removed old files

pull/117/head
Alan Johnston 5 years ago
parent 750c4ce1bb
commit b02f58e46d

@ -1,78 +0,0 @@
/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc
This example code is in the public domain.
modified 8 May 2014
by Scott Fitzgerald
Modified by Roger Clark. www.rogerclark.net for Maple mini 25th April 2015 , where the LED is on PC13
*/
/* Pro Micro Test Code
by: Nathan Seidle
modified by: Jim Lindblom
SparkFun Electronics
date: September 16, 2013
license: Public Domain - please use this code however you'd like.
It's provided as a learning tool.
This code is provided to show how to control the SparkFun
ProMicro's TX and RX LEDs within a sketch. It also serves
to explain the difference between Serial.print() and
Serial1.print().
*/
int RXLED = 17; // The RX LED has a defined Arduino pin
// Note: The TX LED was not so lucky, we'll need to use pre-defined
// macros (TXLED1, TXLED0) to control that.
// (We could use the same macros for the RX LED too -- RXLED1,
// and RXLED0.)
// the setup function runs once when you press reset or power the board
void setup() {
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
#endif
#if defined __AVR_ATmega32U4__
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
#endif
Serial.begin(9600);
}
// the loop function runs over and over again forever
void loop() {
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level)
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
#endif
Serial.println("LED is on!");
delay(1000); // wait for a second
#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4)
digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW
#endif
#if defined __AVR_ATmega32U4__
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED1; //TX LED macro to turn LED ON
#endif
Serial.println("LED is off!");
delay(1000); // wait for a second
}

@ -1,45 +0,0 @@
/* Pro Micro Test Code
by: Nathan Seidle
modified by: Jim Lindblom
SparkFun Electronics
date: September 16, 2013
license: Public Domain - please use this code however you'd like.
It's provided as a learning tool.
This code is provided to show how to control the SparkFun
ProMicro's TX and RX LEDs within a sketch. It also serves
to explain the difference between Serial.print() and
Serial1.print().
*/
int RXLED = 17; // The RX LED has a defined Arduino pin
// Note: The TX LED was not so lucky, we'll need to use pre-defined
// macros (TXLED1, TXLED0) to control that.
// (We could use the same macros for the RX LED too -- RXLED1,
// and RXLED0.)
void setup()
{
pinMode(RXLED, OUTPUT); // Set RX LED as an output
// TX LED is set as an output behind the scenes
Serial.begin(9600); //This pipes to the serial monitor
Serial.println("Initialize Serial Monitor");
Serial1.begin(9600); //This is the UART, pipes to sensors attached to board
Serial1.println("Initialize Serial Hardware UART Pins");
}
void loop()
{
Serial.println("Hello world!"); // Print "Hello World" to the Serial Monitor
Serial1.println("Hello! Can anybody hear me?"); // Print "Hello!" over hardware UART
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(1000); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED OFF
TXLED1; //TX LED macro to turn LED ON
delay(1000); // wait for a second
}

@ -1,32 +0,0 @@
/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc
This example code is in the public domain.
modified 8 May 2014
by Scott Fitzgerald
Modified by Roger Clark. www.rogerclark.net for Maple mini 25th April 2015 , where the LED is on PC13
*/
// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin PB1 as an output.
pinMode(PC13, OUTPUT);
}
// the loop function runs over and over again forever
void loop() {
digitalWrite(PC13, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(PC13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
}

@ -1,51 +0,0 @@
//#define TESTING // Uncomment to test code on Serial Monitor
int counter = 0;
int RXLED = 17; // The RX LED has a defined Arduino pin
void setup() {
#ifdef TESTING
Serial.begin(9600);
#endif
Serial1.begin(9600);
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
}
void loop() {
#ifdef TESTING // ? is sent over Serial Monitor for testing
if (Serial.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial.read();
// Serial1.println(result);
Serial.println("OK");
// Serial1.println(counter++);
}
#else // ? is sent by Pi UART
if (Serial1.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial1.read();
// Serial1.println(result);
Serial1.println("OK");
// Serial1.println(counter++);
}
#endif
delay(100);
}

