You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dvmhost/dmr/Slot.cpp

854 lines
25 KiB

/**
* Digital Voice Modem - Host Software
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* @package DVM / Host Software
*
*/
//
// Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost)
// Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0)
//
/*
* Copyright (C) 2015,2016,2017,2018 Jonathan Naylor, G4KLX
* Copyright (C) 2017-2021 by Bryan Biedenkapp N2PLL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "Defines.h"
#include "dmr/Slot.h"
#include "dmr/acl/AccessControl.h"
#include "dmr/lc/FullLC.h"
#include "dmr/lc/ShortLC.h"
#include "dmr/lc/CSBK.h"
#include "dmr/SlotType.h"
#include "dmr/Sync.h"
#include "edac/BPTC19696.h"
#include "edac/CRC.h"
#include "Log.h"
#include "Utils.h"
using namespace dmr;
#include <cassert>
#include <ctime>
#include <algorithm>
#include <cmath>
// ---------------------------------------------------------------------------
// Static Class Members
// ---------------------------------------------------------------------------
uint32_t Slot::m_colorCode = 0U;
SiteData Slot::m_siteData = SiteData();
bool Slot::m_embeddedLCOnly = false;
bool Slot::m_dumpTAData = true;
modem::Modem* Slot::m_modem = NULL;
network::BaseNetwork* Slot::m_network = NULL;
bool Slot::m_duplex = true;
lookups::RadioIdLookup* Slot::m_ridLookup = NULL;
lookups::TalkgroupIdLookup* Slot::m_tidLookup = NULL;
uint32_t Slot::m_hangCount = 3U * 17U;
lookups::RSSIInterpolator* Slot::m_rssiMapper = NULL;
uint32_t Slot::m_jitterTime = 360U;
uint32_t Slot::m_jitterSlots = 6U;
uint8_t* Slot::m_idle = NULL;
uint8_t Slot::m_flco1;
uint8_t Slot::m_id1 = 0U;
bool Slot::m_voice1 = true;
uint8_t Slot::m_flco2;
uint8_t Slot::m_id2 = 0U;
bool Slot::m_voice2 = true;
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Initializes a new instance of the Slot class.
/// </summary>
/// <param name="slotNo">DMR slot number.</param>
/// <param name="queueSize">Modem frame buffer queue size (bytes).</param>
/// <param name="timeout">Transmit timeout.</param>
/// <param name="tgHang">Amount of time to hang on the last talkgroup mode from RF.</param>
/// <param name="dumpDataPacket"></param>
/// <param name="repeatDataPacket"></param>
/// <param name="dumpCSBKData"></param>
/// <param name="debug">Flag indicating whether DMR debug is enabled.</param>
/// <param name="verbose">Flag indicating whether DMR verbose logging is enabled.</param>
Slot::Slot(uint32_t slotNo, uint32_t timeout, uint32_t tgHang, uint32_t queueSize, bool dumpDataPacket, bool repeatDataPacket,
bool dumpCSBKData, bool debug, bool verbose) :
m_slotNo(slotNo),
m_queue(queueSize, "DMR Slot"),
m_rfState(RS_RF_LISTENING),
m_rfLastDstId(0U),
m_netState(RS_NET_IDLE),
m_netLastDstId(0U),
m_rfSeqNo(0U),
m_networkWatchdog(1000U, 0U, 1500U),
m_rfTimeoutTimer(1000U, timeout),
m_rfTGHang(1000U, tgHang),
m_netTimeoutTimer(1000U, timeout),
m_packetTimer(1000U, 0U, 50U),
m_interval(),
m_elapsed(),
m_rfFrames(0U),
m_netFrames(0U),
m_netLost(0U),
m_netMissed(0U),
m_rfBits(1U),
m_netBits(1U),
m_rfErrs(0U),
m_netErrs(0U),
m_rfTimeout(false),
m_netTimeout(false),
m_rssi(0U),
m_maxRSSI(0U),
m_minRSSI(0U),
m_aveRSSI(0U),
m_rssiCount(0U),
m_dumpCSBKData(dumpCSBKData),
m_verbose(verbose),
m_debug(debug)
{
m_interval.start();
m_voice = new VoicePacket(this, m_network, m_embeddedLCOnly, m_dumpTAData, debug, verbose);
m_data = new DataPacket(this, m_network, dumpDataPacket, repeatDataPacket, dumpCSBKData, debug, verbose);
}
/// <summary>
/// Finalizes a instance of the Slot class.
