#include #include #include #include #include #define SEALEVELPRESSURE_HPA (1013.25) //#define TESTING // Define to test on Serial Monitor Adafruit_BME280 bme; MPU6050 mpu6050(Wire); int counter = 0; int RXLED = 17; // The RX LED has a defined Arduino pin long timer = 0; int bmePresent; int greenLED = 9; int blueLED = 8; int Sensor1 = 0; int Sensor2 = 0; float Sensor3 = 0; void eeprom_word_write(int addr, int val); short eeprom_word_read(int addr); void setup() { Serial.begin(9600); // Serial Monitor for testing Serial1.begin(9600); // Pi UART Serial.println("Starting!"); digitalWrite(RXLED, LOW); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF delay(50); // wait for a second digitalWrite(RXLED, HIGH); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF if (bme.begin(0x76)) { bmePresent = 1; } else { Serial.println("Could not find a valid BME280 sensor, check wiring!"); bmePresent = 0; } mpu6050.begin(); if (eeprom_word_read(0) == 0xA07) { Serial.println("Reading gyro offsets from EEPROM\n"); float xOffset = ((float)eeprom_word_read(1))/100.0; float yOffset = ((float)eeprom_word_read(2))/100.0; float zOffset = ((float)eeprom_word_read(3))/100.0; Serial.println(xOffset, DEC); Serial.println(yOffset, DEC); Serial.println(zOffset, DEC); mpu6050.setGyroOffsets(xOffset, yOffset, zOffset); } else { Serial.println("Calculating gyro offsets and storing in EEPROM\n"); mpu6050.calcGyroOffsets(true); eeprom_word_write(0, 0xA07); eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5); eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5); eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5); Serial.println(eeprom_word_read(0), HEX); Serial.println(((float)eeprom_word_read(1))/100.0, DEC); Serial.println(((float)eeprom_word_read(2))/100.0, DEC); Serial.println(((float)eeprom_word_read(3))/100.0, DEC); } pinMode(greenLED, OUTPUT); pinMode(blueLED, OUTPUT); digitalWrite(greenLED, HIGH); // turn the LED on (HIGH is the voltage level) digitalWrite(blueLED, HIGH); // turn the LED on (HIGH is the voltage level) delay(100); // wait for a second digitalWrite(greenLED, LOW); // turn the LED off by making the voltage LOW digitalWrite(blueLED, LOW); // turn the LED on (HIGH is the voltage level) } void loop() { #ifdef TESTING if (Serial.available() > 0) { digitalWrite(RXLED, LOW); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF delay(50); // wait for a second digitalWrite(RXLED, HIGH); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF char result = Serial.read(); // Serial.println(result); if (result == 'R') { Serial.println("OK"); delay(500); setup(); } if (result == '?') { if (bmePresent) { Serial.print("OK BME280 "); Serial.print(bme.readTemperature()); Serial.print(" "); Serial.print(bme.readPressure() / 100.0F); Serial.print(" "); Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); Serial.print(" "); Serial.print(bme.readHumidity()); } else { Serial.print("OK BME280 0.0 0.0 0.0 0.0"); } mpu6050.update(); Serial.print(" MPU6050 "); Serial.print(mpu6050.getGyroX()); Serial.print(" "); Serial.print(mpu6050.getGyroY()); Serial.print(" "); Serial.print(mpu6050.getGyroZ()); Serial.print(" "); Serial.print(mpu6050.getAccX()); Serial.print(" "); Serial.print(mpu6050.getAccY()); Serial.print(" "); Serial.print(mpu6050.getAccZ()); Serial.print(" XS "); Serial.print(Sensor1); Serial.print(" "); Serial.print(Sensor2); Serial.print(" "); Serial.println(Sensor3); float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ()); float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); // Serial.print(rotation); // Serial.print(" "); // Serial.println(acceleration); if (acceleration > 1.2) digitalWrite(greenLED, HIGH); else digitalWrite(greenLED, LOW); if (rotation > 5) digitalWrite(blueLED, HIGH); else digitalWrite(blueLED, LOW); // Serial1.println(counter++); } } #else if (Serial1.available() > 0) { digitalWrite(RXLED, LOW); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF delay(50); // wait for a second digitalWrite(RXLED, HIGH); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF char result = Serial1.read(); // Serial1.println(result); if (result == 'R') { Serial1.println("OK"); delay(500); setup(); } if (result == '?') { if (bmePresent) { Serial1.print("OK BME280 "); Serial1.print(bme.readTemperature()); Serial1.print(" "); Serial1.print(bme.readPressure() / 100.0F); Serial1.print(" "); Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); Serial1.print(" "); Serial1.print(bme.readHumidity()); } else { Serial1.print("OK BME280 0.0 0.0 0.0 0.0"); } mpu6050.update(); Serial1.print(" MPU6050 "); Serial1.print(mpu6050.getGyroX()); Serial1.print(" "); Serial1.print(mpu6050.getGyroY()); Serial1.print(" "); Serial1.print(mpu6050.getGyroZ()); Serial1.print(" "); Serial1.print(mpu6050.getAccX()); Serial1.print(" "); Serial1.print(mpu6050.getAccY()); Serial1.print(" "); Serial1.print(mpu6050.getAccZ()); Serial1.print(" XS "); Serial1.print(Sensor1); Serial1.print(" "); Serial1.print(Sensor2); Serial1.print(" "); Serial1.println(Sensor3); float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ()); float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); // Serial.print(rotation); // Serial.print(" "); // Serial.println(acceleration); if (acceleration > 1.2) digitalWrite(greenLED, HIGH); else digitalWrite(greenLED, LOW); if (rotation > 5) digitalWrite(blueLED, HIGH); else digitalWrite(blueLED, LOW); // Serial1.println(counter++); } } #endif delay(100); } void eeprom_word_write(int addr, int val) { EEPROM.write(addr * 2, lowByte(val)); EEPROM.write(addr * 2 + 1, highByte(val)); } short eeprom_word_read(int addr) { return((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2)); }