You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dvmhost/dmr/data/EmbeddedData.cpp

370 lines
9.9 KiB

/**
* Digital Voice Modem - Host Software
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* @package DVM / Host Software
*
*/
//
// Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost)
// Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0)
//
/*
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Defines.h"
#include "dmr/data/EmbeddedData.h"
#include "edac/Hamming.h"
#include "edac/CRC.h"
#include "Utils.h"
using namespace dmr::data;
using namespace dmr;
#include <cstdio>
#include <cassert>
#include <cstring>
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Initializes a new instance of the EmbeddedData class.
/// </summary>
EmbeddedData::EmbeddedData() :
m_valid(false),
m_FLCO(FLCO_GROUP),
m_state(LCS_NONE),
m_data(nullptr),
m_raw(nullptr)
{
m_raw = new bool[128U];
m_data = new bool[72U];
}
/// <summary>
/// Finalizes a instance of the EmbeddedData class.
/// </summary>
EmbeddedData::~EmbeddedData()
{
delete[] m_raw;
delete[] m_data;
}
/// <summary>
/// Add LC data (which may consist of 4 blocks) to the data store.
/// </summary>
/// <param name="data"></param>
/// <param name="lcss"></param>
/// <returns></returns>
bool EmbeddedData::addData(const uint8_t* data, uint8_t lcss)
{
assert(data != nullptr);
bool rawData[40U];
Utils::byteToBitsBE(data[14U], rawData + 0U);
Utils::byteToBitsBE(data[15U], rawData + 8U);
Utils::byteToBitsBE(data[16U], rawData + 16U);
Utils::byteToBitsBE(data[17U], rawData + 24U);
Utils::byteToBitsBE(data[18U], rawData + 32U);
// Is this the first block of a 4 block embedded LC ?
if (lcss == 1U) {
for (uint32_t a = 0U; a < 32U; a++)
m_raw[a] = rawData[a + 4U];
// Show we are ready for the next LC block
m_state = LCS_FIRST;
m_valid = false;
return false;
}
// Is this the 2nd block of a 4 block embedded LC ?
if (lcss == 3U && m_state == LCS_FIRST) {
for (uint32_t a = 0U; a < 32U; a++)
m_raw[a + 32U] = rawData[a + 4U];
// Show we are ready for the next LC block
m_state = LCS_SECOND;
return false;
}
// Is this the 3rd block of a 4 block embedded LC ?
if (lcss == 3U && m_state == LCS_SECOND) {
for (uint32_t a = 0U; a < 32U; a++)
m_raw[a + 64U] = rawData[a + 4U];
// Show we are ready for the final LC block
m_state = LCS_THIRD;
return false;
}
// Is this the final block of a 4 block embedded LC ?
if (lcss == 2U && m_state == LCS_THIRD) {
for (uint32_t a = 0U; a < 32U; a++)
m_raw[a + 96U] = rawData[a + 4U];
// Show that we're not ready for any more data
m_state = LCS_NONE;
// Process the complete data block
decodeEmbeddedData();
if (m_valid)
encodeEmbeddedData();
return m_valid;
}
return false;
}
/// <summary>
///
/// </summary>
/// <param name="data"></param>
/// <param name="n"></param>
/// <returns></returns>
uint8_t EmbeddedData::getData(uint8_t* data, uint8_t n) const
{
assert(data != nullptr);
if (n >= 1U && n < 5U) {
n--;
bool bits[40U];
::memset(bits, 0x00U, 40U * sizeof(bool));
::memcpy(bits + 4U, m_raw + n * 32U, 32U * sizeof(bool));
uint8_t bytes[5U];
Utils::bitsToByteBE(bits + 0U, bytes[0U]);
Utils::bitsToByteBE(bits + 8U, bytes[1U]);
Utils::bitsToByteBE(bits + 16U, bytes[2U]);
Utils::bitsToByteBE(bits + 24U, bytes[3U]);
Utils::bitsToByteBE(bits + 32U, bytes[4U]);
data[14U] = (data[14U] & 0xF0U) | (bytes[0U] & 0x0FU);
data[15U] = bytes[1U];
data[16U] = bytes[2U];
data[17U] = bytes[3U];
data[18U] = (data[18U] & 0x0FU) | (bytes[4U] & 0xF0U);
switch (n) {
case 0U:
return 1U;
case 3U:
return 2U;
default:
return 3U;
}
}
else {
data[14U] &= 0xF0U;
data[15U] = 0x00U;
data[16U] = 0x00U;
data[17U] = 0x00U;
data[18U] &= 0x0FU;
return 0U;
}
}
/// <summary>Sets link control data.</summary>
/// <param name="lc"></param>
void EmbeddedData::setLC(const lc::LC& lc)
{
lc.getData(m_data);
m_FLCO = lc.getFLCO();
m_valid = true;
encodeEmbeddedData();
}
/// <summary>Gets link control data.</summary>
/// <returns></returns>
std::unique_ptr<lc::LC> EmbeddedData::getLC() const