/// </summary>
Slot::~Slot()
{
delete m_voice;
delete m_data;
}
/// <summary>
/// Process DMR data frame from the RF interface.
/// </summary>
/// <param name="data">Buffer containing data frame.</param>
/// <param name="len">Length of data frame.</param>
/// <returns></returns>
bool Slot::processFrame(uint8_t *data, uint32_t len)
{
assert(data != NULL);
// Utils::dump(2U, "!!! *RX DMR Raw", data, len);
if (data[0U] == TAG_LOST && m_rfState == RS_RF_AUDIO) {
if (m_rssi != 0U) {
::ActivityLog("DMR", true, "Slot %u RF voice transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm",
m_slotNo, float(m_rfFrames) / 16.667F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
}
else {
::ActivityLog("DMR", true, "Slot %u RF voice transmission lost, %.1f seconds, BER: %.1f%%",
m_slotNo, float(m_rfFrames) / 16.667F, float(m_rfErrs * 100U) / float(m_rfBits));
}
LogMessage(LOG_RF, "DMR Slot %u, total frames: %d, total bits: %d, errors: %d, BER: %.4f%%",
m_slotNo, m_rfFrames, m_rfBits, m_rfErrs, float(m_rfErrs * 100U) / float(m_rfBits));
if (m_rfTimeout) {
m_data->writeEndRF();
return false;
}
else {
m_data->writeEndRF(true);
return true;
}
}
if (data[0U] == TAG_LOST && m_rfState == RS_RF_DATA) {
::ActivityLog("DMR", true, "Slot %u, RF data transmission lost", m_slotNo);
m_data->writeEndRF();
return false;
}
if (data[0U] == TAG_LOST) {
m_rfState = RS_RF_LISTENING;
m_rfLastDstId = 0U;
m_rfTGHang.stop();
return false;
}
// Have we got RSSI bytes on the end?
if (len == (DMR_FRAME_LENGTH_BYTES + 4U)) {
uint16_t raw = 0U;
raw |= (data[35U] << 8) & 0xFF00U;
raw |= (data[36U] << 0) & 0x00FFU;
// Convert the raw RSSI to dBm
int rssi = m_rssiMapper->interpolate(raw);
if (m_verbose) {
LogMessage(LOG_RF, "DMR Slot %u, raw RSSI = %u, reported RSSI = %d dBm", m_slotNo, raw, rssi);
}
// RSSI is always reported as positive
m_rssi = (rssi >= 0) ? rssi : -rssi;
if (m_rssi > m_minRSSI)
m_minRSSI = m_rssi;
if (m_rssi < m_maxRSSI)
m_maxRSSI = m_rssi;
m_aveRSSI += m_rssi;
m_rssiCount++;
}
bool dataSync = (data[1U] & DMR_SYNC_DATA) == DMR_SYNC_DATA;
bool voiceSync = (data[1U] & DMR_SYNC_VOICE) == DMR_SYNC_VOICE;
if (!(dataSync || voiceSync) && m_rfState == RS_RF_LISTENING) {
uint8_t sync[DMR_SYNC_LENGTH_BYTES];
::memcpy(sync, data + 2U, DMR_SYNC_LENGTH_BYTES);
// count data sync errors
uint8_t dataErrs = 0U;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_BYTES; i++)
dataErrs += Utils::countBits8(sync[i] ^ DMR_MS_DATA_SYNC_BYTES[i]);
// count voice sync errors
uint8_t voiceErrs = 0U;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_BYTES; i++)
voiceErrs += Utils::countBits8(sync[i] ^ DMR_MS_VOICE_SYNC_BYTES[i]);
LogWarning(LOG_RF, "DMR, possible sync word rejected, dataErrs = %u, voiceErrs = %u, sync word = %02X %02X %02X %02X %02X %02X", dataErrs, voiceErrs,
sync[0U], sync[1U], sync[2U], sync[3U], sync[4U], sync[5U]);
}
if ((dataSync || voiceSync) && m_debug) {
Utils::dump(1U, "!!! *RX DMR Modem Frame", data, len);
}
if ((dataSync || voiceSync) && m_rfState != RS_RF_LISTENING)
m_rfTGHang.start();
if (dataSync) {
return m_data->process(data, len);
}
return m_voice->process(data, len);
}
/// <summary>
/// Get frame data from data ring buffer.
