 : ((-1.0f) * Zi); voltage[map[PLUS_X]] = (Xv >= 1) ? Xv : rnd_float(0.9, 1.1); voltage[map[MINUS_X]] = (Xv <= -1) ? ((-1.0f) * Xv) : rnd_float(0.9, 1.1); voltage[map[PLUS_Y]] = (Yv >= 1) ? Yv : rnd_float(0.9, 1.1); voltage[map[MINUS_Y]] = (Yv <= -1) ? ((-1.0f) * Yv) : rnd_float(0.9, 1.1); voltage[map[PLUS_Z]] = (Zv >= 1) ? Zv : rnd_float(0.9, 1.1); voltage[map[MINUS_Z]] = (Zv <= -1) ? ((-1.0f) * Zv) : rnd_float(0.9, 1.1); // printf("temp: %f Time: %f Eclipse: %d : %f %f | %f %f | %f %f\n",tempS, time, eclipse, voltage[map[PLUS_X]], voltage[map[MINUS_X]], voltage[map[PLUS_Y]], voltage[map[MINUS_Y]], current[map[PLUS_Z]], current[map[MINUS_Z]]); tempS += (eclipse > 0) ? ((temp_max - tempS) / 50.0f) : ((temp_min - tempS) / 50.0f); tempS += +rnd_float(-1.0, 1.0); // IHUcpuTemp = (int)((tempS + rnd_float(-1.0, 1.0)) * 10 + 0.5); other[IHU_TEMP] = tempS; voltage[map[BUS]] = rnd_float(5.0, 5.005); current[map[BUS]] = rnd_float(158, 171); // float charging = current[map[PLUS_X]] + current[map[MINUS_X]] + current[map[PLUS_Y]] + current[map[MINUS_Y]] + current[map[PLUS_Z]] + current[map[MINUS_Z]]; float charging = eclipse * (fabs(amps_max[0] * 0.707) + fabs(amps_max[1] * 0.707) + rnd_float(-4.0, 4.0)); current[map[BAT]] = ((current[map[BUS]] * voltage[map[BUS]]) / batt) - charging; // printf("charging: %f bat curr: %f bus curr: %f bat volt: %f bus volt: %f \n",charging, current[map[BAT]], current[map[BUS]], batt, voltage[map[BUS]]); batt -= (batt > 3.5) ? current[map[BAT]] / 30000 : current[map[BAT]] / 3000; if (batt < 3.0) { batt = 3.0; SafeMode = 1; printf("Safe Mode!\n"); } else SafeMode= 0; if (batt > 4.5) batt = 4.5; voltage[map[BAT]] = batt + rnd_float(-0.01, 0.01); // end of simulated telemetry } else { int count1; char * token; fputc('\n', file1); fgets(cmdbuffer, 1000, file1); fprintf(stderr, "Python read Result: %s\n", cmdbuffer); const char space[2] = " "; token = strtok(cmdbuffer, space); for (count1 = 0; count1 < 8; count1++) { if (token != NULL) { voltage[count1] = (float) atof(token); #ifdef DEBUG_LOGGING // printf("voltage: %f ", voltage[count1]); #endif token = strtok(NULL, space); if (token != NULL) { current[count1] = (float) atof(token); if ((current[count1] < 0) && (current[count1] > -0.5)) current[count1] *= (-1.0f); #ifdef DEBUG_LOGGING // printf("current: %f\n", current[count1]); #endif token = strtok(NULL, space); } } } batteryVoltage = voltage[map[BAT]]; batteryCurrent = current[map[BAT]]; if (batteryVoltage < 3.6) { SafeMode = 1; printf("Safe Mode!\n"); } else SafeMode = 0; FILE * cpuTempSensor = fopen("/sys/class/thermal/thermal_zone0/temp", "r"); if (cpuTempSensor) { // double cpuTemp; fscanf(cpuTempSensor, "%lf", & cpuTemp); cpuTemp /= 1000; #ifdef DEBUG_LOGGING // printf("CPU Temp Read: %6.1f\n", cpuTemp); #endif other[IHU_TEMP] = (double)cpuTemp; // IHUcpuTemp = (int)((cpuTemp * 10.0) + 0.5); } fclose(cpuTempSensor); } if (payload == ON) { // -55 STEMBoardFailure = 0; char c; unsigned int waitTime; int i, end, trys = 0; sensor_payload[0] = 0; sensor_payload[1] = 0; while (((sensor_payload[0] != 'O') || (sensor_payload[1] != 'K')) && (trys++ < 10)) { i = 0; serialPutchar(uart_fd, '?'); sleep(0.05); // added delay after ? printf("%d Querying payload with ?\n", trys); waitTime = millis() + 500; end = FALSE; // int retry = FALSE; while ((millis() < waitTime) && !end) { int chars = (char) serialDataAvail(uart_fd); while ((chars > 0) && !end) { // printf("Chars: %d\ ", chars); chars--; c = (char) serialGetchar(uart_fd); // printf ("%c", c); // fflush(stdout); if (c != '\n') { sensor_payload[i++] = c; } else { end = TRUE; } } } sensor_payload[i++] = ' '; // sensor_payload[i++] = '\n'; sensor_payload[i] = '\0'; printf(" Response from STEM Payload board: %s\n", sensor_payload); sleep(0.1); // added sleep between loops } if ((sensor_payload[0] == 'O') && (sensor_payload[1] == 'K')) // only process if valid payload response { int count1; char * token; const char space[2] = " "; token = strtok(sensor_payload, space); for (count1 = 0; count1 < 17; count1++) { if (token != NULL) { sensor[count1] = (float) atof(token); #ifdef DEBUG_LOGGING // printf("sensor: %f ", sensor[count1]); #endif token = strtok(NULL, space); } } printf("\n"); } else payload = OFF; // turn off since STEM Payload is not responding } if ((sensor_payload[0] == 'O') && (sensor_payload[1] == 'K')) { for (int count1 = 0; count1 < 17; count1++) { if (sensor[count1] < sensor_min[count1]) sensor_min[count1] = sensor[count1]; if (sensor[count1] > sensor_max[count1]) sensor_max[count1] = sensor[count1]; // printf("Smin %f Smax %f \n", sensor_min[count1], sensor_max[count1]); } } // } #ifdef DEBUG_LOGGING fprintf(stderr, "INFO: Battery voltage: %5.2f V Threshold %5.2f V Current: %6.1f mA Threshold: %6.1f mA\n", batteryVoltage, voltageThreshold, batteryCurrent, currentThreshold); #endif // if ((batteryVoltage > 1.0) && (batteryVoltage < batteryThreshold)) // no battery INA219 will give 0V, no battery plugged into INA219 will read < 1V /**/ if ((batteryCurrent > currentThreshold) && (batteryVoltage < voltageThreshold) && !sim_mode) // currentThreshold ensures that this won't happen when running on DC power. { fprintf(stderr, "Battery voltage too low: %f V - shutting down!