diff --git a/stempayload/Payload_BME280_MPU6050_XS/Payload_BME280_MPU6050_XS.ino b/stempayload/Payload_BME280_MPU6050_XS/Payload_BME280_MPU6050_XS.ino index f0111f9e..7b12509c 100644 --- a/stempayload/Payload_BME280_MPU6050_XS/Payload_BME280_MPU6050_XS.ino +++ b/stempayload/Payload_BME280_MPU6050_XS/Payload_BME280_MPU6050_XS.ino @@ -1,56 +1,50 @@ -// code for Pro Micro or STM32 on the CubeSat Simulator STEM Payload board -// answers "OK" on the serial port Serial1 when queried by the Pi - #include #include #include #include #include + #define SEALEVELPRESSURE_HPA (1013.25) Adafruit_BME280 bme; MPU6050 mpu6050(Wire); - + long timer = 0; int bmePresent; int RXLED = 17; // The RX LED has a defined Arduino pin -int greenLED = 9; -int blueLED = 8; +int greenLED = 19; +int blueLED = 18; int Sensor1 = 0; float Sensor2 = 0; void eeprom_word_write(int addr, int val); short eeprom_word_read(int addr); int first_time = true; int first_read = true; - -#if defined __AVR_ATmega32U4__ float T2 = 26.3; // Temperature data point 1 float R2 = 167; // Reading data point 1 float T1 = 2; // Temperature data point 2 float R1 = 179; // Reading data point 2 -#endif -#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) -float T2 = 25; // Temperature data point 1 -float R2 = 671; // Reading data point 1 -float T1 = 15.5; // Temperature data point 2 -float R1 = 695; // Reading data point 2 -#endif - int sensorValue; float Temp; float rest; - + void setup() { + +#if defined ARDUINO_ARCH_RP2040 + for(int i = 0; i < 29; i++) // set all Pico GPIOs to input + if (i != 25) // don't do GPIO25 which is LEDBUILTIN + pinMode(i,INPUT); +#endif + Serial.begin(9600); // Serial Monitor for testing - + Serial1.begin(115200); // Pi UART faster speed -// Serial1.begin(9600); // Pi UART faster speed - + Serial.println("Starting!"); - + blink_setup(); - + blink(500); delay(250); blink(500); @@ -61,143 +55,70 @@ void setup() { led_set(blueLED, HIGH); delay(250); led_set(blueLED, LOW); - + if (bme.begin(0x76)) { bmePresent = 1; } else { Serial.println("Could not find a valid BME280 sensor, check wiring!"); bmePresent = 0; } - + mpu6050.begin(); - + if (eeprom_word_read(0) == 0xA07) { Serial.println("Reading gyro offsets from EEPROM\n"); - + float xOffset = ((float)eeprom_word_read(1)) / 100.0; float yOffset = ((float)eeprom_word_read(2)) / 100.0; float zOffset = ((float)eeprom_word_read(3)) / 100.0; - + Serial.println(xOffset, DEC); Serial.println(yOffset, DEC); Serial.println(zOffset, DEC); - + mpu6050.setGyroOffsets(xOffset, yOffset, zOffset); } else { Serial.println("Calculating gyro offsets and storing in EEPROM\n"); - + mpu6050.calcGyroOffsets(true); - + eeprom_word_write(0, 0xA07); eeprom_word_write(1, (int)(mpu6050.getGyroXoffset() * 100.0) + 0.5); eeprom_word_write(2, (int)(mpu6050.getGyroYoffset() * 100.0) + 0.5); eeprom_word_write(3, (int)(mpu6050.getGyroZoffset() * 100.0) + 0.5); - + Serial.println(eeprom_word_read(0), HEX); Serial.println(((float)eeprom_word_read(1)) / 100.0, DEC); Serial.println(((float)eeprom_word_read(2)) / 100.0, DEC); Serial.println(((float)eeprom_word_read(3)) / 100.0, DEC); } -/**/ + pinMode(greenLED, OUTPUT); + pinMode(blueLED, OUTPUT); } - + void loop() { - - if (Serial1.available() > 0) { - blink(50); - char result = Serial1.read(); -// Serial1.println(result); -// Serial1.println("OK"); - -// if (result == '?') - { - if (bmePresent) { - Serial1.print("OK BME280 "); - Serial1.print(bme.readTemperature()); - Serial1.print(" "); - Serial1.print(bme.readPressure() / 