/// </summary>
/// <param name="data">Buffer to store frame data.</param>
/// <returns>Length of frame data retreived.</returns>
uint32_t Slot::getFrame(uint8_t* data)
{
assert(data != NULL);
if (m_queue.isEmpty())
return 0U;
uint8_t len = 0U;
m_queue.getData(&len, 1U);
m_queue.getData(data, len);
return len;
}
/// <summary>
/// Process a data frame from the network.
/// </summary>
/// <param name="dmrData"></param>
void Slot::processNetwork(const data::Data& dmrData)
{
// don't process network frames if the RF modem isn't in a listening state
if (m_rfState != RS_RF_LISTENING) {
LogWarning(LOG_NET, "Traffic collision detect, preempting new network traffic to existing RF traffic!");
return;
}
// don't process network frames if the destination ID's don't match and the network TG hang timer is running
if (m_rfLastDstId != 0U) {
if (m_rfLastDstId != dmrData.getDstId() && (m_rfTGHang.isRunning() && !m_rfTGHang.hasExpired())) {
return;
}
if (m_rfLastDstId == dmrData.getDstId() && (m_rfTGHang.isRunning() && !m_rfTGHang.hasExpired())) {
m_rfTGHang.start();
}
}
m_networkWatchdog.start();
uint8_t dataType = dmrData.getDataType();
switch (dataType)
{
case DT_VOICE_LC_HEADER:
case DT_VOICE_PI_HEADER:
case DT_TERMINATOR_WITH_LC:
case DT_DATA_HEADER:
case DT_CSBK:
case DT_RATE_12_DATA:
case DT_RATE_34_DATA:
case DT_RATE_1_DATA:
m_data->processNetwork(dmrData);
break;
case DT_VOICE_SYNC:
case DT_VOICE:
default:
m_voice->processNetwork(dmrData);
}
}
/// <summary>
/// Updates the DMR slot processor.
/// </summary>
void Slot::clock()
{
uint32_t ms = m_interval.elapsed();
m_interval.start();
m_rfTimeoutTimer.clock(ms);
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired()) {
if (!m_rfTimeout) {
LogMessage(LOG_RF, "DMR Slot %u, user has timed out", m_slotNo);
m_rfTimeout = true;
}
}
m_netTimeoutTimer.clock(ms);
if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired()) {
if (!m_netTimeout) {
LogMessage(LOG_NET, "DMR Slot %u, user has timed out", m_slotNo);
m_netTimeout = true;
}
}
if (m_rfTGHang.isRunning()) {
m_rfTGHang.clock(ms);
if (m_rfTGHang.hasExpired()) {
m_rfTGHang.stop();
if (m_verbose) {
LogMessage(LOG_RF, "Slot %u, talkgroup hang has expired, lastDstId = %u", m_slotNo, m_rfLastDstId);
}
m_rfLastDstId = 0U;
}
}
if (m_netState == RS_NET_AUDIO || m_netState == RS_NET_DATA) {
m_networkWatchdog.clock(ms);
if (m_networkWatchdog.hasExpired()) {
if (m_netState == RS_NET_AUDIO) {
// We've received the voice header haven't we?
