You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dvmhost/src/common/edac/BPTC19696.cpp

350 lines
10 KiB

// SPDX-License-Identifier: GPL-2.0-only
/*
* Digital Voice Modem - Common Library
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright (C) 2012 Ian Wraith
* Copyright (C) 2015 Jonathan Naylor, G4KLX
*
*/
#include "Defines.h"
#include "edac/BPTC19696.h"
#include "edac/Hamming.h"
#include "Utils.h"
using namespace edac;
#include <cassert>
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
/* Initializes a new instance of the BPTC19696 class. */
BPTC19696::BPTC19696() :
m_rawData(nullptr),
m_deInterData(nullptr)
{
m_rawData = new bool[196];
m_deInterData = new bool[196];
}
/* Finalizes a instance of the BPTC19696 class. */
BPTC19696::~BPTC19696()
{
delete[] m_rawData;
delete[] m_deInterData;
}
/* Decode BPTC (196,96) FEC. */
void BPTC19696::decode(const uint8_t* in, uint8_t* out)
{
assert(in != nullptr);
assert(out != nullptr);
// get the raw binary
decodeExtractBinary(in);
// deinterleave
decodeDeInterleave();
// error check
decodeErrorCheck();
// extract Data
decodeExtractData(out);
}
/* Encode BPTC (196,96) FEC. */
void BPTC19696::encode(const uint8_t* in, uint8_t* out)
{
assert(in != nullptr);
assert(out != nullptr);
// extract Data
encodeExtractData(in);
// error check
encodeErrorCheck();
// interleave
encodeInterleave();
// get the raw binary
encodeExtractBinary(out);
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/* */
void BPTC19696::decodeExtractBinary(const uint8_t* in)
{
// first block
Utils::byteToBitsBE(in[0U], m_rawData + 0U);
Utils::byteToBitsBE(in[1U], m_rawData + 8U);
Utils::byteToBitsBE(in[2U], m_rawData + 16U);
Utils::byteToBitsBE(in[3U], m_rawData + 24U);
Utils::byteToBitsBE(in[4U], m_rawData + 32U);
Utils::byteToBitsBE(in[5U], m_rawData + 40U);
Utils::byteToBitsBE(in[6U], m_rawData + 48U);
Utils::byteToBitsBE(in[7U], m_rawData + 56U);
Utils::byteToBitsBE(in[8U], m_rawData + 64U);
Utils::byteToBitsBE(in[9U], m_rawData + 72U);
Utils::byteToBitsBE(in[10U], m_rawData + 80U);
Utils::byteToBitsBE(in[11U], m_rawData + 88U);
Utils::byteToBitsBE(in[12U], m_rawData + 96U);
// handle the two bits
bool bits[8U];
Utils::byteToBitsBE(in[20U], bits);
m_rawData[98U] = bits[6U];
m_rawData[99U] = bits[7U];
// second block
Utils::byteToBitsBE(in[21U], m_rawData + 100U);
Utils::byteToBitsBE(in[22U], m_rawData + 108U);
Utils::byteToBitsBE(in[23U], m_rawData + 116U);
Utils::byteToBitsBE(in[24U], m_rawData + 124U);
Utils::byteToBitsBE(in[25U], m_rawData + 132U);
Utils::byteToBitsBE(in[26U], m_rawData + 140U);
Utils::byteToBitsBE(in[27U], m_rawData + 148U);
Utils::byteToBitsBE(in[28U], m_rawData + 156U);
Utils::byteToBitsBE(in[29U], m_rawData + 164U);
Utils::byteToBitsBE(in[30U], m_rawData + 172U);
Utils::byteToBitsBE(in[31U], m_rawData + 180U);
Utils::byteToBitsBE(in[32U], m_rawData + 188U);
}
/* */
void BPTC19696::decodeDeInterleave()
{
for (uint32_t i = 0U; i < 196U; i++)
m_deInterData[i] = false;
// the first bit is R(3) which is not used so can be ignored
for (uint32_t a = 0U; a < 196U; a++) {
// calculate the interleave sequence
uint32_t interleaveSequence = (a * 181U) % 196U;
// shuffle the data
m_deInterData[a] = m_rawData[interleaveSequence];
}
}
/* */
void BPTC19696::decodeErrorCheck()
{
bool fixing;
uint32_t count = 0U;
do {
fixing = false;
// run through each of the 15 columns
bool col[13U];
for (uint32_t c = 0U; c < 15U; c++) {
uint32_t pos = c + 1U;
for (uint32_t a = 0U; a < 13U; a++) {
col[a] = m_deInterData[pos];
pos = pos + 15U;
}
if (Hamming::decode1393(col)) {
uint32_t pos = c + 1U;
for (uint32_t a = 0U; a < 13U; a++) {
m_deInterData[pos] = col[a];
pos = pos + 15U;
}
fixing = true;
}
}
// run through each of the 9 rows containing data
for (uint32_t r = 0U; r < 9U; r++) {
uint32_t pos = (r * 15U) + 1U;
if (Hamming::decode15113_2(m_deInterData + pos))
fixing = true;
}
count++;
} while (fixing && count < 5U);
}
/* */
void BPTC19696::decodeExtractData(uint8_t* data) const
{
bool bData[96U];
uint32_t pos = 0U;
for (uint32_t a = 4U; a <= 11U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 16U; a <= 26U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 31U; a <= 41U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 46U; a <= 56U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 61U; a <= 71U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 76U; a <= 86U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 91U; a <= 101U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 106U; a <= 116U; a++, pos++)