@ -1,28 +0,0 @@
// code for STM32F104C on the CubeSat Simulator STEM Payload board
// answers "OK" on the serial port when queried by the Pi
int counter = 0;
void setup() {
Serial1.begin(9600);
pinMode(PC13, OUTPUT);
digitalWrite(PC13, LOW); // turn the LED on
delay(50); // wait for a second
digitalWrite(PC13, HIGH); // turn the LED off
}
void loop() {
if (Serial1.available() > 0) {
digitalWrite(PC13, LOW); // turn the LED on
delay(50); // wait for a second
digitalWrite(PC13, HIGH); // turn the LED off
char result = Serial1.read();
// Serial1.println(result);
Serial1.println("OK");
// Serial1.println(counter++);
}
delay(100);
}

@ -1,256 +0,0 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#define SEALEVELPRESSURE_HPA (1013.25)
//#define TESTING // Define to test on Serial Monitor
Adafruit_BME280 bme;
MPU6050 mpu6050(Wire);
int counter = 0;
int RXLED = 17; // The RX LED has a defined Arduino pin
long timer = 0;
int bmePresent;
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
int Sensor2 = 0;
float Sensor3 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(9600); // Pi UART
Serial.println("Starting!");
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1))/100.0;
float yOffset = ((float)eeprom_word_read(2))/100.0;
float zOffset = ((float)eeprom_word_read(3))/100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1))/100.0, DEC);
Serial.println(((float)eeprom_word_read(2))/100.0, DEC);
Serial.println(((float)eeprom_word_read(3))/100.0, DEC);
}
pinMode(greenLED, OUTPUT);
pinMode(blueLED, OUTPUT);
digitalWrite(greenLED, HIGH); // turn the LED on (HIGH is the voltage level)
digitalWrite(blueLED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(100); // wait for a second
digitalWrite(greenLED, LOW); // turn the LED off by making the voltage LOW
digitalWrite(blueLED, LOW); // turn the LED on (HIGH is the voltage level)
}
void loop() {
#ifdef TESTING
if (Serial.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial.read();
// Serial.println(result);
if (result == 'R') {
Serial.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
Serial.print(" XS ");
Serial.print(Sensor1);
Serial.print(" ");
Serial.print(Sensor2);
Serial.print(" ");
Serial.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
// Serial1.println(counter++);
}
}
#else
if (Serial1.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
Serial1.print(" XS ");
Serial1.print(Sensor1);
Serial1.print(" ");
Serial1.print(Sensor2);
Serial1.print(" ");
Serial1.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
// Serial1.println(counter++);
}
}
#endif
delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}