m_netFrames += 1U;
::ActivityLog("DMR", false, "Slot %u network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%",
m_slotNo, float(m_netFrames) / 16.667F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
m_data->writeEndNet(true);
}
else {
::ActivityLog("DMR", false, "Slot %u network watchdog has expired", m_slotNo);
m_data->writeEndNet();
}
}
}
if (m_netState == RS_NET_AUDIO) {
m_packetTimer.clock(ms);
if (m_packetTimer.isRunning() && m_packetTimer.hasExpired()) {
uint32_t elapsed = m_elapsed.elapsed();
if (elapsed >= m_jitterTime) {
LogWarning(LOG_NET, "DMR Slot %u, lost audio for %ums filling in", m_slotNo, elapsed);
m_voice->insertSilence(m_jitterSlots);
m_elapsed.start();
}
m_packetTimer.start();
}
}
}
/// <summary>
/// Helper to initialize the DMR slot processor.
/// </summary>
/// <param name="colorCode">DMR access color code.</param>
/// <param name="siteData">DMR site data.</param>
/// <param name="embeddedLCOnly"></param>
/// <param name="dumpTAData"></param>
/// <param name="callHang">Amount of hangtime for a DMR call.</param>
/// <param name="modem">Instance of the Modem class.</param>
/// <param name="network">Instance of the BaseNetwork class.</param>
/// <param name="duplex">Flag indicating full-duplex operation.</param>
/// <param name="ridLookup">Instance of the RadioIdLookup class.</param>
/// <param name="tidLookup">Instance of the TalkgroupIdLookup class.</param>
/// <param name="rssi">Instance of the CRSSIInterpolator class.</param>
/// <param name="jitter"></param>
void Slot::init(uint32_t colorCode, SiteData siteData, bool embeddedLCOnly, bool dumpTAData, uint32_t callHang, modem::Modem* modem,
network::BaseNetwork* network, bool duplex, lookups::RadioIdLookup* ridLookup, lookups::TalkgroupIdLookup* tidLookup,
lookups::RSSIInterpolator* rssiMapper, uint32_t jitter)
{
assert(modem != NULL);
assert(ridLookup != NULL);
assert(tidLookup != NULL);
assert(rssiMapper != NULL);
m_colorCode = colorCode;
m_siteData = siteData;
m_embeddedLCOnly = embeddedLCOnly;
m_dumpTAData = dumpTAData;
m_modem = modem;
m_network = network;
m_duplex = duplex;
m_ridLookup = ridLookup;
m_tidLookup = tidLookup;
m_hangCount = callHang * 17U;
m_rssiMapper = rssiMapper;
m_jitterTime = jitter;
float jitter_tmp = float(jitter) / 360.0F;
m_jitterSlots = (uint32_t)(std::ceil(jitter_tmp) * 6.0F);
m_idle = new uint8_t[DMR_FRAME_LENGTH_BYTES + 2U];
::memcpy(m_idle, DMR_IDLE_DATA, DMR_FRAME_LENGTH_BYTES + 2U);
// Generate the Slot Type for the Idle frame
SlotType slotType;
slotType.setColorCode(colorCode);
slotType.setDataType(DT_IDLE);
slotType.encode(m_idle + 2U);
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Helper to change the debug and verbose state.
/// </summary>
/// <param name="debug">Flag indicating whether DMR debug is enabled.</param>
/// <param name="verbose">Flag indicating whether DMR verbose logging is enabled.</param>
void Slot::setDebugVerbose(bool debug, bool verbose)
{
m_debug = m_voice->m_debug = m_data->m_debug = debug;
m_verbose = m_voice->m_verbose = m_data->m_verbose = verbose;
}
/// <summary>
/// Write data processed from RF to the data ring buffer.
/// </summary>
/// <param name="data"></param>
void Slot::writeQueueRF(const uint8_t *data)
{
assert(data != NULL);
if (m_netState != RS_NET_IDLE)
return;
uint8_t len = DMR_FRAME_LENGTH_BYTES + 2U;
uint32_t space = m_queue.freeSpace();
if (space < (len + 1U)) {
uint32_t queueLen = m_queue.length();
m_queue.resize(queueLen + QUEUE_RESIZE_SIZE);
LogError(LOG_DMR, "Slot %u, overflow in the DMR slot RF queue; queue resized was %u is %u", m_slotNo, queueLen, m_queue.length());
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
/// <summary>
/// Write data processed from the network to the data ring buffer.
