// SPDX-License-Identifier: GPL-2.0-only /* * Digital Voice Modem - MBE Vocoder * GPLv2 Open Source. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * */ /* * Copyright (C) 2010 mbelib Author * GPG Key ID: 0xEA5EFE2C (9E7A 5527 9CDC EBF7 BF1B D772 4F98 E863 EA5E FE2C) * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #define _USE_MATH_DEFINES #include #include "mbe.h" #include "ambe3600x2450_const.h" #ifdef _MSC_VER #pragma warning(disable: 4244) #endif #if defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic ignored "-Wunused-but-set-variable" #endif // --------------------------------------------------------------------------- // Global Functions // --------------------------------------------------------------------------- /* */ int mbe_eccAmbe3600x2450C0(char ambe_fr[4][24]) { int j, errs; char in[23], out[23]; for (j = 0; j < 23; j++) { in[j] = ambe_fr[0][j + 1]; } errs = mbe_golay2312(in, out); // ambe_fr[0][0] should be the C0 golay24 parity bit. // TODO: actually test that here... for (j = 0; j < 23; j++) { ambe_fr[0][j + 1] = out[j]; } return (errs); } /* */ int mbe_eccAmbe3600x2450Data(char ambe_fr[4][24], char* ambe_d) { int j, errs; char* ambe, gin[24], gout[24]; ambe = ambe_d; // just copy C0 for (j = 23; j > 11; j--) { *ambe = ambe_fr[0][j]; ambe++; } // ecc and copy C1 for (j = 0; j < 23; j++) { gin[j] = ambe_fr[1][j]; } errs = mbe_golay2312(gin, gout); for (j = 22; j > 10; j--) { *ambe = gout[j]; ambe++; } // just copy C2 for (j = 10; j >= 0; j--) { *ambe = ambe_fr[2][j]; ambe++; } // just copy C3 for (j = 13; j >= 0; j--) { *ambe = ambe_fr[3][j]; ambe++; } return (errs); } /* */ int mbe_decodeAmbe2450Parms(char* ambe_d, mbe_parms* cur_mp, mbe_parms* prev_mp) { int ji, i, j, k, l, L, L9, m, am, ak; int intkl[57]; int b0, b1, b2, b3, b4, b5, b6, b7, b8; float f0, Cik[5][18], flokl[57], deltal[57]; float Sum42, Sum43, Tl[57], Gm[9], Ri[9], sum, c1, c2; int silence; int Ji[5], jl; float deltaGamma, BigGamma; float unvc, rconst; silence = 0; // copy repeat from prev_mp cur_mp->repeat = prev_mp->repeat; // decode fundamental frequency w0 from b0 b0 = 0; b0 |= ambe_d[0] << 6; b0 |= ambe_d[1] << 5; b0 |= ambe_d[2] << 4; b0 |= ambe_d[3] << 3; b0 |= ambe_d[37] << 2; b0 |= ambe_d[38] << 1; b0 |= ambe_d[39]; if ((b0 >= 120) && (b0 <= 123)) { // if w0 bits are 1111000, 1111001, 1111010 or 1111011, frame is erasure #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Erasure Frame"); #endif return (2); } else if ((b0 == 124) || (b0 == 125)) { // if w0 bits are 1111100 or 1111101, frame is silence #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Silence Frame"); #endif silence = 1; cur_mp->w0 = ((float)2 * M_PI) / (float)32; f0 = (float)1 / (float)32; L = 14; cur_mp->L = 14; for (l = 1; l <= L; l++) { cur_mp->Vl[l] = 0; } } else if ((b0 == 126) || (b0 == 127)) { // if w0 bits are 1111110 or 1111111, frame is tone #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Tone Frame"); #endif return (3); } if (silence == 0) { // w0 from specification document f0 = AmbeW0table[b0]; cur_mp->w0 = f0 * (float)2 * M_PI; // w0 from patent filings //f0 = powf (2, ((float) b0 + (float) 195.626) / -(float) 45.368); //cur_mp->w0 = f0 * (float) 2 *M_PI; } unvc = (float)0.2046 / sqrtf(cur_mp->w0); //unvc = (float) 1; //unvc = (float) 0.2046 / sqrtf (f0); // decode L if (silence == 0) { // L from specification