diff --git a/arduino/Payload_BME280_MPU6050_XS_GPS.ino b/arduino/Payload_BME280_MPU6050_XS_GPS.ino new file mode 100644 index 00000000..e62b75ec --- /dev/null +++ b/arduino/Payload_BME280_MPU6050_XS_GPS.ino @@ -0,0 +1,302 @@ +#include +#include +#include +#include +#include +#include + +#define SEALEVELPRESSURE_HPA (1013.25) + +Adafruit_BME280 bme; +MPU6050 mpu6050(Wire); +TinyGPS gps; + +long timer = 0; +int bmePresent; +int RXLED = 17; // The RX LED has a defined Arduino pin +int greenLED = 9; +int blueLED = 8; +int Sensor1 = 0; +int Sensor2 = 0; +float Sensor3 = 0; +void eeprom_word_write(int addr, int val); +short eeprom_word_read(int addr); +float flat, flon; + +void setup() { + + Serial.begin(9600); // Serial Monitor for testing + + Serial1.begin(9600); // Pi UART + + Serial2.begin(9600); // GPS on STM32 pins PA2, PA3 + + Serial.println("Starting!"); + + blink_setup(); + + blink(500); + delay(250); + blink(500); + delay(250); + blink(500); + delay(250); + + if (bme.begin(0x76)) { + bmePresent = 1; + } else { + Serial.println("Could not find a valid BME280 sensor, check wiring!"); + bmePresent = 0; + } + + mpu6050.begin(); + + if (eeprom_word_read(0) == 0xA07) + { + Serial.println("Reading gyro offsets from EEPROM\n"); + + float xOffset = ((float)eeprom_word_read(1)) / 100.0; + float yOffset = ((float)eeprom_word_read(2)) / 100.0; + float zOffset = ((float)eeprom_word_read(3)) / 100.0; + + Serial.println(xOffset, DEC); + Serial.println(yOffset, DEC); + Serial.println(zOffset, DEC); + + mpu6050.setGyroOffsets(xOffset, yOffset, zOffset); + } + else + { + Serial.println("Calculating gyro offsets and storing in EEPROM\n"); + + mpu6050.calcGyroOffsets(true); + + eeprom_word_write(0, 0xA07); + eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5); + eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5); + eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5); + + Serial.println(eeprom_word_read(0), HEX); + Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC); + Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC); + Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC); + } + pinMode(greenLED, OUTPUT); + pinMode(blueLED, OUTPUT); +} + +void loop() { + + if (Serial.available() > 0) { + blink(50); + char result = Serial.read(); + // Serial.println(result); + + if (result == 'R') { + Serial.println("OK"); + delay(500); + setup(); + } + + if (result == '?') + { + if (bmePresent) { + Serial.print("OK BME280 "); + Serial.print(bme.readTemperature()); + Serial.print(" "); + Serial.print(bme.readPressure() / 100.0F); + Serial.print(" "); + Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); + Serial.print(" "); + Serial.print(bme.readHumidity()); + } else + { + Serial.print("OK BME280 0.0 0.0 0.0 0.0"); + } + mpu6050.update(); + + Serial.print(" MPU6050 "); + Serial.print(mpu6050.getGyroX()); + Serial.print(" "); + Serial.print(mpu6050.getGyroY()); + Serial.print(" "); + Serial.print(mpu6050.getGyroZ()); + + Serial.print(" "); + Serial.print(mpu6050.getAccX()); + Serial.print(" "); + Serial.print(mpu6050.getAccY()); + Serial.print(" "); + Serial.print(mpu6050.getAccZ()); + + Serial.print(" XS "); + Serial.print(Sensor1); + Serial.print(" "); + Serial.print(Sensor2); + Serial.print(" "); + Serial.print(Sensor3); + + Serial.println(" GPS 0.0 0.0"); + + bool newData = false; + unsigned long chars; + unsigned short sentences, failed; + + while (Serial2.available()) + { + char c = Serial2.read(); + Serial.write(c); // uncomment this line if you want to see the GPS data flowing + if (gps.encode(c)) // Did a new valid sentence come in? + newData = true; + } + if (newData) + { + unsigned long age; + gps.f_get_position(&flat, &flon, &age); + Serial.print("LAT="); + Serial.print(flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flat, 6); + Serial.print(" LON="); + Serial.print(flon == TinyGPS::GPS_INVALID_F_ANGLE ? 