@ -1,246 +0,0 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <MPU6050_tockn.h>
#include <EEPROM.h>
#define SEALEVELPRESSURE_HPA (1013.25)
//#define TESTING // Define to test on Serial Monitor
Adafruit_BME280 bme;
MPU6050 mpu6050(Wire);
int counter = 0;
long timer = 0;
int bmePresent;
int greenLED = 9;
int blueLED = 8;
int Sensor1 = 0;
int Sensor2 = 0;
float Sensor3 = 0;
void eeprom_word_write(int addr, int val);
short eeprom_word_read(int addr);
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(9600); // Pi UART
Serial.println("Starting!");
pinMode(PC13, OUTPUT);
digitalWrite(PC13, LOW); // turn the LED on
delay(50); // wait for a second
digitalWrite(PC13, HIGH); // turn the LED off
if (bme.begin(0x76)) {
bmePresent = 1;
} else {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
bmePresent = 0;
}
mpu6050.begin();
if (eeprom_word_read(0) == 0xA07)
{
Serial.println("Reading gyro offsets from EEPROM\n");
float xOffset = ((float)eeprom_word_read(1)) / 100.0;
float yOffset = ((float)eeprom_word_read(2)) / 100.0;
float zOffset = ((float)eeprom_word_read(3)) / 100.0;
Serial.println(xOffset, DEC);
Serial.println(yOffset, DEC);
Serial.println(zOffset, DEC);
mpu6050.setGyroOffsets(xOffset, yOffset, zOffset);
}
else
{
Serial.println("Calculating gyro offsets and storing in EEPROM\n");
mpu6050.calcGyroOffsets(true);
eeprom_word_write(0, 0xA07);
eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5);
eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5);
eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5);
Serial.println(eeprom_word_read(0), HEX);
Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC);
Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC);
}
}
void loop() {
#ifdef TESTING
if (Serial.available() > 0) {
digitalWrite(PC13, LOW); // turn the LED on
delay(50); // wait for a second
digitalWrite(PC13, HIGH); // turn the LED off
char result = Serial.read();
// Serial.println(result);
if (result == 'R') {
Serial.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.print(bme.readHumidity());
} else
{
Serial.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial.print(" MPU6050 ");
Serial.print(mpu6050.getGyroX());
Serial.print(" ");
Serial.print(mpu6050.getGyroY());
Serial.print(" ");
Serial.print(mpu6050.getGyroZ());
Serial.print(" ");
Serial.print(mpu6050.getAccX());
Serial.print(" ");
Serial.print(mpu6050.getAccY());
Serial.print(" ");
Serial.print(mpu6050.getAccZ());
Serial.print(" XS ");
Serial.print(Sensor1);
Serial.print(" ");
Serial.print(Sensor2);
Serial.print(" ");
Serial.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
// Serial1.println(counter++);
}
}
#else
if (Serial1.available() > 0) {
digitalWrite(PC13, LOW); // turn the LED on
delay(50); // wait for a second
digitalWrite(PC13, HIGH); // turn the LED off
char result = Serial1.read();
// Serial1.println(result);
if (result == 'R') {
Serial1.println("OK");
delay(500);
setup();
}
if (result == '?')
{
if (bmePresent) {
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.print(bme.readHumidity());
} else
{
Serial1.print("OK BME280 0.0 0.0 0.0 0.0");
}
mpu6050.update();
Serial1.print(" MPU6050 ");
Serial1.print(mpu6050.getGyroX());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroY());
Serial1.print(" ");
Serial1.print(mpu6050.getGyroZ());
Serial1.print(" ");
Serial1.print(mpu6050.getAccX());
Serial1.print(" ");
Serial1.print(mpu6050.getAccY());
Serial1.print(" ");
Serial1.print(mpu6050.getAccZ());
Serial1.print(" XS ");
Serial1.print(Sensor1);
Serial1.print(" ");
Serial1.print(Sensor2);
Serial1.print(" ");
Serial1.println(Sensor3);
float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()* mpu6050.getGyroZ());
float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ());
// Serial.print(rotation);
// Serial.print(" ");
// Serial.println(acceleration);
if (acceleration > 1.2)
digitalWrite(greenLED, HIGH);
else
digitalWrite(greenLED, LOW);
if (rotation > 5)
digitalWrite(blueLED, HIGH);
else
digitalWrite(blueLED, LOW);
// Serial1.println(counter++);
}
}
#endif
delay(100);
}
void eeprom_word_write(int addr, int val)
{
EEPROM.write(addr * 2, lowByte(val));
EEPROM.write(addr * 2 + 1, highByte(val));
}
short eeprom_word_read(int addr)
{
return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2));
}