\n", batteryVoltage); digitalWrite(txLed, txLedOff); digitalWrite(onLed, onLedOff); sleep(1); digitalWrite(onLed, onLedOn); sleep(1); digitalWrite(onLed, onLedOff); sleep(1); digitalWrite(onLed, onLedOn); sleep(1); digitalWrite(onLed, onLedOff); FILE * file6 = popen("/home/pi/CubeSatSim/log > shutdown_log.txt", "r"); pclose(file6); sleep(40); file6 = popen("sudo shutdown -h now > /dev/null 2>&1", "r"); pclose(file6); sleep(10); } /**/ // sleep(1); // Delay 1 second ctr = 0; #ifdef DEBUG_LOGGING // fprintf(stderr, "INFO: Getting TLM Data\n"); #endif if ((mode == AFSK) || (mode == CW)) { get_tlm(); } else if ((mode == FSK) || (mode == BPSK)) {// FSK or BPSK get_tlm_fox(); } else { // SSTV fprintf(stderr, "Sleeping\n"); sleep(50); } #ifdef DEBUG_LOGGING // fprintf(stderr, "INFO: Getting ready to send\n"); #endif } if (mode == BPSK) { // digitalWrite(txLed, txLedOn); #ifdef DEBUG_LOGGING // printf("Tx LED On 1\n"); #endif printf("Sleeping to allow BPSK transmission to finish.\n"); sleep((unsigned int)(loop_count * 5)); printf("Done sleeping\n"); // digitalWrite(txLed, txLedOff); #ifdef DEBUG_LOGGING // printf("Tx LED Off\n"); #endif } else if (mode == FSK) { printf("Sleeping to allow FSK transmission to finish.\n"); sleep((unsigned int)loop_count); printf("Done sleeping\n"); } return 0; } // Returns lower digit of a number which must be less than 99 // int lower_digit(int number) { int digit = 0; if (number < 100) digit = number - ((int)(number / 10) * 10); else fprintf(stderr, "ERROR: Not a digit in lower_digit!\n"); return digit; } // Returns upper digit of a number which must be less than 99 // int upper_digit(int number) { int digit = 0; if (number < 100) digit = (int)(number / 10); else fprintf(stderr, "ERROR: Not a digit in upper_digit!\n"); return digit; } static int init_rf() { int ret; fprintf(stderr, "Initializing AX5043\n"); ret = ax5043_init( & hax5043, XTAL_FREQ_HZ, VCO_INTERNAL); if (ret != PQWS_SUCCESS) { fprintf(stderr, "ERROR: Failed to initialize AX5043 with error code %d\n", ret); // exit(EXIT_FAILURE); return (0); } return (1); } void get_tlm(void) { FILE * txResult; for (int j = 0; j < frameCnt; j++) { fflush(stdout); fflush(stderr); int tlm[7][5]; memset(tlm, 0, sizeof tlm); tlm[1][A] = (int)(voltage[map[BUS]] / 15.0 + 0.5) % 100; // Current of 5V supply to Pi tlm[1][B] = (int)(99.5 - current[map[PLUS_X]] / 10.0) % 100; // +X current [4] tlm[1][C] = (int)(99.5 - current[map[MINUS_X]] / 10.0) % 100; // X- current [10] tlm[1][D] = (int)(99.5 - current[map[PLUS_Y]] / 10.0) % 100; // +Y current [7] tlm[2][A] = (int)(99.5 - current[map[MINUS_Y]] / 10.0) % 100; // -Y current [10] tlm[2][B] = (int)(99.5 - current[map[PLUS_Z]] / 10.0) % 100; // +Z current [10] // was 70/2m transponder power, AO-7 didn't have a Z panel tlm[2][C] = (int)(99.5 - current[map[MINUS_Z]] / 10.0) % 100; // -Z current (was timestamp) tlm[2][D] = (int)(50.5 + current[map[BAT]] / 10.0) % 100; // NiMH Battery current // tlm[3][A] = abs((int)((voltage[map[BAT]] * 10.0) - 65.5) % 100); if (voltage[map[BAT]] > 4.6) tlm[3][A] = (int)((voltage[map[BAT]] * 10.0) - 65.5) % 100; // 7.0 - 10.0 V for old 9V battery else tlm[3][A] = (int)((voltage[map[BAT]] * 10.0) + 44.5) % 100; // 0 - 4.5 V for new 3 cell battery tlm[3][B] = (int)(voltage[map[BUS]] * 10.0) % 100; // 5V supply to Pi tlm[4][A] = (int)((95.8 - other[IHU_TEMP]) / 1.48 + 0.5) % 100; // was [B] but didn't display in online TLM spreadsheet tlm[6][B] = 0; tlm[6][D] = 49 + rand() % 3; /* #ifdef DEBUG_LOGGING // Display tlm int k, j; for (k = 1; k < 7; k++) { for (j = 1; j < 5; j++) { printf(" %2d ", tlm[k][j]); } printf("\n"); } #endif */ char str[1000]; char tlm_str[1000]; char header_str[] = "\x03\xf0"; // hi hi "; char header_str3[] = "echo '"; char header_str2[] = "-11>APCSS:"; char header_str2b[30]; // for APRS coordinates char header_lat[10]; char header_long[10]; char header_str4[] = "hi hi "; char footer_str1[] = "\' > t.txt && echo \'"; char footer_str[] = "-11>APCSS:010101/hi hi ' >> t.txt && touch /home/pi/CubeSatSim/ready"; // transmit is done by rpitx.py if (ax5043) { strcpy(str, header_str); } else { strcpy(str, header_str3); // } if (mode == AFSK) { strcat(str, call); strcat(str, header_str2); } } // printf("Str: %s \n", str); if (mode != CW) { // sprintf(header_str2b, "=%7.2f%c%c%c%08.2f%cShi hi ",4003.79,'N',0x5c,0x5c,07534.33,'W'); // add APRS lat and long if (latitude > 