0.0 : flon, 6); + Serial.print(" SAT="); + Serial.print(gps.satellites() == TinyGPS::GPS_INVALID_SATELLITES ? 0 : gps.satellites()); + Serial.print(" PREC="); + Serial.print(gps.hdop() == TinyGPS::GPS_INVALID_HDOP ? 0 : gps.hdop()); + } + + float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); + float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); +// Serial.print(rotation); +// Serial.print(" "); +// Serial.println(acceleration); + + if (acceleration > 1.2) + digitalWrite(greenLED, HIGH); + else + digitalWrite(greenLED, LOW); + + if (rotation > 5) + digitalWrite(blueLED, HIGH); + else + digitalWrite(blueLED, LOW); + } + } + + if (Serial1.available() > 0) { + + blink(50); + char result = Serial1.read(); + // Serial1.println(result); + + if (result == 'R') { + Serial1.println("OK"); + delay(500); + setup(); + } + + if (result == '?') + { + if (bmePresent) { + Serial1.print("OK BME280 "); + Serial1.print(bme.readTemperature()); + Serial1.print(" "); + Serial1.print(bme.readPressure() / 100.0F); + Serial1.print(" "); + Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); + Serial1.print(" "); + Serial1.print(bme.readHumidity()); + } else + { + Serial1.print("OK BME280 0.0 0.0 0.0 0.0"); + } + mpu6050.update(); + + Serial1.print(" MPU6050 "); + Serial1.print(mpu6050.getGyroX()); + Serial1.print(" "); + Serial1.print(mpu6050.getGyroY()); + Serial1.print(" "); + Serial1.print(mpu6050.getGyroZ()); + + Serial1.print(" "); + Serial1.print(mpu6050.getAccX()); + Serial1.print(" "); + Serial1.print(mpu6050.getAccY()); + Serial1.print(" "); + Serial1.print(mpu6050.getAccZ()); + + Serial1.print(" XS "); + Serial1.print(Sensor1); + Serial1.print(" "); + Serial1.print(Sensor2); + Serial1.print(" "); + Serial1.print(Sensor3); + + Serial1.println(" GPS 0.0 0.0"); + + float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); + float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); +// Serial.print(rotation); +// Serial.print(" "); +// Serial.println(acceleration); + + if (acceleration > 1.2) + digitalWrite(greenLED, HIGH); + else + digitalWrite(greenLED, LOW); + + if (rotation > 5) + digitalWrite(blueLED, HIGH); + else + digitalWrite(blueLED, LOW); + } + } + +// delay(100); +} + +void eeprom_word_write(int addr, int val) +{ + EEPROM.write(addr * 2, lowByte(val)); + EEPROM.write(addr * 2 + 1, highByte(val)); +} + +short eeprom_word_read(int addr) +{ + return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2)); +} + +void blink_setup() +{ +#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) + // initialize digital pin PB1 as an output. + pinMode(PC13, OUTPUT); +#endif + +#if defined __AVR_ATmega32U4__ + pinMode(RXLED, OUTPUT); // Set RX LED as an output + // TX LED is set as an output behind the scenes +#endif +} + +void blink(int length) +{ +#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) + digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level) +#endif + +#if defined __AVR_ATmega32U4__ + digitalWrite(RXLED, LOW); // set the RX LED ON + TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF +#endif + + delay(length); // wait for a lenth of time + +#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) + digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW +#endif + +#if defined __AVR_ATmega32U4__ + digitalWrite(RXLED, HIGH); // set the RX LED OFF + TXLED0; //TX LED macro to turn LED ON +#endif +}