@ -1,80 +0,0 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#define SEALEVELPRESSURE_HPA (1013.25)
//#define TESTING // Define to test on Serial Monitor
Adafruit_BME280 bme;
int counter = 0;
int RXLED = 17; // The RX LED has a defined Arduino pin
void setup() {
Serial.begin(9600); // Serial Monitor for testing
Serial1.begin(9600); // Pi UART
Serial.println("Starting!");
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
if (!bme.begin(0x76)) {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
while (1);
}
}
void loop() {
#ifdef TESTING
if (Serial.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial.read();
// Serial1.println(result);
Serial.print("OK BME280 ");
Serial.print(bme.readTemperature());
Serial.print(" ");
Serial.print(bme.readPressure() / 100.0F);
Serial.print(" ");
Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial.print(" ");
Serial.println(bme.readHumidity());
// Serial1.println(counter++);
}
#else
if (Serial1.available() > 0) {
digitalWrite(RXLED, LOW); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
delay(50); // wait for a second
digitalWrite(RXLED, HIGH); // set the RX LED ON
TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF
char result = Serial1.read();
// Serial1.println(result);
// Serial1.println("OK ");
/**/
Serial1.print("OK BME280 ");
Serial1.print(bme.readTemperature());
Serial1.print(" ");
Serial1.print(bme.readPressure() / 100.0F);
Serial1.print(" ");
Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
Serial1.print(" ");
Serial1.println(bme.readHumidity());
/**/
// Serial1.println(counter++);
}
#endif
delay(100);
}

@ -1,56 +0,0 @@
/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc
This example code is in the public domain.
modified 8 May 2014
by Scott Fitzgerald
Modified by Roger Clark. www.rogerclark.net for Maple mini 25th April 2015 , where the LED is on PC13
Added CubeSatSim Payload tests by Alan Johnston, KU2Y
*/
int sensorValue = 0;
int D9 = 9;
int D8 = 8;
// Calibration data for diode temperature sensor
float T1 = 25; // Temperature data point 1
float R1 = 373; // Reading data point 1
float T2 = 17; // Temperature data point 2
float R2 = 405; // Reading data point 2
// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin PB1 as an output.
pinMode(D9, OUTPUT);
pinMode(D8, OUTPUT);
Serial.begin(9600);
}
// the loop function runs over and over again forever
void loop() {
digitalWrite(D9, HIGH); // turn the LED on (HIGH is the voltage level)
digitalWrite(D8, LOW); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(D9, LOW); // turn the LED off by making the voltage LOW
digitalWrite(D8, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
sensorValue = analogRead(A0);
// Serial.println(sensorValue);
sensorValue = analogRead(A1);
float temp = T1 + (sensorValue - R1) *(T2 - T1)/(R2 - R1);
Serial.print("Temperature: ");
Serial.print(temp);
Serial.println(" C");
sensorValue = analogRead(A2);
// Serial.println(sensorValue);
}

@ -1,50 +0,0 @@
/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc
This example code is in the public domain.
modified 8 May 2014
by Scott Fitzgerald
Modified by Roger Clark. www.rogerclark.net for Maple mini 25th April 2015 , where the LED is on PC13
Added CubeSatSim Payload tests by Alan Johnston, KU2Y
*/
int sensorValue = 0;
// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin PB1 as an output.
pinMode(PB9, OUTPUT);
pinMode(PB8, OUTPUT);
pinMode(PA0, INPUT_ANALOG);
pinMode(PA1, INPUT_ANALOG);
pinMode(PA2, INPUT_ANALOG);
Serial.begin(9600);
}
// the loop function runs over and over again forever
void loop() {
digitalWrite(PB9, HIGH); // turn the LED on (HIGH is the voltage level)
digitalWrite(PB8, LOW); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(PB9, LOW); // turn the LED off by making the voltage LOW
digitalWrite(PB8, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
sensorValue = analogRead(PA0);
Serial.println(sensorValue);
sensorValue = analogRead(PA1);
Serial.println(sensorValue);
sensorValue = analogRead(PA2);
Serial.println(sensorValue);
}
Loading…
Cancel
Save

Powered by TurnKey Linux.