0) sprintf(header_lat, "%7.2f%c", latitude, 'N'); // lat else sprintf(header_lat, "%7.2f%c", latitude * (-1.0), 'S'); // lat if (longitude > 0) sprintf(header_long, "%08.2f%c", longitude , 'E'); // long else sprintf(header_long, "%08.2f%c", longitude * (-1.0), 'W'); // long if (ax5043) sprintf(header_str2b, "=%s%c%sShi hi ", header_lat, 0x5c, header_long); // add APRS lat and long else sprintf(header_str2b, "=%s%c%c%sShi hi ", header_lat, 0x5c, 0x5c, header_long); // add APRS lat and long // printf("\n\nString is %s \n\n", header_str2b); strcat(str, header_str2b); } else { strcat(str, header_str4); } // } printf("Str: %s \n", str); int channel; for (channel = 1; channel < 7; channel++) { sprintf(tlm_str, "%d%d%d %d%d%d %d%d%d %d%d%d ", channel, upper_digit(tlm[channel][1]), lower_digit(tlm[channel][1]), channel, upper_digit(tlm[channel][2]), lower_digit(tlm[channel][2]), channel, upper_digit(tlm[channel][3]), lower_digit(tlm[channel][3]), channel, upper_digit(tlm[channel][4]), lower_digit(tlm[channel][4])); // printf("%s",tlm_str); strcat(str, tlm_str); } // read payload sensor if available char sensor_payload[500]; if (payload == ON) { char c; unsigned int waitTime; int i, end, trys = 0; sensor_payload[0] = 0; sensor_payload[1] = 0; while (((sensor_payload[0] != 'O') || (sensor_payload[1] != 'K')) && (trys++ < 10)) { i = 0; serialPutchar(uart_fd, '?'); sleep(0.05); // added delay after ? printf("%d Querying payload with ?\n", trys); waitTime = millis() + 500; end = FALSE; // int retry = FALSE; while ((millis() < waitTime) && !end) { int chars = (char) serialDataAvail(uart_fd); while ((chars > 0) && !end) { // printf("Chars: %d\ ", chars); chars--; c = (char) serialGetchar(uart_fd); // printf ("%c", c); // fflush(stdout); if (c != '\n') { sensor_payload[i++] = c; } else { end = TRUE; } } } sensor_payload[i++] = ' '; // sensor_payload[i++] = '\n'; sensor_payload[i] = '\0'; printf(" Response from STEM Payload board: %s\n", sensor_payload); sleep(0.1); // added sleep between loops } if (mode != CW) strcat(str, sensor_payload); // append to telemetry string for transmission } if (mode == CW) { char cw_str2[1000]; char cw_header2[] = "echo '"; char cw_footer2[] = "' > id.txt && gen_packets -M 20 id.txt -o morse.wav -r 48000 > /dev/null 2>&1 && cat morse.wav | csdr convert_i16_f | csdr gain_ff 7000 | csdr convert_f_samplerf 20833 | sudo /home/pi/rpitx/rpitx -i- -m RF -f 434.897e3"; char cw_footer3[] = "' > cw.txt && touch /home/pi/CubeSatSim/cwready"; // transmit is done by rpitx.py // printf("Str str: %s \n", str); // fflush(stdout); strcat(str, cw_footer3); // printf("Str: %s \n", str); // fflush(stdout); printf("CW string to execute: %s\n", str); fflush(stdout); FILE * cw_file = popen(str, "r"); pclose(cw_file); while ((cw_file = fopen("/home/pi/CubeSatSim/cwready", "r")) != NULL) { // wait for rpitx to be done fclose(cw_file); // printf("Sleeping while waiting for rpitx \n"); // fflush(stdout); sleep(5); } } else if (ax5043) { digitalWrite(txLed, txLedOn); fprintf(stderr, "INFO: Transmitting X.25 packet using AX5043\n"); memcpy(data, str, strnlen(str, 256)); printf("data: %s \n", data); int ret = ax25_tx_frame( & hax25, & hax5043, data, strnlen(str, 256)); if (ret) { fprintf(stderr, "ERROR: Failed to transmit AX.25 frame with error code %d\n", ret); exit(EXIT_FAILURE); } ax5043_wait_for_transmit(); digitalWrite(txLed, txLedOff); if (ret) { fprintf(stderr, "ERROR: Failed to transmit entire AX.25 frame with error code %d\n", ret); exit(EXIT_FAILURE); } sleep(4); // was 2 } else { // APRS using rpitx strcat(str, footer_str1); strcat(str, call); strcat(str, footer_str); // fprintf(stderr, "String to execute: %s\n", str); printf("\n\nTelemetry string is %s \n\n", str); if (transmit) { FILE * file2 = popen(str, "r"); pclose(file2); sleep(2); digitalWrite(txLed, txLedOff); } else { fprintf(stderr, "\nNo CubeSatSim Band Pass Filter detected. No transmissions after the CW ID.\n"); fprintf(stderr, " See http://cubesatsim.org/wiki for info about building a CubeSatSim\n\n"); } sleep(3); } } return; } void get_tlm_fox() { int i; long int sync = syncWord; smaller = (int) (S_RATE / (2 * freq_Hz)); short int b[dataLen]; short int b_max[dataLen]; short int b_min[dataLen]; memset(b, 0, sizeof(b)); memset(b_max, 0, sizeof(b_max)); memset(b_min, 0, sizeof(b_min)); short int h[headerLen]; memset(h, 0, sizeof(h)); memset(buffer, 0xa5, sizeof(buffer)); short int rs_frame[rsFrames][223]; unsigned char parities[rsFrames][parityLen], inputByte; int id, frm_type = 0x01, NormalModeFailure = 0, groundCommandCount = 0; int PayloadFailure1 = 0, PayloadFailure2 = 0; int PSUVoltage = 0, PSUCurrent = 0, Resets = 0, Rssi = 2048; int batt_a_v = 0, batt_b_v = 0, batt_c_v = 0, battCurr = 0; int posXv = 0, negXv = 0, posYv = 0, negYv = 0, posZv = 0, negZv = 0; int posXi = 