document // lookup L in tabl3 L = AmbeLtable[b0]; // L formula from patent filings //L=(int)((float)0.4627 / f0); cur_mp->L = L; } L9 = L - 9; // decode V/UV parameters // load b1 from ambe_d b1 = 0; b1 |= ambe_d[4] << 4; b1 |= ambe_d[5] << 3; b1 |= ambe_d[6] << 2; b1 |= ambe_d[7] << 1; b1 |= ambe_d[35]; for (l = 1; l <= L; l++) { // jl from specification document jl = (int)((float)l * (float)16.0 * f0); // jl from patent filings? //jl = (int)(((float)l * (float)16.0 * f0) + 0.25); if (silence == 0) { cur_mp->Vl[l] = AmbeVuv[b1][jl]; } #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: jl[%i]:%i Vl[%i]:%i", l, jl, l, cur_mp->Vl[l]); #endif } #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: b0:%i w0:%f L:%i b1:%i\n", b0, cur_mp->w0, L, b1); #endif // decode gain vector // load b2 from ambe_d b2 = 0; b2 |= ambe_d[8] << 4; b2 |= ambe_d[9] << 3; b2 |= ambe_d[10] << 2; b2 |= ambe_d[11] << 1; b2 |= ambe_d[36]; deltaGamma = AmbeDg[b2]; cur_mp->gamma = deltaGamma + ((float)0.5 * prev_mp->gamma); #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: b2: %i, deltaGamma: %f gamma: %f gamma-1: %f\n", b2, deltaGamma, cur_mp->gamma, prev_mp->gamma); #endif // decode PRBA vectors Gm[1] = 0; // load b3 from ambe_d b3 = 0; b3 |= ambe_d[12] << 8; b3 |= ambe_d[13] << 7; b3 |= ambe_d[14] << 6; b3 |= ambe_d[15] << 5; b3 |= ambe_d[16] << 4; b3 |= ambe_d[17] << 3; b3 |= ambe_d[18] << 2; b3 |= ambe_d[19] << 1; b3 |= ambe_d[40]; Gm[2] = AmbePRBA24[b3][0]; Gm[3] = AmbePRBA24[b3][1]; Gm[4] = AmbePRBA24[b3][2]; // load b4 from ambe_d b4 = 0; b4 |= ambe_d[20] << 6; b4 |= ambe_d[21] << 5; b4 |= ambe_d[22] << 4; b4 |= ambe_d[23] << 3; b4 |= ambe_d[41] << 2; b4 |= ambe_d[42] << 1; b4 |= ambe_d[43]; Gm[5] = AmbePRBA58[b4][0]; Gm[6] = AmbePRBA58[b4][1]; Gm[7] = AmbePRBA58[b4][2]; Gm[8] = AmbePRBA58[b4][3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: b3: %i Gm[2]: %f Gm[3]: %f Gm[4]: %f b4: %i Gm[5]: %f Gm[6]: %f Gm[7]: %f Gm[8]: %f\n", b3, Gm[2], Gm[3], Gm[4], b4, Gm[5], Gm[6], Gm[7], Gm[8]); #endif // compute Ri for (i = 1; i <= 8; i++) { sum = 0; for (m = 1; m <= 8; m++) { if (m == 1) { am = 1; } else { am = 2; } sum = sum + ((float)am * Gm[m] * cosf((M_PI * (float)(m - 1) * ((float)i - (float)0.5)) / (float)8)); } Ri[i] = sum; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: R%i: %f ", i, Ri[i]); #endif } // generate first to elements of each Ci,k block from PRBA vector rconst = ((float)1 / ((float)2 * M_SQRT2)); Cik[1][1] = (float)0.5 * (Ri[1] + Ri[2]); Cik[1][2] = rconst * (Ri[1] - Ri[2]); Cik[2][1] = (float)0.5 * (Ri[3] + Ri[4]); Cik[2][2] = rconst * (Ri[3] - Ri[4]); Cik[3][1] = (float)0.5 * (Ri[5] + Ri[6]); Cik[3][2] = rconst * (Ri[5] - Ri[6]); Cik[4][1] = (float)0.5 * (Ri[7] + Ri[8]); Cik[4][2] = rconst * (Ri[7] - Ri[8]); // decode HOC // load b5 from ambe_d b5 = 0; b5 |= ambe_d[24] << 4; b5 |= ambe_d[25] << 3; b5 |= ambe_d[26] << 2; b5 |= ambe_d[27] << 1; b5 |= ambe_d[44]; // load b6 from ambe_d b6 = 0; b6 |= ambe_d[28] << 3; b6 |= ambe_d[29] << 2; b6 |= ambe_d[30] << 1; b6 |= ambe_d[45]; // load b7 from ambe_d b7 = 0; b7 |= ambe_d[31] << 3; b7 |= ambe_d[32] << 2; b7 |= ambe_d[33] << 1; b7 |= ambe_d[46]; // load b8 from ambe_d b8 = 0; b8 |= ambe_d[34] << 2; b8 |= ambe_d[47] << 1; b8 |= ambe_d[48]; // lookup Ji Ji[1] = AmbeLmprbl[L][0]; Ji[2] = AmbeLmprbl[L][1]; Ji[3] = AmbeLmprbl[L][2]; Ji[4] = AmbeLmprbl[L][3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Ji[1]: %i Ji[2]: %i Ji[3]: %i Ji[4]: %i", Ji[1], Ji[2], Ji[3], Ji[4]); fprintf(stderr, "MBE: AMBE: b5: %i b6: %i b7: %i b8: %i", b5, b6, b7, b8); #endif // Load Ci,k with the values from the HOC tables // there appear to be a couple typos in eq. 37 so we will just do what makes sense // (3 <= k <= Ji and k<=6) for (k = 3; k <= Ji[1]; k++) { if (k > 6) { Cik[1][k] = 0; } else { Cik[1][k] = AmbeHOCb5[b5][k - 3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: C1,%i: %f ", k, Cik[1][k]); #endif } } for (k = 3; k <= Ji[2]; k++) { if (k > 6) { Cik[2][k] = 0; } else { Cik[2][k] = AmbeHOCb6[b6][k - 3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: C2,%i: %f ", k, Cik[2][k]); #endif } } for (k = 3; k <= Ji[3]; k++) { if (k > 6) { Cik[3][k] = 0; } else { Cik[3][k] = AmbeHOCb7[b7][k - 3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: C3,%i: %f ", k, Cik[3][k]); #endif } } for (k = 3; k <= Ji[4]; k++) { if (k > 6) { Cik[4][k] = 0; } else { Cik[4][k] = AmbeHOCb8[b8][k - 3]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: C4,%i: %f ", k, Cik[4][k]); #endif } } // inverse DCT each Ci,k to give ci,j (Tl) l = 1; for (i = 1; i <= 4; i++) { ji = Ji[i]; for (j = 1; j <= ji; j++) { sum = 0; for (k = 1; k <= ji; k++) { if (k == 1) { ak = 1; } else { ak = 2; } #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: j: %i Cik[%i][%i]: %f ", j, i, k, Cik[i][k]); #endif sum = sum + ((float)ak * Cik[i][k] * cosf((M_PI * (float)(k - 1) * ((float)j - (float)0.5)) / (float)ji)); } Tl[l] = sum; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Tl[%i]: %f", l, Tl[l]); #endif l++; } } // determine log2Ml by applying ci,j to previous log2Ml // fix for when L > L(-1) if (cur_mp->L > prev_mp->L) { for (l = (prev_mp->L) + 1; l <= cur_mp->L; l++) { prev_mp->Ml[l] = prev_mp->Ml[prev_mp->L]; prev_mp->log2Ml[l] = prev_mp->log2Ml[prev_mp->L]; } } prev_mp->log2Ml[0] = prev_mp->log2Ml[1]; prev_mp->Ml[0] = prev_mp->Ml[1]; // Part 1 Sum43 = 0; for (l = 1; l <= cur_mp->L; l++) { // eq. 40 flokl[l] = ((float)prev_mp->L / (float)cur_mp->L) * (float)l; intkl[l] = (int)(flokl[l]); #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: flok%i: %f, intk%i: %i ", l, flokl[l], l, intkl[l]); #endif // eq. 41 deltal[l] = flokl[l] - (float)intkl[l]; #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: delta%i: %f ", l, deltal[l]); #endif // eq 43 Sum43 = Sum43 + ((((float)1 - deltal[l]) * prev_mp->log2Ml[intkl[l]]) + (deltal[l] * prev_mp->log2Ml[intkl[l] + 1])); } Sum43 = (((float)0.65 / (float)cur_mp->L) * Sum43); #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: Sum43: %f", Sum43); #endif // Part 2 Sum42 = 0; for (l = 1; l <= cur_mp->L; l++) { Sum42 += Tl[l]; } Sum42 = Sum42 / (float)cur_mp->L; BigGamma = cur_mp->gamma - ((float)0.5 * (log((float)cur_mp->L) / log((float)2))) - Sum42; //BigGamma=cur_mp->gamma - ((float)0.5 * log((float)cur_mp->L)) - Sum42; // Part 3 for (l = 1; l <= cur_mp->L; l++) { c1 = ((float)0.65 * ((float)1 - deltal[l]) * prev_mp->log2Ml[intkl[l]]); c2 = ((float)0.65 * deltal[l] * prev_mp->log2Ml[intkl[l] + 1]); cur_mp->log2Ml[l] = Tl[l] + c1 + c2 - Sum43 + BigGamma; // inverse log to generate spectral amplitudes if (cur_mp->Vl[l] == 1) { cur_mp->Ml[l] = exp((float)0.693 * cur_mp->log2Ml[l]); } else { cur_mp->Ml[l] = unvc * exp((float)0.693 * cur_mp->log2Ml[l]); } #ifdef