100.0F); - Serial1.print(" "); - Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); - Serial1.print(" "); - Serial1.print(bme.readHumidity()); - } else - { - Serial1.print("OK BME280 0.0 0.0 0.0 0.0"); - } - mpu6050.update(); - - Serial1.print(" MPU6050 "); - Serial1.print(mpu6050.getGyroX()); - Serial1.print(" "); - Serial1.print(mpu6050.getGyroY()); - Serial1.print(" "); - Serial1.print(mpu6050.getGyroZ()); - - Serial1.print(" "); - Serial1.print(mpu6050.getAccX()); - Serial1.print(" "); - Serial1.print(mpu6050.getAccY()); - Serial1.print(" "); - Serial1.print(mpu6050.getAccZ()); - - sensorValue = read_analog(); - -// Serial.println(sensorValue); - Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1)); - - Serial1.print(" XS "); - Serial1.print(Temp); - Serial1.print(" "); - Serial1.println(Sensor2); - - float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); - float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); -// Serial.print(rotation); -// Serial.print(" "); -// Serial.println(acceleration); - - if (first_read == true) { - first_read = false; - rest = acceleration; - } - - if (acceleration > 1.2 * rest) - led_set(greenLED, HIGH); - else - led_set(greenLED, LOW); - - if (rotation > 5) - led_set(blueLED, HIGH); - else - led_set(blueLED, LOW); - } - - } - if (Serial.available() > 0) { + if ((Serial.available() > 0)|| first_time == true) { blink(50); char result = Serial.read(); -// Serial.println(result); -// Serial.println("OK"); -// Serial.println(counter++); - - if (result == 'R') { - Serial1.println("OK"); + // Serial.println(result); + + if (result == 'R') { + Serial.println("OK"); delay(100); - first_read = true; + first_time = true; setup(); } - else if (result == 'C') { + else if (result == 'C') { Serial.println("Clearing stored gyro offsets in EEPROM\n"); eeprom_word_write(0, 0x00); first_time = true; setup(); - } - - if ((result == '?') || first_time == true) + } + if ((result == '?') || first_time == true) { first_time = false; if (bmePresent) { @@ -214,44 +135,113 @@ void loop() { Serial.print("OK BME280 0.0 0.0 0.0 0.0"); } mpu6050.update(); - + Serial.print(" MPU6050 "); Serial.print(mpu6050.getGyroX()); Serial.print(" "); Serial.print(mpu6050.getGyroY()); Serial.print(" "); Serial.print(mpu6050.getGyroZ()); - + Serial.print(" "); Serial.print(mpu6050.getAccX()); Serial.print(" "); Serial.print(mpu6050.getAccY()); Serial.print(" "); - Serial.print(mpu6050.getAccZ()); - - sensorValue = read_analog(); - + Serial.print(mpu6050.getAccZ()); + + sensorValue = analogRead(A3); + //Serial.println(sensorValue); Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1)); - + + Serial.print(" XS "); Serial.print(Temp); Serial.print(" "); - Serial.print(Sensor2); - Serial.print(" ("); - Serial.print(sensorValue); - Serial.println(")"); - + Serial.println(Sensor1); + float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); // Serial.print(rotation); // Serial.print(" "); // Serial.println(acceleration); + + if (acceleration > 1.2) + led_set(greenLED, HIGH); + else + led_set(greenLED, LOW); + + if (rotation > 5) + led_set(blueLED, HIGH); + else + led_set(blueLED, LOW); + } + } + + if (Serial1.available() > 0) { + blink(50); + char result = Serial1.read(); + // Serial1.println(result); + + if (result == 'R') { + Serial1.println("OK"); + delay(100); + first_read = true; + setup(); + } + + if (result == '?') + { + if (bmePresent) { + Serial1.print("OK BME280 "); + Serial1.print(bme.readTemperature()); + Serial1.print(" "); + Serial1.print(bme.readPressure() / 100.0F); + Serial1.print(" "); + Serial1.