bData[pos] = m_deInterData[a];
for (uint32_t a = 121U; a <= 131U; a++, pos++)
bData[pos] = m_deInterData[a];
Utils::bitsToByteBE(bData + 0U, data[0U]);
Utils::bitsToByteBE(bData + 8U, data[1U]);
Utils::bitsToByteBE(bData + 16U, data[2U]);
Utils::bitsToByteBE(bData + 24U, data[3U]);
Utils::bitsToByteBE(bData + 32U, data[4U]);
Utils::bitsToByteBE(bData + 40U, data[5U]);
Utils::bitsToByteBE(bData + 48U, data[6U]);
Utils::bitsToByteBE(bData + 56U, data[7U]);
Utils::bitsToByteBE(bData + 64U, data[8U]);
Utils::bitsToByteBE(bData + 72U, data[9U]);
Utils::bitsToByteBE(bData + 80U, data[10U]);
Utils::bitsToByteBE(bData + 88U, data[11U]);
}
/* */
void BPTC19696::encodeExtractData(const uint8_t* in) const
{
bool bData[96U];
Utils::byteToBitsBE(in[0U], bData + 0U);
Utils::byteToBitsBE(in[1U], bData + 8U);
Utils::byteToBitsBE(in[2U], bData + 16U);
Utils::byteToBitsBE(in[3U], bData + 24U);
Utils::byteToBitsBE(in[4U], bData + 32U);
Utils::byteToBitsBE(in[5U], bData + 40U);
Utils::byteToBitsBE(in[6U], bData + 48U);
Utils::byteToBitsBE(in[7U], bData + 56U);
Utils::byteToBitsBE(in[8U], bData + 64U);
Utils::byteToBitsBE(in[9U], bData + 72U);
Utils::byteToBitsBE(in[10U], bData + 80U);
Utils::byteToBitsBE(in[11U], bData + 88U);
for (uint32_t i = 0U; i < 196U; i++)
m_deInterData[i] = false;
uint32_t pos = 0U;
for (uint32_t a = 4U; a <= 11U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 16U; a <= 26U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 31U; a <= 41U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 46U; a <= 56U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 61U; a <= 71U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 76U; a <= 86U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 91U; a <= 101U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 106U; a <= 116U; a++, pos++)
m_deInterData[a] = bData[pos];
for (uint32_t a = 121U; a <= 131U; a++, pos++)
m_deInterData[a] = bData[pos];
}
/* */
void BPTC19696::encodeErrorCheck()
{
// run through each of the 9 rows containing data
for (uint32_t r = 0U; r < 9U; r++) {
uint32_t pos = (r * 15U) + 1U;
Hamming::encode15113_2(m_deInterData + pos);
}
// run through each of the 15 columns
bool col[13U];
for (uint32_t c = 0U; c < 15U; c++) {
uint32_t pos = c + 1U;
for (uint32_t a = 0U; a < 13U; a++) {
col[a] = m_deInterData[pos];
pos = pos + 15U;
}
Hamming::encode1393(col);
pos = c + 1U;
for (uint32_t a = 0U; a < 13U; a++) {
m_deInterData[pos] = col[a];
pos = pos + 15U;
}
}
}
/* */
void BPTC19696::encodeInterleave()
{
for (uint32_t i = 0U; i < 196U; i++)
m_rawData[i] = false;
// the first bit is R(3) which is not used so can be ignored
for (uint32_t a = 0U; a < 196U; a++) {
// calculate the interleave sequence
uint32_t interleaveSequence = (a * 181U) % 196U;
// unshuffle the data
m_rawData[interleaveSequence] = m_deInterData[a];
}
}
/* */
void BPTC19696::encodeExtractBinary(uint8_t* data)
{
// first block
Utils::bitsToByteBE(m_rawData + 0U, data[0U]);
Utils::bitsToByteBE(m_rawData + 8U, data[1U]);
Utils::bitsToByteBE(m_rawData + 16U, data[2U]);
Utils::bitsToByteBE(m_rawData + 24U, data[3U]);
Utils::bitsToByteBE(m_rawData + 32U, data[4U]);
Utils::bitsToByteBE(m_rawData + 40U, data[5U]);
Utils::bitsToByteBE(m_rawData + 48U, data[6U]);
Utils::bitsToByteBE(m_rawData + 56U, data[7U]);
Utils::bitsToByteBE(m_rawData + 64U, data[8U]);
Utils::bitsToByteBE(m_rawData + 72U, data[9U]);
Utils::bitsToByteBE(m_rawData + 80U, data[10U]);
Utils::bitsToByteBE(m_rawData + 88U, data[11U]);
// handle the two bits
uint8_t byte;
Utils::bitsToByteBE(m_rawData + 96U, byte);
data[12U] = (data[12U] & 0x3FU) | ((byte >> 0) & 0xC0U);
data[20U] = (data[20U] & 0xFCU) | ((byte >> 4) & 0x03U);
// second block
Utils::bitsToByteBE(m_rawData + 100U, data[21U]);
Utils::bitsToByteBE(m_rawData + 108U, data[22U]);
Utils::bitsToByteBE(m_rawData + 116U, data[23U]);
Utils::bitsToByteBE(m_rawData + 124U, data[24U]);
Utils::bitsToByteBE(m_rawData + 132U, data[25U]);
Utils::bitsToByteBE(m_rawData + 140U, data[26U]);
Utils::bitsToByteBE(m_rawData + 148U, data[27U]);
Utils::bitsToByteBE(m_rawData + 156U, data[28U]);
Utils::bitsToByteBE(m_rawData + 164U, data[29U]);
Utils::bitsToByteBE(m_rawData + 172U, data[30U]);
Utils::bitsToByteBE(m_rawData + 180U, data[31U]);
Utils::bitsToByteBE(m_rawData + 188U, data[32U]);
}

Powered by TurnKey Linux.