/// </summary>
/// <param name="data"></param>
void Slot::writeQueueNet(const uint8_t *data)
{
assert(data != NULL);
uint8_t len = DMR_FRAME_LENGTH_BYTES + 2U;
uint32_t space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError(LOG_DMR, "Slot %u, overflow in the DMR slot RF queue", m_slotNo);
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
/// <summary>
/// Write data processed from RF to the network.
/// </summary>
/// <param name="data"></param>
/// <param name="dataType"></param>
/// <param name="errors"></param>
void Slot::writeNetworkRF(const uint8_t* data, uint8_t dataType, uint8_t errors)
{
assert(data != NULL);
assert(m_data->m_rfLC != NULL);
writeNetworkRF(data, dataType, m_data->m_rfLC->getFLCO(), m_data->m_rfLC->getSrcId(), m_data->m_rfLC->getDstId(), errors);
}
/// <summary>
/// Write data processed from RF to the network.
/// </summary>
/// <param name="data"></param>
/// <param name="dataType"></param>
/// <param name="flco"></param>
/// <param name="srcId"></param>
/// <param name="dstId"></param>
/// <param name="errors"></param>
void Slot::writeNetworkRF(const uint8_t* data, uint8_t dataType, uint8_t flco, uint32_t srcId,
uint32_t dstId, uint8_t errors)
{
assert(data != NULL);
if (m_netState != RS_NET_IDLE)
return;
if (m_network == NULL)
return;
data::Data dmrData;
dmrData.setSlotNo(m_slotNo);
dmrData.setDataType(dataType);
dmrData.setSrcId(srcId);
dmrData.setDstId(dstId);
dmrData.setFLCO(flco);
dmrData.setN(m_voice->m_rfN);
dmrData.setSeqNo(m_rfSeqNo);
dmrData.setBER(errors);
dmrData.setRSSI(m_rssi);
m_rfSeqNo++;
dmrData.setData(data + 2U);
m_network->writeDMR(dmrData);
}
/// <summary>
/// Helper to write a extended function packet on the RF interface.
/// </summary>
/// <param name="func">Extended function opcode.</param>
/// <param name="arg">Extended function argument.</param>
/// <param name="dstId">Destination radio ID.</param>
void Slot::writeRF_Ext_Func(uint32_t func, uint32_t arg, uint32_t dstId)
{
if (m_verbose) {
LogMessage(LOG_RF, "DMR Slot %u, DT_CSBK, CSBKO_EXT_FNCT (Extended Function), op = $%02X, arg = %u, tgt = %u",
m_slotNo, func, arg, dstId);
}
// generate activity log entry
if (func == DMR_EXT_FNCT_CHECK) {
::ActivityLog("DMR", true, "Slot %u radio check request from %u to %u", m_slotNo, arg, dstId);
}
else if (func == DMR_EXT_FNCT_INHIBIT) {
::ActivityLog("DMR", true, "Slot %u radio inhibit request from %u to %u", m_slotNo, arg, dstId);
}
else if (func == DMR_EXT_FNCT_UNINHIBIT) {
::ActivityLog("DMR", true, "Slot %u radio uninhibit request from %u to %u", m_slotNo, arg, dstId);
}
uint8_t data[DMR_FRAME_LENGTH_BYTES + 2U];
::memset(data + 2U, 0x00U, DMR_FRAME_LENGTH_BYTES);
SlotType slotType;
slotType.setColorCode(m_colorCode);
slotType.setDataType(DT_CSBK);
lc::CSBK csbk = lc::CSBK();
csbk.setVerbose(m_dumpCSBKData);
csbk.setCSBKO(CSBKO_EXT_FNCT);
csbk.setFID(FID_DMRA);
csbk.setGI(false);
csbk.setCBF(func);
csbk.setSrcId(arg);
csbk.setDstId(dstId);
// Regenerate the CSBK data
csbk.encode(data + 2U);
// Regenerate the Slot Type
slotType.encode(data + 2U);
// Convert the Data Sync to be from the BS or MS as needed
Sync::addDMRDataSync(data + 2U, m_duplex);
m_rfSeqNo = 0U;
data[0U] = TAG_DATA;
data[1U] = 0x00U;
if (m_duplex)
writeQueueRF(data);
}
/// <summary>
/// Helper to write a call alert packet on the RF interface.