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); + Serial1.print(" "); + Serial1.print(bme.readHumidity()); + } else + { + Serial1.print("OK BME280 0.0 0.0 0.0 0.0"); + } + mpu6050.update(); + + Serial1.print(" MPU6050 "); + Serial1.print(mpu6050.getGyroX()); + Serial1.print(" "); + Serial1.print(mpu6050.getGyroY()); + Serial1.print(" "); + Serial1.print(mpu6050.getGyroZ()); + + Serial1.print(" "); + Serial1.print(mpu6050.getAccX()); + Serial1.print(" "); + Serial1.print(mpu6050.getAccY()); + Serial1.print(" "); + Serial1.print(mpu6050.getAccZ()); + + sensorValue = analogRead(A3); + //Serial.println(sensorValue); + Temp = T1 + (sensorValue - R1) *((T2 - T1)/(R2 - R1)); + + Serial1.print(" XS "); + Serial1.print(Temp); + Serial1.print(" "); + Serial1.println(Sensor2); + + float rotation = sqrt(mpu6050.getGyroX()*mpu6050.getGyroX() + mpu6050.getGyroY()*mpu6050.getGyroY() + mpu6050.getGyroZ()*mpu6050.getGyroZ()); + float acceleration = sqrt(mpu6050.getAccX()*mpu6050.getAccX() + mpu6050.getAccY()*mpu6050.getAccY() + mpu6050.getAccZ()*mpu6050.getAccZ()); +// Serial.print(rotation); +// Serial.print(" "); +// Serial.println(acceleration); + if (first_read == true) { first_read = false; rest = acceleration; } - + if (acceleration > 1.2 * rest) led_set(greenLED, HIGH); else @@ -262,21 +252,22 @@ void loop() { else led_set(blueLED, LOW); } - } - delay(100); + } + +// delay(100); } - + void eeprom_word_write(int addr, int val) { EEPROM.write(addr * 2, lowByte(val)); EEPROM.write(addr * 2 + 1, highByte(val)); } - + short eeprom_word_read(int addr) { return ((EEPROM.read(addr * 2 + 1) << 8) | EEPROM.read(addr * 2)); } - + void blink_setup() { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) @@ -285,38 +276,38 @@ void blink_setup() pinMode(PB9, OUTPUT); pinMode(PB8, OUTPUT); #endif - -#if defined __AVR_ATmega32U4__ + +#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040 pinMode(RXLED, OUTPUT); // Set RX LED as an output // TX LED is set as an output behind the scenes pinMode(greenLED, OUTPUT); pinMode(blueLED,OUTPUT); #endif } - + void blink(int length) { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) digitalWrite(PC13, LOW); // turn the LED on (HIGH is the voltage level) #endif - + #if defined __AVR_ATmega32U4__ digitalWrite(RXLED, LOW); // set the RX LED ON TXLED0; //TX LED is not tied to a normally controlled pin so a macro is needed, turn LED OFF #endif - + delay(length); // wait for a lenth of time - + #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) digitalWrite(PC13, HIGH); // turn the LED off by making the voltage LOW #endif - + #if defined __AVR_ATmega32U4__ digitalWrite(RXLED, HIGH); // set the RX LED OFF TXLED0; //TX LED macro to turn LED ON #endif } - + void led_set(int ledPin, bool state) { #if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) @@ -325,20 +316,8 @@ void led_set(int ledPin, bool state) else if (ledPin == blueLED) digitalWrite(PB8, state); #endif - -#if defined __AVR_ATmega32U4__ + +#if defined __AVR_ATmega32U4__ || ARDUINO_ARCH_RP2040 digitalWrite(ledPin, state); #endif } - -int read_analog() -{ - int sensorValue; - #if defined __AVR_ATmega32U4__ - sensorValue = analogRead(A3); -#endif -#if defined(ARDUINO_ARCH_STM32F0) || defined(ARDUINO_ARCH_STM32F1) || defined(ARDUINO_ARCH_STM32F3) || defined(ARDUINO_ARCH_STM32F4) || defined(ARDUINO_ARCH_STM32L4) - sensorValue = analogRead(PA7); -#endif - return(sensorValue); -}