You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dvmhost/p25/NID.cpp

325 lines
10 KiB

/**
* Digital Voice Modem - Host Software
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* @package DVM / Host Software
*
*/
//
// Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost)
// Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0)
//
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2017,2022 by Bryan Biedenkapp N2PLL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Defines.h"
#include "p25/P25Defines.h"
#include "p25/NID.h"
#include "p25/P25Utils.h"
#include "edac/BCH.h"
using namespace p25;
#include <cstdio>
#include <cassert>
// ---------------------------------------------------------------------------
// Constants
// ---------------------------------------------------------------------------
const uint32_t MAX_NID_ERRS = 7U;//5U;
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Initializes a new instance of the NID class.
/// </summary>
/// <param name="nac">P25 Network Access Code.</param>
NID::NID(uint32_t nac) :
m_duid(0U),
m_nac(nac),
m_rxTx(nullptr),
m_tx(nullptr),
m_splitNac(false)
{
m_rxTx = new uint8_t*[16U];
for (uint8_t i = 0; i < 16U; i++)
m_rxTx[i] = nullptr;
m_tx = new uint8_t*[16U];
for (uint8_t i = 0; i < 16U; i++)
m_tx[i] = nullptr;
createRxTxNID(nac);
}
/// <summary>
/// Finalizes a instance of the NID class.
/// </summary>
NID::~NID()
{
for (uint8_t i = 0; i < 16U; i++)
{
if (m_rxTx[i] != nullptr) {
delete[] m_rxTx[i];
}
if (m_tx[i] != nullptr) {
delete[] m_tx[i];
}
}
delete[] m_rxTx;
delete[] m_tx;
}
/// <summary>
/// Decodes P25 network identifier data.
/// </summary>
/// <param name="data"></param>
/// <returns></returns>
bool NID::decode(const uint8_t* data)
{
assert(data != nullptr);
uint8_t nid[P25_NID_LENGTH_BYTES];
P25Utils::decode(data, nid, 48U, 114U);
uint32_t errs = P25Utils::compare(nid, m_rxTx[P25_DUID_LDU1], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_LDU1;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_LDU2], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_LDU2;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_PDU], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_PDU;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_TSDU], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TSDU;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_HDU], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_HDU;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_TDULC], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TDULC;
return true;
}
errs = P25Utils::compare(nid, m_rxTx[P25_DUID_TDU], P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TDU;
return true;
}
return false;
}
/// <summary>
/// Encodes P25 network identifier data.
/// </summary>
/// <param name="data"></param>
/// <param name="duid"></param>
void NID::encode(uint8_t* data, uint8_t duid) const
{
assert(data != nullptr);
if (m_splitNac) {
switch (duid) {
case P25_DUID_HDU:
case P25_DUID_TDU:
case P25_DUID_LDU1:
case P25_DUID_PDU:
case P25_DUID_TSDU:
case P25_DUID_LDU2:
case P25_DUID_TDULC:
P25Utils::encode(m_tx[duid], data, 48U, 114U);
break;
default:
break;
}
}
else {
switch (duid) {
case P25_DUID_HDU:
case P25_DUID_TDU:
case P25_DUID_LDU1:
case P25_DUID_PDU:
case P25_DUID_TSDU:
case P25_DUID_LDU2:
case P25_DUID_TDULC:
P25Utils::encode(m_rxTx[duid], data, 48U, 114U);
break;
default:
break;
}
}
}
/// <summary>
/// Helper to configure a separate Tx NAC.
/// </summary>
/// <param name="nac"></param>
void NID::setTxNAC(uint32_t nac)
{
if (nac == m_nac) {
return;
}
m_splitNac = true;
createTxNID(nac);
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/// <summary>
///
/// </summary>
/// <param name="nac"></param>
void NID::createRxTxNID(uint32_t nac)
{
edac::BCH bch;
m_rxTx[P25_DUID_HDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_HDU][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_HDU][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_HDU][1U] |= P25_DUID_HDU;
bch.encode(m_rxTx[P25_DUID_HDU]);
m_rxTx[P25_DUID_HDU][7U] &= 0xFEU; // Clear the parity bit