{
if (!m_valid)
return nullptr;
if (m_FLCO != FLCO_GROUP && m_FLCO != FLCO_PRIVATE)
return nullptr;
return std::unique_ptr<lc::LC>(new lc::LC(m_data));
}
/// <summary>
///
/// </summary>
/// <param name="data"></param>
/// <returns></returns>
bool EmbeddedData::getRawData(uint8_t* data) const
{
assert(data != nullptr);
if (!m_valid)
return false;
Utils::bitsToByteBE(m_data + 0U, data[0U]);
Utils::bitsToByteBE(m_data + 8U, data[1U]);
Utils::bitsToByteBE(m_data + 16U, data[2U]);
Utils::bitsToByteBE(m_data + 24U, data[3U]);
Utils::bitsToByteBE(m_data + 32U, data[4U]);
Utils::bitsToByteBE(m_data + 40U, data[5U]);
Utils::bitsToByteBE(m_data + 48U, data[6U]);
Utils::bitsToByteBE(m_data + 56U, data[7U]);
Utils::bitsToByteBE(m_data + 64U, data[8U]);
return true;
}
/// <summary>
/// Helper to reset data values to defaults.
/// </summary>
void EmbeddedData::reset()
{
m_state = LCS_NONE;
m_valid = false;
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Unpack and error check an embedded LC.
/// </summary>
void EmbeddedData::decodeEmbeddedData()
{
// The data is unpacked downwards in columns
bool data[128U];
::memset(data, 0x00U, 128U * sizeof(bool));
uint32_t b = 0U;
for (uint32_t a = 0U; a < 128U; a++) {
data[b] = m_raw[a];
b += 16U;
if (b > 127U)
b -= 127U;
}
// Hamming (16,11,4) check each row except the last one
for (uint32_t a = 0U; a < 112U; a += 16U) {
if (!edac::Hamming::decode16114(data + a))
return;
}
// Check the parity bits
for (uint32_t a = 0U; a < 16U; a++) {
bool parity = data[a + 0U] ^ data[a + 16U] ^ data[a + 32U] ^ data[a + 48U] ^ data[a + 64U] ^ data[a + 80U] ^ data[a + 96U] ^ data[a + 112U];
if (parity)
return;
}
// We have passed the Hamming check so extract the actual payload
b = 0U;
for (uint32_t a = 0U; a < 11U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 16U; a < 27U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 32U; a < 42U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 48U; a < 58U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 64U; a < 74U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 80U; a < 90U; a++, b++)
m_data[b] = data[a];
for (uint32_t a = 96U; a < 106U; a++, b++)
m_data[b] = data[a];
// Extract the 5 bit CRC
uint32_t crc = 0U;
if (data[42]) crc += 16U;
if (data[58]) crc += 8U;
if (data[74]) crc += 4U;
if (data[90]) crc += 2U;
if (data[106]) crc += 1U;
// Now CRC check this
if (!edac::CRC::checkFiveBit(m_data, crc))
return;
m_valid = true;
// Extract the FLCO
uint8_t flco;
Utils::bitsToByteBE(m_data + 0U, flco);
m_FLCO = flco & 0x3FU;
}
/// <summary>
/// Pack and FEC for an embedded LC.
/// </summary>
void EmbeddedData::encodeEmbeddedData()
{
uint32_t crc;
edac::CRC::encodeFiveBit(m_data, crc);
bool data[128U];
::memset(data, 0x00U, 128U * sizeof(bool));
data[106U] = (crc & 0x01U) == 0x01U;
data[90U] = (crc & 0x02U) == 0x02U;
data[74U] = (crc & 0x04U) == 0x04U;
data[58U] = (crc & 0x08U) == 0x08U;
data[42U] = (crc & 0x10U) == 0x10U;
uint32_t b = 0U;
for (uint32_t a = 0U; a < 11U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 16U; a < 27U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 32U; a < 42U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 48U; a < 58U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 64U; a < 74U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 80U; a < 90U; a++, b++)
data[a] = m_data[b];
for (uint32_t a = 96U; a < 106U; a++, b++)
data[a] = m_data[b];
// Hamming (16,11,4) check each row except the last one
for (uint32_t a = 0U; a < 112U; a += 16U)
edac::Hamming::encode16114(data + a);
// Add the parity bits for each column
for (uint32_t a = 0U; a < 16U; a++)
data[a + 112U] = data[a + 0U] ^ data[a + 16U] ^ data[a + 32U] ^ data[a + 48U] ^ data[a + 64U] ^ data[a + 80U] ^ data[a + 96U];
// The data is packed downwards in columns
b = 0U;
for (uint32_t a = 0U; a < 128U; a++) {
m_raw[a] = data[b];
b += 16U;
if (b > 127U)
b -= 127U;
}
}

Powered by TurnKey Linux.