/// </summary>
/// <param name="srcId">Source radio ID.</param>
/// <param name="dstId">Destination radio ID.</param>
void Slot::writeRF_Call_Alrt(uint32_t srcId, uint32_t dstId)
{
if (m_verbose) {
LogMessage(LOG_RF, "DMR Slot %u, DT_CSBK, CSBKO_CALL_ALRT (Call Alert), src = %u, dst = %u",
m_slotNo, srcId, dstId);
}
::ActivityLog("DMR", true, "Slot %u call alert request from %u to %u", m_slotNo, srcId, dstId);
uint8_t data[DMR_FRAME_LENGTH_BYTES + 2U];
::memset(data + 2U, 0x00U, DMR_FRAME_LENGTH_BYTES);
SlotType slotType;
slotType.setColorCode(m_colorCode);
slotType.setDataType(DT_CSBK);
lc::CSBK csbk = lc::CSBK();
csbk.setVerbose(m_dumpCSBKData);
csbk.setCSBKO(CSBKO_CALL_ALRT);
csbk.setFID(FID_DMRA);
csbk.setGI(false);
csbk.setSrcId(srcId);
csbk.setDstId(dstId);
// Regenerate the CSBK data
csbk.encode(data + 2U);
// Regenerate the Slot Type
slotType.encode(data + 2U);
// Convert the Data Sync to be from the BS or MS as needed
Sync::addDMRDataSync(data + 2U, m_duplex);
m_rfSeqNo = 0U;
data[0U] = TAG_DATA;
data[1U] = 0x00U;
if (m_duplex)
writeQueueRF(data);
}
/// <summary>
/// Helper to write a TSCC broadcast packet on the RF interface.
/// </summary>
/// <param name="anncType">Broadcast announcement type.</param>
void Slot::writeRF_TSCC_Broadcast(uint8_t anncType)
{
if (m_verbose) {
LogMessage(LOG_RF, "DMR Slot %u, DT_CSBK, CSBKO_BROADCAST (Broadcast), anncType = %u",
m_slotNo, anncType);
}
uint8_t data[DMR_FRAME_LENGTH_BYTES + 2U];
::memset(data + 2U, 0x00U, DMR_FRAME_LENGTH_BYTES);
SlotType slotType;
slotType.setColorCode(m_colorCode);
slotType.setDataType(DT_CSBK);
lc::CSBK csbk = lc::CSBK();
csbk.setVerbose(m_dumpCSBKData);
csbk.setCSBKO(CSBKO_BROADCAST);
csbk.setFID(FID_ETSI);
csbk.setAnncType(anncType);
csbk.setSiteData(m_siteData);
// Regenerate the CSBK data
csbk.encode(data + 2U);
// Regenerate the Slot Type
slotType.encode(data + 2U);
// Convert the Data Sync to be from the BS or MS as needed
Sync::addDMRDataSync(data + 2U, m_duplex);
m_rfSeqNo = 0U;
data[0U] = TAG_DATA;
data[1U] = 0x00U;
if (m_duplex)
writeQueueRF(data);
}
/// <summary>
///
/// </summary>
/// <param name="slotNo"></param>
/// <param name="id"></param>
/// <param name="flco"></param>
/// <param name="voice"></param>
void Slot::setShortLC(uint32_t slotNo, uint32_t id, uint8_t flco, bool voice)
{
assert(m_modem != NULL);
switch (slotNo) {
case 1U:
m_id1 = 0U;
m_flco1 = flco;
m_voice1 = voice;
if (id != 0U) {
uint8_t buffer[3U];
buffer[0U] = (id << 16) & 0xFFU;
buffer[1U] = (id << 8) & 0xFFU;