m_rxTx[P25_DUID_TDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_TDU][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_TDU][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_TDU][1U] |= P25_DUID_TDU;
bch.encode(m_rxTx[P25_DUID_TDU]);
m_rxTx[P25_DUID_TDU][7U] &= 0xFEU; // Clear the parity bit
m_rxTx[P25_DUID_LDU1] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_LDU1][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_LDU1][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_LDU1][1U] |= P25_DUID_LDU1;
bch.encode(m_rxTx[P25_DUID_LDU1]);
m_rxTx[P25_DUID_LDU1][7U] |= 0x01U; // Set the parity bit
m_rxTx[P25_DUID_PDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_PDU][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_PDU][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_PDU][1U] |= P25_DUID_PDU;
bch.encode(m_rxTx[P25_DUID_PDU]);
m_rxTx[P25_DUID_PDU][7U] &= 0xFEU; // Clear the parity bit
m_rxTx[P25_DUID_TSDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_TSDU][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_TSDU][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_TSDU][1U] |= P25_DUID_TSDU;
bch.encode(m_rxTx[P25_DUID_TSDU]);
m_rxTx[P25_DUID_TSDU][7U] &= 0xFEU; // Clear the parity bit
m_rxTx[P25_DUID_LDU2] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_LDU2][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_LDU2][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_LDU2][1U] |= P25_DUID_LDU2;
bch.encode(m_rxTx[P25_DUID_LDU2]);
m_rxTx[P25_DUID_LDU2][7U] |= 0x01U; // Set the parity bit
m_rxTx[P25_DUID_TDULC] = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTx[P25_DUID_TDULC][0U] = (nac >> 4) & 0xFFU;
m_rxTx[P25_DUID_TDULC][1U] = (nac << 4) & 0xF0U;
m_rxTx[P25_DUID_TDULC][1U] |= P25_DUID_TDULC;
bch.encode(m_rxTx[P25_DUID_TDULC]);
m_rxTx[P25_DUID_TDULC][7U] &= 0xFEU; // Clear the parity bit
}
/// <summary>
///
/// </summary>
/// <param name="nac"></param>
void NID::createTxNID(uint32_t nac)
{
edac::BCH bch;
m_tx[P25_DUID_HDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_HDU][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_HDU][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_HDU][1U] |= P25_DUID_HDU;
bch.encode(m_tx[P25_DUID_HDU]);
m_tx[P25_DUID_HDU][7U] &= 0xFEU; // Clear the parity bit
m_tx[P25_DUID_TDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_TDU][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_TDU][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_TDU][1U] |= P25_DUID_TDU;
bch.encode(m_tx[P25_DUID_TDU]);
m_tx[P25_DUID_TDU][7U] &= 0xFEU; // Clear the parity bit
m_tx[P25_DUID_LDU1] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_LDU1][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_LDU1][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_LDU1][1U] |= P25_DUID_LDU1;
bch.encode(m_tx[P25_DUID_LDU1]);
m_tx[P25_DUID_LDU1][7U] |= 0x01U; // Set the parity bit
m_tx[P25_DUID_PDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_PDU][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_PDU][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_PDU][1U] |= P25_DUID_PDU;
bch.encode(m_tx[P25_DUID_PDU]);
m_tx[P25_DUID_PDU][7U] &= 0xFEU; // Clear the parity bit
m_tx[P25_DUID_TSDU] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_TSDU][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_TSDU][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_TSDU][1U] |= P25_DUID_TSDU;
bch.encode(m_tx[P25_DUID_TSDU]);
m_tx[P25_DUID_TSDU][7U] &= 0xFEU; // Clear the parity bit
m_tx[P25_DUID_LDU2] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_LDU2][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_LDU2][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_LDU2][1U] |= P25_DUID_LDU2;
bch.encode(m_tx[P25_DUID_LDU2]);
m_tx[P25_DUID_LDU2][7U] |= 0x01U; // Set the parity bit
m_tx[P25_DUID_TDULC] = new uint8_t[P25_NID_LENGTH_BYTES];
m_tx[P25_DUID_TDULC][0U] = (nac >> 4) & 0xFFU;
m_tx[P25_DUID_TDULC][1U] = (nac << 4) & 0xF0U;
m_tx[P25_DUID_TDULC][1U] |= P25_DUID_TDULC;
bch.encode(m_tx[P25_DUID_TDULC]);
m_tx[P25_DUID_TDULC][7U] &= 0xFEU; // Clear the parity bit
}

Powered by TurnKey Linux.