AMBE_DEBUG fprintf(stderr, "MBE: AMBE: flokl[%i]: %f, intkl[%i]: %i", l, flokl[l], l, intkl[l]); fprintf(stderr, "MBE: AMBE: deltal[%i]: %f", l, deltal[l]); fprintf(stderr, "MBE: AMBE: prev_mp->log2Ml[%i]: %f", l, prev_mp->log2Ml[intkl[l]]); fprintf(stderr, "MBE: AMBE: BigGamma: %f c1: %f c2: %f Sum43: %f Tl[%i]: %f log2Ml[%i]: %f Ml[%i]: %f", BigGamma, c1, c2, Sum43, l, Tl[l], l, cur_mp->log2Ml[l], l, cur_mp->Ml[l]); #endif } return (0); } /* */ void mbe_demodulateAmbe3600x2450Data(char ambe_fr[4][24]) { int i, j, k; unsigned short pr[115]; unsigned short foo = 0; // create pseudo-random modulator for (i = 23; i >= 12; i--) { foo <<= 1; foo |= ambe_fr[0][i]; } pr[0] = (16 * foo); for (i = 1; i < 24; i++) { pr[i] = (173 * pr[i - 1]) + 13849 - (65536 * (((173 * pr[i - 1]) + 13849) / 65536)); } for (i = 1; i < 24; i++) { pr[i] = pr[i] / 32768; } // demodulate ambe_fr with pr k = 1; for (j = 22; j >= 0; j--) { ambe_fr[1][j] = ((ambe_fr[1][j]) ^ pr[k]); k++; } } /* */ void mbe_processAmbe2450DataF(float* aout_buf, int* errs, int* errs2, char* err_str, char ambe_d[49], mbe_parms* cur_mp, mbe_parms* prev_mp, mbe_parms* prev_mp_enhanced, int uvquality) { int i, bad; for (i = 0; i < *errs2; i++) { *err_str = '='; err_str++; } bad = mbe_decodeAmbe2450Parms(ambe_d, cur_mp, prev_mp); if (bad == 2) { // Erasure frame *err_str = 'E'; err_str++; cur_mp->repeat = 0; } else if (bad == 3) { // Tone Frame *err_str = 'T'; err_str++; cur_mp->repeat = 0; } else if (*errs2 > 3) { mbe_useLastMbeParms(cur_mp, prev_mp); cur_mp->repeat++; *err_str = 'R'; err_str++; } else { cur_mp->repeat = 0; } if (bad == 0) { if (cur_mp->repeat <= 3) { mbe_moveMbeParms(cur_mp, prev_mp); mbe_spectralAmpEnhance(cur_mp); mbe_synthesizeSpeechF(aout_buf, cur_mp, prev_mp_enhanced, uvquality); mbe_moveMbeParms(cur_mp, prev_mp_enhanced); } else { *err_str = 'M'; err_str++; mbe_synthesizeSilenceF(aout_buf); mbe_initMbeParms(cur_mp, prev_mp, prev_mp_enhanced); } } else { mbe_synthesizeSilenceF(aout_buf); mbe_initMbeParms(cur_mp, prev_mp, prev_mp_enhanced); } *err_str = 0; } /* */ void mbe_processAmbe2450Data(short* aout_buf, int* errs, int* errs2, char* err_str, char ambe_d[49], mbe_parms* cur_mp, mbe_parms* prev_mp, mbe_parms* prev_mp_enhanced, int uvquality) { float float_buf[160]; mbe_processAmbe2450DataF(float_buf, errs, errs2, err_str, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality); mbe_floatToShort(float_buf, aout_buf); } /* */ void mbe_processAmbe3600x2450FrameF(float* aout_buf, int* errs, int* errs2, char* err_str, char ambe_fr[4][24], char ambe_d[49], mbe_parms* cur_mp, mbe_parms* prev_mp, mbe_parms* prev_mp_enhanced, int uvquality) { *errs = 0; *errs2 = 0; *errs = mbe_eccAmbe3600x2450C0(ambe_fr); mbe_demodulateAmbe3600x2450Data(ambe_fr); *errs2 = *errs; *errs2 += mbe_eccAmbe3600x2450Data(ambe_fr, ambe_d); mbe_processAmbe2450DataF(aout_buf, errs, errs2, err_str, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality); } /* */ void mbe_processAmbe3600x2450Frame(short* aout_buf, int* errs, int* errs2, char* err_str, char ambe_fr[4][24], char ambe_d[49], mbe_parms* cur_mp, mbe_parms* prev_mp, mbe_parms* prev_mp_enhanced, int uvquality) { float float_buf[160]; mbe_processAmbe3600x2450FrameF(float_buf, errs, errs2, err_str, ambe_fr, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality); mbe_floatToShort(float_buf, aout_buf); }