0, negXi = 0, posYi = 0, negYi = 0, posZi = 0, negZi = 0; int head_offset = 0; short int buffer_test[bufLen]; int buffSize; buffSize = (int) sizeof(buffer_test); if (mode == FSK) id = 7; else id = 0; // 99 in h[6] // for (int frames = 0; frames < FRAME_CNT; frames++) for (int frames = 0; frames < frameCnt; frames++) { if (firstTime != ON) { // delay for sample period /**/ // while ((millis() - sampleTime) < (unsigned int)samplePeriod) int startSleep = millis(); if ((millis() - sampleTime) < ((unsigned int)frameTime - 250)) // was 250 100 500 for FSK sleep(2.0); // 0.5); // 25); // initial period while ((millis() - sampleTime) < ((unsigned int)frameTime - 250)) // was 250 100 sleep(0.1); // 25); // 0.5); // 25); // sleep((unsigned int)sleepTime); /**/ printf("Sleep period: %d\n", millis() - startSleep); fflush(stdout); sampleTime = (unsigned int) millis(); } else printf("first time - no sleep\n"); // if (mode == FSK) { // just moved for (int count1 = 0; count1 < 8; count1++) { if (voltage[count1] < voltage_min[count1]) voltage_min[count1] = voltage[count1]; if (current[count1] < current_min[count1]) current_min[count1] = current[count1]; if (voltage[count1] > voltage_max[count1]) voltage_max[count1] = voltage[count1]; if (current[count1] > current_max[count1]) current_max[count1] = current[count1]; // printf("Vmin %4.2f Vmax %4.2f Imin %4.2f Imax %4.2f \n", voltage_min[count1], voltage_max[count1], current_min[count1], current_max[count1]); } for (int count1 = 0; count1 < 3; count1++) { if (other[count1] < other_min[count1]) other_min[count1] = other[count1]; if (other[count1] > other_max[count1]) other_max[count1] = other[count1]; // printf("Other min %f max %f \n", other_min[count1], other_max[count1]); } if (mode == FSK) { if (loop % 32 == 0) { // was 8 printf("Sending MIN frame \n"); frm_type = 0x03; for (int count1 = 0; count1 < 17; count1++) { if (count1 < 3) other[count1] = other_min[count1]; if (count1 < 8) { voltage[count1] = voltage_min[count1]; current[count1] = current_min[count1]; } if (sensor_min[count1] != 1000.0) // make sure values are valid sensor[count1] = sensor_min[count1]; } } if ((loop + 16) % 32 == 0) { // was 8 printf("Sending MAX frame \n"); frm_type = 0x02; for (int count1 = 0; count1 < 17; count1++) { if (count1 < 3) other[count1] = other_max[count1]; if (count1 < 8) { voltage[count1] = voltage_max[count1]; current[count1] = current_max[count1]; } if (sensor_max[count1] != -1000.0) // make sure values are valid sensor[count1] = sensor_max[count1]; } } } else frm_type = 0x02; // BPSK always send MAX MIN frame } sensor_payload[0] = 0; // clear for next payload // if (mode == FSK) { // remove this // } memset(rs_frame, 0, sizeof(rs_frame)); memset(parities, 0, sizeof(parities)); h[0] = (short int) ((h[0] & 0xf8) | (id & 0x07)); // 3 bits if (uptime != 0) // if uptime is 0, leave reset count at 0 { h[0] = (short int) ((h[0] & 0x07) | ((reset_count & 0x1f) << 3)); h[1] = (short int) ((reset_count >> 5) & 0xff); h[2] = (short int) ((h[2] & 0xf8) | ((reset_count >> 13) & 0x07)); } h[2] = (short int) ((h[2] & 0x0e) | ((uptime & 0x1f) << 3)); h[3] = (short int) ((uptime >> 5) & 0xff); h[4] = (short int) ((uptime >> 13) & 0xff); h[5] = (short int) ((h[5] & 0xf0) | ((uptime >> 21) & 0x0f)); h[5] = (short int) ((h[5] & 0x0f) | (frm_type << 4)); if (mode == BPSK) h[6] = 99; posXi = (int)(current[map[PLUS_X]] + 0.5) + 2048; posYi = (int)(current[map[PLUS_Y]] + 0.5) + 2048; posZi = (int)(current[map[PLUS_Z]] + 0.5) + 2048; negXi = (int)(current[map[MINUS_X]] + 0.5) + 2048; negYi = (int)(current[map[MINUS_Y]] + 0.5) + 2048; negZi = (int)(current[map[MINUS_Z]] + 0.5) + 2048; posXv = (int)(voltage[map[PLUS_X]] * 100); posYv = (int)(voltage[map[PLUS_Y]] * 100); posZv = (int)(voltage[map[PLUS_Z]] * 100); negXv = (int)(voltage[map[MINUS_X]] * 100); negYv = (int)(voltage[map[MINUS_Y]] * 100); negZv = (int)(voltage[map[MINUS_Z]] * 100); batt_c_v = (int)(voltage[map[BAT]] * 100); battCurr = (int)(current[map[BAT]] + 0.5) + 2048; PSUVoltage = (int)(voltage[map[BUS]] * 100); PSUCurrent = (int)(current[map[BUS]] + 0.5) + 2048; if (payload == ON) STEMBoardFailure = 0; // read payload sensor if available encodeA(b, 0 + head_offset, batt_a_v); encodeB(b, 1 + head_offset, batt_b_v); encodeA(b, 3 + head_offset, batt_c_v); encodeB(b, 4 + head_offset, (int)(sensor[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel encodeA(b, 6 + head_offset, (int)(sensor[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel encodeB(b, 7 + head_offset, (int)(sensor[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel encodeA(b, 9 + head_offset, battCurr); encodeB(b, 10 + head_offset, (int)(sensor[TEMP] * 10 + 0.5)); // Temp if (mode == FSK) { encodeA(b, 12 + head_offset, posXv); encodeB(b, 13 + head_offset, negXv); encodeA(b, 15 + head_offset, posYv); encodeB(b, 