#include #include #include #include #include #define SEALEVELPRESSURE_HPA (1013.25) Adafruit_BME280 bme; MPU6050 mpu6050(Wire); long timer = 0; int bmePresent; int RXLED = 17; // The RX LED has a defined Arduino pin int greenLED = 9; int blueLED = 8; int Sensor1 = 0; float Sensor2 = 0; void eeprom_word_write(int addr, int val); short eeprom_word_read(int addr); int first_time = true; float T2 = 26.3; // Temperature data point 1 float R2 = 167; // Reading data point 1 float T1 = 2; // Temperature data point 2 float R1 = 179; // Reading data point 2 int sensorValue; float Temp; void setup() { Serial.begin(9600); // Serial Monitor for testing Serial1.begin(115200); // Pi UART faster speed Serial.println("Starting!"); blink_setup(); blink(500); delay(250); blink(500); delay(250); led_set(greenLED, HIGH); delay(250); led_set(greenLED, LOW); led_set(blueLED, HIGH); delay(250); led_set(blueLED, LOW); if (bme.begin(0x76)) { bmePresent = 1; } else { Serial.println("Could not find a valid BME280 sensor, check wiring!"); bmePresent = 0; } mpu6050.begin(); if (eeprom_word_read(0) == 0xA07) { Serial.println("Reading gyro offsets from EEPROM\n"); float xOffset = ((float)eeprom_word_read(1)) / 100.0; float yOffset = ((float)eeprom_word_read(2)) / 100.0; float zOffset = ((float)eeprom_word_read(3)) / 100.0; Serial.println(xOffset, DEC); Serial.println(yOffset, DEC); Serial.println(zOffset, DEC); mpu6050.setGyroOffsets(xOffset, yOffset, zOffset); } else { Serial.println("Calculating gyro offsets and storing in EEPROM\n"); mpu6050.calcGyroOffsets(true); eeprom_word_write(0, 0xA07); eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5); eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5); eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5); Serial.println(eeprom_word_read(0), HEX); Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC); Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC); Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC); } pinMode(greenLED, OUTPUT); pinMode(blueLED, OUTPUT); } void loop() { if ((Serial.available() > 0)|| first_time == true) { blink(50); char result = Serial.read(); // Serial.println(result); if (result == 'R') { Serial.println("OK"); delay(500); setup(); } if ((result == '?') || first_time == true) { first_time = false; if (bmePresent) { Serial.print("OK BME280 "); Serial.print(bme.readTemperature()); Serial.print(" "); Serial.print(bme.readPressure() / 100.0F); Serial.print(" "); Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); Serial.print(" "); Serial.print(bme.readHumidity()); } else { Serial.print("OK BME280 0.0 0.0 0.0 0.0"); } mpu6050.update(); Serial.print(" MPU6050 "); Serial.print(mpu6050.getGyroX()); Serial.print(" "); Serial.print(mpu6050.getGyroY()); Serial.print(" "); Serial.print(mpu6050.getGyroZ()); Serial.print(" "); Serial.print(mpu6050.getAccX()); Serial.print(" "); Serial.print(mpu6050.getAccY()); Serial.print(" "); Serial.print(mpu6050.getAccZ()); sensorValue = analogRead(A3); //Serial.println(sensorValue); Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1)); Serial.print(" XS "); Serial.print(Temp); Serial.print(" "); Serial.println(Sensor1); float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); // Serial.print(rotation); // Serial.print(" "); // Serial.println(acceleration); if (acceleration > 1.2) led_set(greenLED, HIGH); else led_set(greenLED, LOW); if (rotation > 5) led_set(blueLED, HIGH); else led_set(blueLED, LOW); } } if (Serial1.available() > 0) { blink(50); char result = Serial1.read(); // Serial1.println(result); if (result == 'R') { Serial1.println("OK"); delay(500); setup(); } if (result == '?') { if (bmePresent) { Serial1.print("OK BME280 "); Serial1.print(bme.readTemperature()); Serial1.print(" "); Serial1.print(bme.readPressure() / 100.0F); Serial1.print(" "); Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); Serial1.print(" "); Serial1.print(bme.readHumidity()); } else { Serial1.print("OK BME280 0.0 0.0 0.0 0.0"); } mpu6050.update(); Serial1.print(" MPU6050 "); Serial1.print(mpu6050.getGyroX()); Serial1.print(" "); Serial1.print(mpu6050.getGyroY()); Serial1.print(" "); Serial1.print(mpu6050.getGyroZ()); Serial1.print(" "); Serial1.print(mpu6050.getAccX()); Serial1.print(" "); Serial1.print(mpu6050.getAccY()); Serial1.print(" "); Serial1.print(mpu6050.getAccZ()); sensorValue = analogRead(A3); //Serial.println(sensorValue); Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1)); Serial1.print(" XS "); Serial1.print(Temp); Serial1.print(" "); Serial1.println(Sensor2); float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); // Serial.print(rotation); // Serial.print(" "); // Serial.println(acceleration); if (acceleration > 1.2) led_set(greenLED, HIGH); else led_set(greenLED, LOW); if (rotation > 5) led_set(blueLED, HIGH); else led_set(blueLED, LOW); } } // delay(100); } void eeprom_word_write(int addr, int val) { EEPROM.write(addr * 2, lowByte(val)); EEPROM.write(addr * 2 + 1, highByte(val)); } short eeprom_word_read(int addr) { return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2)); } void blink_setup() { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) // initialize digital pin PB1 as an output. pinMode(PC13, OUTPUT); pinMode(PB9, OUTPUT); pinMode(PB8, OUTPUT); #endif #if defined __AVR_ATmega32U4__ pinMode(RXLED, OUTPUT); // Set RX LED as an output // TX LED is set as an output behind the scenes pinMode(greenLED, OUTPUT); pinMode(blueLED,OUTPUT); #endif } void blink(int length) { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level) #endif #if defined __AVR_ATmega32U4__ digitalWrite(RXLED, LOW); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF #endif delay(length); // wait for a lenth of time #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW #endif #if defined __AVR_ATmega32U4__ digitalWrite(RXLED, HIGH); // set the RX LED OFF TXLED0; //TX LED macro to turn LED ON #endif } void led_set(int ledPin, bool state) { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) if (ledPin == greenLED) digitalWrite(PB9, state); else if (ledPin == blueLED) digitalWrite(PB8, state); #endif #if defined __AVR_ATmega32U4__ digitalWrite(ledPin, state); #endif }