buffer[2U] = (id << 0) & 0xFFU;
m_id1 = edac::CRC::crc8(buffer, 3U);
}
break;
case 2U:
m_id2 = 0U;
m_flco2 = flco;
m_voice2 = voice;
if (id != 0U) {
uint8_t buffer[3U];
buffer[0U] = (id << 16) & 0xFFU;
buffer[1U] = (id << 8) & 0xFFU;
buffer[2U] = (id << 0) & 0xFFU;
m_id2 = edac::CRC::crc8(buffer, 3U);
}
break;
default:
LogError(LOG_DMR, "invalid slot number passed to setShortLC, slotNo = %u", slotNo);
return;
}
// If we have no activity to report, let the modem send the null Short LC when it's ready
if (m_id1 == 0U && m_id2 == 0U)
return;
uint8_t lc[5U];
lc[0U] = SLCO_ACT;
lc[1U] = 0x00U;
lc[2U] = 0x00U;
lc[3U] = 0x00U;
if (m_id1 != 0U) {
lc[2U] = m_id1;
if (m_voice1) {
if (m_flco1 == FLCO_GROUP)
lc[1U] |= 0x80U;
else
lc[1U] |= 0x90U;
}
else {
if (m_flco1 == FLCO_GROUP)
lc[1U] |= 0xB0U;
else
lc[1U] |= 0xA0U;
}
}
if (m_id2 != 0U) {
lc[3U] = m_id2;
if (m_voice2) {
if (m_flco2 == FLCO_GROUP)
lc[1U] |= 0x08U;
else
lc[1U] |= 0x09U;
}
else {
if (m_flco2 == FLCO_GROUP)
lc[1U] |= 0x0BU;
else
lc[1U] |= 0x0AU;
}
}
lc[4U] = edac::CRC::crc8(lc, 4U);
uint8_t sLC[9U];
lc::ShortLC shortLC;
shortLC.encode(lc, sLC);
m_modem->writeDMRShortLC(sLC);
}
/// <summary>
///
/// </summary>
/// <param name="slotNo"></param>
/// <param name="siteData"></param>
/// <param name="counter"></param>
void Slot::setShortLC_TSCC(SiteData siteData, uint16_t counter)
{
assert(m_modem != NULL);
uint8_t lc[5U];
uint32_t lcValue = 0U;
lcValue = SLCO_TSCC;
lcValue = (lcValue << 2) + siteData.siteModel();
switch (siteData.siteModel())
{
case SITE_MODEL_TINY:
{
lcValue = (lcValue << 9) + siteData.netId();
lcValue = (lcValue << 3) + siteData.siteId();
}
break;
case SITE_MODEL_SMALL:
{
lcValue = (lcValue << 7) + siteData.netId();
lcValue = (lcValue << 5) + siteData.siteId();
}
break;
case SITE_MODEL_LARGE:
{
lcValue = (lcValue << 5) + siteData.netId();
lcValue = (lcValue << 7) + siteData.siteId();
}
break;
case SITE_MODEL_HUGE:
{
lcValue = (lcValue << 2) + siteData.netId();
lcValue = (lcValue << 10) + siteData.siteId();
}
break;
}
lcValue = (lcValue << 1) + ((siteData.requireReg()) ? 1U : 0U);
lcValue = (lcValue << 9) + (counter & 0x1FFU);
// split value into bytes
lc[0U] = (uint8_t)((lcValue >> 24) & 0xFFU);
lc[1U] = (uint8_t)((lcValue >> 16) & 0xFFU);
lc[2U] = (uint8_t)((lcValue >> 8) & 0xFFU);
lc[3U] = (uint8_t)((lcValue >> 0) & 0xFFU);
lc[4U] = edac::CRC::crc8(lc, 4U);
uint8_t sLC[9U];
lc::ShortLC shortLC;
shortLC.encode(lc, sLC);
m_modem->writeDMRShortLC(sLC);
}

Powered by TurnKey Linux.