16 + head_offset, negYv); encodeA(b, 18 + head_offset, posZv); encodeB(b, 19 + head_offset, negZv); encodeA(b, 21 + head_offset, posXi); encodeB(b, 22 + head_offset, negXi); encodeA(b, 24 + head_offset, posYi); encodeB(b, 25 + head_offset, negYi); encodeA(b, 27 + head_offset, posZi); encodeB(b, 28 + head_offset, negZi); } else // BPSK { encodeA(b, 12 + head_offset, posXv); encodeB(b, 13 + head_offset, posYv); encodeA(b, 15 + head_offset, posZv); encodeB(b, 16 + head_offset, negXv); encodeA(b, 18 + head_offset, negYv); encodeB(b, 19 + head_offset, negZv); encodeA(b, 21 + head_offset, posXi); encodeB(b, 22 + head_offset, posYi); encodeA(b, 24 + head_offset, posZi); encodeB(b, 25 + head_offset, negXi); encodeA(b, 27 + head_offset, negYi); encodeB(b, 28 + head_offset, negZi); encodeA(b_max, 12 + head_offset, (int)(voltage_max[map[PLUS_X]] * 100)); encodeB(b_max, 13 + head_offset, (int)(voltage_max[map[PLUS_Y]] * 100)); encodeA(b_max, 15 + head_offset, (int)(voltage_max[map[PLUS_Z]] * 100)); encodeB(b_max, 16 + head_offset, (int)(voltage_max[map[MINUS_X]] * 100)); encodeA(b_max, 18 + head_offset, (int)(voltage_max[map[MINUS_Y]] * 100)); encodeB(b_max, 19 + head_offset, (int)(voltage_max[map[MINUS_Z]] * 100)); encodeA(b_max, 21 + head_offset, (int)(current_max[map[PLUS_X]] + 0.5) + 2048); encodeB(b_max, 22 + head_offset, (int)(current_max[map[PLUS_Y]] + 0.5) + 2048); encodeA(b_max, 24 + head_offset, (int)(current_max[map[PLUS_Z]] + 0.5) + 2048); encodeB(b_max, 25 + head_offset, (int)(current_max[map[MINUS_X]] + 0.5) + 2048); encodeA(b_max, 27 + head_offset, (int)(current_max[map[MINUS_Y]] + 0.5) + 2048); encodeB(b_max, 28 + head_offset, (int)(current_max[map[MINUS_Z]] + 0.5) + 2048); encodeA(b_max, 9 + head_offset, (int)(current_max[map[BAT]] + 0.5) + 2048); encodeA(b_max, 3 + head_offset, (int)(voltage_max[map[BAT]] * 100)); encodeA(b_max, 30 + head_offset, (int)(voltage_max[map[BUS]] * 100)); encodeB(b_max, 46 + head_offset, (int)(current_max[map[BUS]] + 0.5) + 2048); encodeB(b_max, 37 + head_offset, (int)(other_max[RSSI] + 0.5) + 2048); encodeA(b_max, 39 + head_offset, (int)(other_max[IHU_TEMP] * 10 + 0.5)); encodeB(b_max, 31 + head_offset, ((int)(other_max[SPIN] * 10)) + 2048); if (sensor_min[0] != 1000.0) // make sure values are valid { encodeB(b_max, 4 + head_offset, (int)(sensor_max[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel encodeA(b_max, 6 + head_offset, (int)(sensor_max[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel encodeB(b_max, 7 + head_offset, (int)(sensor_max[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel encodeA(b_max, 33 + head_offset, (int)(sensor_max[PRES] + 0.5)); // Pressure encodeB(b_max, 34 + head_offset, (int)(sensor_max[ALT] * 10.0 + 0.5)); // Altitude encodeB(b_max, 40 + head_offset, (int)(sensor_max[GYRO_X] + 0.5) + 2048); encodeA(b_max, 42 + head_offset, (int)(sensor_max[GYRO_Y] + 0.5) + 2048); encodeB(b_max, 43 + head_offset, (int)(sensor_max[GYRO_Z] + 0.5) + 2048); encodeA(b_max, 48 + head_offset, (int)(sensor_max[XS1] * 10 + 0.5) + 2048); encodeB(b_max, 49 + head_offset, (int)(sensor_max[XS2] * 10 + 0.5) + 2048); encodeB(b_max, 10 + head_offset, (int)(sensor_max[TEMP] * 10 + 0.5)); encodeA(b_max, 45 + head_offset, (int)(sensor_max[HUMI] * 10 + 0.5)); } else { encodeB(b_max, 4 + head_offset, 2048); // 0 encodeA(b_max, 6 + head_offset, 2048); // 0 encodeB(b_max, 7 + head_offset, 2048); // 0 encodeB(b_max, 40 + head_offset, 2048); encodeA(b_max, 42 + head_offset, 2048); encodeB(b_max, 43 + head_offset, 2048); encodeA(b_max, 48 + head_offset, 2048); encodeB(b_max, 49 + head_offset, 2048); } encodeA(b_min, 12 + head_offset, (int)(voltage_min[map[PLUS_X]] * 100)); encodeB(b_min, 13 + head_offset, (int)(voltage_min[map[PLUS_Y]] * 100)); encodeA(b_min, 15 + head_offset, (int)(voltage_min[map[PLUS_Z]] * 100)); encodeB(b_min, 16 + head_offset, (int)(voltage_min[map[MINUS_X]] * 100)); encodeA(b_min, 18 + head_offset, (int)(voltage_min[map[MINUS_Y]] * 100)); encodeB(b_min, 19 + head_offset, (int)(voltage_min[map[MINUS_Z]] * 100)); encodeA(b_min, 21 + head_offset, (int)(current_min[map[PLUS_X]] + 0.5) + 2048); encodeB(b_min, 22 + head_offset, (int)(current_min[map[PLUS_Y]] + 0.5) + 2048); encodeA(b_min, 24 + head_offset, (int)(current_min[map[PLUS_Z]] + 0.5) + 2048); encodeB(b_min, 25 + head_offset, (int)(current_min[map[MINUS_X]] + 0.5) + 2048); encodeA(b_min, 27 + head_offset, (int)(current_min[map[MINUS_Y]] + 0.5) + 2048); encodeB(b_min, 28 + head_offset, (int)(current_min[map[MINUS_Z]] + 0.5) + 2048); encodeA(b_min, 9 + head_offset, (int)(current_min[map[BAT]] + 0.5) + 2048); encodeA(b_min, 3 + head_offset, (int)(voltage_min[map[BAT]] * 100)); encodeA(b_min, 30 + head_offset, (int)(voltage_min[map[BUS]] * 100)); encodeB(b_min, 46 + head_offset, (int)(current_min[map[BUS]] + 0.5) + 2048); encodeB(b_min, 31 + head_offset, ((int)(other_min[SPIN] * 10)) + 2048); encodeB(b_min, 37 + head_offset, (int)(other_min[RSSI] + 0.5) + 2048); encodeA(b_min, 39 + head_offset, (int)(other_min[IHU_TEMP] * 10 + 0.5)); if (sensor_min[0] != 1000.0) // make sure values are valid { encodeB(b_min, 4 + head_offset, (int)(sensor_min[ACCEL_X] * 100 + 0.5) + 2048); // Xaccel encodeA(b_min, 6 + head_offset, (int)(sensor_min[ACCEL_Y] * 100 + 0.5) + 2048); // Yaccel encodeB(b_min, 7 + head_offset, (int)(sensor_min[ACCEL_Z] * 100 + 0.5) + 2048); // Zaccel encodeA(b_min, 33 + head_offset, (int)(sensor_min[PRES] + 0.5)); // Pressure encodeB(b_min, 34 + head_offset, (int)(sensor_min[ALT] * 10.0 + 0.5)); // Altitude encodeB(b_min, 40 + head_offset, (int)(sensor_min[GYRO_X] + 0.5) + 2048); encodeA(b_min, 42 + head_offset, (int)(sensor_min[GYRO_Y] + 0.5) + 2048); encodeB(b_min, 43 + head_offset, (int)(sensor_min[GYRO_Z] + 0.5) + 2048); encodeA(b_min, 48 + head_offset, (int)(sensor_min[XS1] * 10 + 0.5) + 2048); encodeB(b_min, 49 + head_offset, (int)(sensor_min[XS2] * 10 + 0.5) + 2048); encodeB(b_min, 10 + head_offset, (int)(sensor_min[TEMP] * 10 + 0.5)); encodeA(b_min, 45 + head_offset, (int)(sensor_min[HUMI] * 10 + 0.5)); } else { encodeB(b_min, 4 + head_offset, 2048); // 0 encodeA(b_min, 6 + head_offset, 2048); // 0 encodeB(b_min, 7 + head_offset, 2048); // 0 encodeB(b_min, 40 + head_offset, 2048); encodeA(b_min, 42 + head_offset, 2048); encodeB(b_min, 43 + head_offset, 2048); encodeA(b_min, 48 + head_offset, 2048); encodeB(b_min, 49 + head_offset, 2048); } } encodeA(b, 30 + head_offset, PSUVoltage); encodeB(b, 31 + head_offset, ((int)(other[SPIN] * 10)) + 2048); encodeA(b, 33 + head_offset, (int)(sensor[PRES] + 0.5)); // Pressure encodeB(b, 34 + head_offset, (int)(sensor[ALT] * 10.0 + 0.5)); // Altitude encodeA(b, 36 + head_offset, Resets); encodeB(b, 37 + head_offset, (int)(other[RSSI] + 0.5) + 2048); encodeA(b, 39 + head_offset, (int)(other[IHU_TEMP] * 10 + 0.5)); encodeB(b, 40 + head_offset, (int)(sensor[GYRO_X] + 0.5) + 2048); encodeA(b, 42 + head_offset, (int)(sensor[GYRO_Y] + 0.5) + 2048); encodeB(b, 43 + head_offset, (int)(sensor[GYRO_Z] + 0.5) + 2048); encodeA(b, 45 + head_offset, (int)(sensor[HUMI] * 10 + 0.5)); // in place of sensor1 encodeB(b, 46 + head_offset, PSUCurrent); encodeA(b, 48 + head_offset, (int)(sensor[XS1] * 10 + 0.5) + 2048); encodeB(b, 49 + head_offset, (int)(sensor[XS2] * 10 + 0.5) + 2048); int status = STEMBoardFailure + SafeMode * 2 + sim_mode * 4 + PayloadFailure1 * 8 + (i2c_bus0 == OFF) * 16 + (i2c_bus1 == OFF) * 32 + (i2c_bus3 == OFF) * 64 + (camera == OFF) * 128 + groundCommandCount * 256; encodeA(b, 51 + head_offset, status); encodeB(b, 52 + head_offset, rxAntennaDeployed + txAntennaDeployed * 2); if (txAntennaDeployed == 0) { txAntennaDeployed = 1; printf("TX Antenna Deployed!\n"); } if (mode == BPSK) { // wod field experiments unsigned long val = 0xffff; encodeA(b, 64 + head_offset, 0xff & val); encodeA(b, 65 + head_offset, val >> 8); encodeA(b, 63 + head_offset, 0x00); encodeA(b, 62 + head_offset, 0x01); encodeB(b, 74 + head_offset, 0xfff); } short int data10[headerLen + rsFrames * (rsFrameLen + parityLen)]; short int data8[headerLen + rsFrames * (rsFrameLen + parityLen)]; int ctr1 = 0; int ctr3 = 0; for (i = 0; i < rsFrameLen; i++) { for (int j = 0; j < rsFrames; j++) { if (!((i == (rsFrameLen - 1)) && (j == 2))) // skip last one for BPSK { if (ctr1 < headerLen) { rs_frame[j][i] = h[ctr1]; update_rs(parities[j], h[ctr1]); // printf("header %d rs_frame[%d][%d] = %x \n", ctr1, j, i, h[ctr1]); data8[ctr1++] = rs_frame[j][i]; // printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]); } else { if (mode == FSK) { rs_frame[j][i] = b[ctr3 % dataLen]; update_rs(parities[j], b[ctr3 % dataLen]); } else // BPSK if ((int)(ctr3/dataLen) == 3) { rs_frame[j][i] = b_max[ctr3 % dataLen]; update_rs(parities[j], b_max[ctr3 % dataLen]); } else if ((int)(ctr3/dataLen) == 4) { rs_frame[j][i] = b_min[ctr3 % dataLen]; update_rs(parities[j], b_min[ctr3 % dataLen]); } else { rs_frame[j][i] = b[ctr3 % dataLen]; update_rs(parities[j], b[ctr3 % dataLen]); } { } // printf("%d rs_frame[%d][%d] = %x %d \n", // ctr1, j, i, b[ctr3 % DATA_LEN], ctr3 % DATA_LEN); data8[ctr1++] = rs_frame[j][i]; // printf ("data8[%d] = %x \n", ctr1 - 1, rs_frame[j][i]); ctr3++; } } } } #ifdef DEBUG_LOGGING // printf("\nAt end of data8 write, %d ctr1 values written\n\n", ctr1); /* printf("Parities "); for (int m = 0; m < parityLen; m++) { printf("%d ", parities[0][m]); } printf("\n"); */ #endif int ctr2 = 0; memset(data10, 0, sizeof(data10)); for (i = 0; i < dataLen * payloads + headerLen; i++) // 476 for BPSK { data10[ctr2] = (Encode_8b10b[rd][((int) data8[ctr2])] & 0x3ff); nrd = (Encode_8b10b[rd][((int) data8[ctr2])] >> 10) & 1; // printf ("data10[%d] = encoded data8[%d] = %x \n", // ctr2, ctr2, data10[ctr2]); rd = nrd; // ^ nrd; ctr2++; } // { for (i = 0; i < parityLen; i++) { for (int j = 0; j < rsFrames; j++) { if ((uptime != 0) || (i != 0)) // don't correctly update parties if uptime is 0 so the frame will fail the FEC check and be discarded data10[ctr2++] = (Encode_8b10b[rd][((int) parities[j][i])] & 0x3ff); nrd = (Encode_8b10b[rd][((int) parities[j][i])] >> 10) & 1; // printf ("data10[%d] = encoded parities[%d][%d] = %x \n", // ctr2 - 1, j, i, data10[ctr2 - 1]); rd = nrd; } } // } #ifdef DEBUG_LOGGING // printf("\nAt end of data10 write, %d ctr2 values written\n\n", ctr2); #endif int data; int val; //int offset = 0; #ifdef DEBUG_LOGGING // printf("\nAt start of buffer loop, syncBits %d samples %d ctr %d\n", syncBits, samples, ctr); #endif for (i = 1; i <= syncBits * samples; i++) { write_wave(ctr, buffer); // printf("%d ",ctr); if ((i % samples) == 0) { int bit = syncBits - i / samples + 1; val = sync; data = val & 1 << (bit - 1); // printf ("%d i: %d new frame %d sync bit %d = %d \n", // ctr/SAMPLES, i, frames, bit, (data > 0) ); if (mode == FSK) { phase = ((data != 0) * 2) - 1; // printf("Sending a %d\n", phase); } else { if (data == 0) { phase *= -1; if ((ctr - smaller) > 0) { for (int j = 1; j <= smaller; j++) buffer[ctr - j] = buffer[ctr - j] * 0.4; } flip_ctr = ctr; } } } } #ifdef DEBUG_LOGGING // printf("\n\nValue of ctr after header: %d Buffer Len: %d\n\n", ctr, buffSize); #endif for (i = 1; i <= (10 * (headerLen + dataLen * payloads + rsFrames * parityLen) * samples); i++) // 572 { write_wave(ctr, buffer); if ((i % samples) == 0) { int symbol = (int)((i - 1) / (samples * 10)); int bit = 10 - (i - symbol * samples * 10) / samples + 1; val = data10[symbol]; data = val & 1 << (bit - 1); // printf ("%d i: %d new frame %d data10[%d] = %x bit %d = %d \n", // ctr/SAMPLES, i, frames, symbol, val, bit, (data > 0) ); if (mode == FSK) { phase = ((data != 0) * 2) - 1; // printf("Sending a %d\n", phase); } else { if (data == 0) { phase *= -1; if ((ctr - smaller) > 0) { for (int j = 1; j <= smaller; j++) buffer[ctr - j] = buffer[ctr - j] * 0.4; } flip_ctr = ctr; } } } } } #ifdef DEBUG_LOGGING // printf("\nValue of ctr after looping: %d Buffer Len: %d\n", ctr, buffSize); // printf("\ctr/samples = %d ctr/(samples*10) = %d\n\n", ctr/samples, ctr/(samples*10)); #endif int error = 0; // int count; // for (count = 0; count < dataLen; count++) { // printf("%02X", b[count]); // } // printf("\n"); // socket write if (!socket_open && transmit) { printf("Opening socket!\n"); // struct sockaddr_in address; // int valread; struct sockaddr_in serv_addr; // char *hello = "Hello from client"; // char buffer[1024] = {0}; if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) { printf("\n Socket creation error \n"); error = 1; } memset( & serv_addr, '0', sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_port = htons(PORT); // Convert IPv4 and IPv6 addresses from text to binary form if (inet_pton(AF_INET, "127.0.0.1", & serv_addr.sin_addr) <= 0) { printf("\nInvalid address/ Address not supported \n"); error = 1; } if (connect(sock, (struct sockaddr * ) & serv_addr, sizeof(serv_addr)) < 0) { printf("\nConnection Failed \n"); printf("Error: %s \n", strerror(errno)); error = 1; sleep(2.0); // sleep if socket connection refused // try again error = 0; if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) { printf("\n Socket creation error \n"); error = 1; } memset( & serv_addr, '0', sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_port = htons(PORT); // Convert IPv4 and IPv6 addresses from text to binary form if (inet_pton(AF_INET, "127.0.0.1", & serv_addr.sin_addr) <= 0) { printf("\nInvalid address/ Address not supported \n"); error = 1; } if (connect(sock, (struct sockaddr * ) & serv_addr, sizeof(serv_addr)) < 0) { printf("\nConnection Failed \n"); printf("Error: %s \n", strerror(errno)); error = 1; // sleep(1.0); // sleep if socket connection refused } } if (error == 1) ; //rpitxStatus = -1; else socket_open = 1; } if (!error && transmit) { // digitalWrite (0, LOW); // printf("Sending %d buffer bytes over socket after %d ms!\n", ctr, (long unsigned int)millis() - start); start = millis(); int sock_ret = send(sock, buffer, (unsigned int)(ctr * 2 + 2), 0); printf("socket send 1 %d ms bytes: %d \n\n", (unsigned int)millis() - start, sock_ret); fflush(stdout); if (sock_ret < (ctr * 2 + 2)) { // printf("Not resending\n"); sleep(0.5); sock_ret = send(sock, &buffer[sock_ret], (unsigned int)(ctr * 2 + 2 - sock_ret), 0); printf("socket send 2 %d ms bytes: %d \n\n", millis() - start, sock_ret); } loop_count++; if ((firstTime == 1) || (((loop_count % 180) == 0) && (mode == FSK)) || (((loop_count % 80) == 0) && (mode == BPSK))) // do first time and was every 180 samples { int max; if (mode == FSK) if (sim_mode) max = 6; else if (firstTime == 1) max = 4; // 5; // was 6 else max = 3; else if (firstTime == 1) max = 5; // 5; // was 6 else max = 4; for (int times = 0; times < max; times++) { start = millis(); // send frame until buffer fills sock_ret = send(sock, buffer, (unsigned int)(ctr * 2 + 2), 0); printf("socket send %d in %d ms bytes: %d \n\n",times + 2, (unsigned int)millis() - start, sock_ret); if ((millis() - start) > 500) { printf("Buffer over filled!\n"); break; } if (sock_ret < (ctr * 2 + 2)) { // printf("Not resending\n"); sleep(0.5); sock_ret = send(sock, &buffer[sock_ret], (unsigned int)(ctr * 2 + 2 - sock_ret), 0); printf("socket resend %d in %d ms bytes: %d \n\n",times, millis() - start, sock_ret); } } sampleTime = (unsigned int) millis(); // resetting time for sleeping fflush(stdout); // if (firstTime == 1) // max -= 1; } if (sock_ret == -1) { printf("Error: %s \n", strerror(errno)); socket_open = 0; //rpitxStatus = -1; } } if (!transmit) { fprintf(stderr, "\nNo CubeSatSim Band Pass Filter detected. No transmissions after the CW ID.\n"); fprintf(stderr, " See http://cubesatsim.org/wiki for info about building a CubeSatSim\n\n"); } if (socket_open == 1) firstTime = 0; // else if (frames_sent > 0) //5) // firstTime = 0; return; } // code by https://stackoverflow.com/questions/25161377/open-a-cmd-program-with-full-functionality-i-o/25177958#25177958 FILE *sopen(const char *program) { int fds[2]; pid_t pid; if (socketpair(AF_UNIX, SOCK_STREAM, 0, fds) < 0) return NULL; switch(pid=vfork()) { case -1: /* Error */ close(fds[0]); close(fds[1]); return NULL; case 0: /* child */ close(fds[0]); dup2(fds[1], 0); dup2(fds[1], 1); close(fds[1]); execl("/bin/sh", "sh", "-c", program, NULL); _exit(127); } /* parent */ close(fds[1]); return fdopen(fds[0], "r+"); } /* * TelemEncoding.h * * Created on: Feb 3, 2014 * Author: fox */ /* #include #include #include #include #include #include #define false 0 #define true 1 */ void write_wave(int i, short int *buffer) { if (mode == FSK) { if ((ctr - flip_ctr) < smaller) buffer[ctr++] = (short int)(0.1 * phase * (ctr - flip_ctr) / smaller); else buffer[ctr++] = (short int)(0.25 * amplitude * phase); } else { if ((ctr - flip_ctr) < smaller) // buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples] / 2); else // buffer[ctr++] = (short int)(amplitude * 0.4 * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(amplitude * phase * sin((float)(2*M_PI*i*freq_Hz/S_RATE))); buffer[ctr++] = (short int)(phase * sin_map[ctr % sin_samples]); } // printf("%d %d \n", i, buffer[ctr - 1]); } int encodeA(short int *b, int index, int val) { // printf("Encoding A\n"); b[index] = val & 0xff; b[index + 1] = (short int) ((b[index + 1] & 0xf0) | ((val >> 8) & 0x0f)); return 0; } int encodeB(short int *b, int index, int val) { // printf("Encoding B\n"); b[index] = (short int) ((b[index] & 0x0f) | ((val << 4) & 0xf0)); b[index + 1] = (val >> 4 ) & 0xff; return 0; } int twosToInt(int val,int len) { // Convert twos compliment to integer // from https://www.raspberrypi.org/forums/viewtopic.php?t=55815 if(val & (1 << (len - 1))) val = val - (1 << len); return(val); } float rnd_float(double min,double max) { // returns 2 decimal point random number int val = (rand() % ((int)(max*100) - (int)(min*100) + 1)) + (int)(min*100); float ret = ((float)(val)/100); return(ret); } int test_i2c_bus(int bus) { int output = bus; // return bus number if OK, otherwise return -1 char busDev[20] = "/dev/i2c-"; char busS[5]; snprintf(busS, 5, "%d", bus); strcat (busDev, busS); printf("I2C Bus Tested: %s \n", busDev); if (access(busDev, W_OK | R_OK) >= 0) { // Test if I2C Bus is present // printf("bus is present\n\n"); char result[128]; const char command_start[] = "timeout 2 i2cdetect -y "; // was 5 10 char command[50]; strcpy (command, command_start); strcat (command, busS); // printf("Command: %s \n", command); FILE *i2cdetect = popen(command, "r"); while (fgets(result, 128, i2cdetect) != NULL) { ; // printf("result: %s", result); } int error = pclose(i2cdetect)/256; // printf("%s error: %d \n", &command, error); if (error != 0) { printf("ERROR: %s bus has a problem \n Check I2C wiring and pullup resistors \n", busDev); if (bus == 3) printf("-> If this is a CubeSatSim Lite, then this error is normal!\n"); output = -1; } } else { printf("ERROR: %s bus has a problem \n Check software to see if I2C enabled \n", busDev); output = -1; } return(output); // return bus number or -1 if there is a problem with the bus } float toAprsFormat(float input) { // converts decimal coordinate (latitude or longitude) to APRS DDMM.MM format int dd = (int) input; int mm1 = (int)((input - dd) * 60.0); int mm2 = (int)((input - dd - (float)mm1/60.0) * 60.0 * 60.0); float output = dd * 100 + mm1 + (float)mm2 * 0.01; return(output); }