You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dvmhost/p25/DataPacket.cpp

992 lines
39 KiB

/**
* Digital Voice Modem - Host Software
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* @package DVM / Host Software
*
*/
//
// Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost)
// Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0)
//
/*
* Copyright (C) 2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2017-2021 by Bryan Biedenkapp N2PLL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Defines.h"
#include "p25/P25Defines.h"
#include "p25/DataPacket.h"
#include "p25/acl/AccessControl.h"
#include "p25/P25Utils.h"
#include "p25/Sync.h"
#include "edac/CRC.h"
#include "HostMain.h"
#include "Log.h"
#include "Utils.h"
using namespace p25;
using namespace p25::data;
#include <cassert>
#include <cstdio>
#include <cstring>
#include <ctime>
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Resets the data states for the RF interface.
/// </summary>
void DataPacket::resetRF()
{
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_rfDataHeader.reset();
}
/// <summary>
/// Process a data frame from the RF interface.
/// </summary>
/// <param name="data">Buffer containing data frame.</param>
/// <param name="len">Length of data frame.</param>
/// <returns></returns>
bool DataPacket::process(uint8_t* data, uint32_t len)
{
assert(data != NULL);
// decode the NID
bool valid = m_p25->m_nid.decode(data + 2U);
if (m_p25->m_rfState == RS_RF_LISTENING && !valid)
return false;
if (m_prevRfState != RS_RF_DATA) {
m_prevRfState = m_p25->m_rfState;
}
uint8_t duid = m_p25->m_nid.getDUID();
// are we interrupting a running CC?
if (m_p25->m_ccRunning) {
g_interruptP25Control = true;
}
// handle individual DUIDs
if (duid == P25_DUID_PDU) {
if (m_p25->m_rfState != RS_RF_DATA) {
m_rfDataHeader.reset();
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_p25->m_rfState = RS_RF_DATA;
::memset(m_pduUserData, 0x00U, P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U);
}
uint32_t start = m_rfPDUCount * P25_LDU_FRAME_LENGTH_BITS;
uint8_t buffer[P25_MAX_PDU_LENGTH];
::memset(buffer, 0x00U, P25_MAX_PDU_LENGTH);
uint32_t bits = P25Utils::decode(data + 2U, buffer, start, start + P25_LDU_FRAME_LENGTH_BITS);
m_rfPDUBits = Utils::getBits(buffer, m_rfPDU, 0U, bits);
// Utils::dump(2U, "* !!! P25_DUID_PDU - m_rfPDU", m_rfPDU, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
uint32_t offset = P25_PREAMBLE_LENGTH_BITS + P25_PDU_FEC_LENGTH_BITS;
if (m_rfPDUCount == 0U) {
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
Utils::getBitRange(m_rfPDU, buffer, P25_PREAMBLE_LENGTH_BITS, P25_PDU_FEC_LENGTH_BITS);
bool ret = m_rfDataHeader.decode(buffer);
if (!ret) {
LogWarning(LOG_RF, P25_PDU_STR ", unfixable RF 1/2 rate header data");
Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES);
m_rfDataHeader.reset();
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_p25->m_rfState = m_prevRfState;
return false;
}
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", ack = %u, outbound = %u, fmt = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, hdrOffset = %u",
m_rfDataHeader.getAckNeeded(), m_rfDataHeader.getOutbound(), m_rfDataHeader.getFormat(), m_rfDataHeader.getSAP(), m_rfDataHeader.getFullMessage(),
m_rfDataHeader.getBlocksToFollow(), m_rfDataHeader.getPadCount(), m_rfDataHeader.getN(), m_rfDataHeader.getSeqNo(),
m_rfDataHeader.getHeaderOffset());
}
// make sure we don't get a PDU with more blocks then we support
if (m_rfDataHeader.getBlocksToFollow() >= P25_MAX_PDU_COUNT) {
LogError(LOG_RF, P25_PDU_STR ", too many PDU blocks to process, %u > %u", m_rfDataHeader.getBlocksToFollow(), P25_MAX_PDU_COUNT);
m_rfDataHeader.reset();
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_p25->m_rfState = m_prevRfState;
return false;
}
writeNetworkRF(P25_DT_DATA_HEADER, buffer, P25_PDU_FEC_LENGTH_BYTES);
}
if (m_p25->m_rfState == RS_RF_DATA) {
uint32_t blocksToFollow = m_rfDataHeader.getBlocksToFollow();
// process second header if we're using enhanced addressing
if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR &&
m_rfDataHeader.getFormat() == PDU_FMT_UNCONFIRMED) {
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
Utils::getBitRange(m_rfPDU, buffer, offset, P25_PDU_FEC_LENGTH_BITS);
bool ret = m_rfSecondHeader.decode(buffer);
if (!ret) {
LogWarning(LOG_RF, P25_PDU_STR ", unfixable RF 1/2 rate second header data");
Utils::dump(1U, "Unfixable PDU Data", m_rfPDU + offset, P25_PDU_HEADER_LENGTH_BYTES);
m_rfDataHeader.reset();
m_rfSecondHeader.reset();
m_rfUseSecondHeader = false;
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_p25->m_rfState = m_prevRfState;
return false;
}
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", fmt = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, hdrOffset = %u, llId = %u",
m_rfSecondHeader.getFormat(), m_rfSecondHeader.getSAP(), m_rfSecondHeader.getFullMessage(),
m_rfSecondHeader.getBlocksToFollow(), m_rfSecondHeader.getPadCount(), m_rfSecondHeader.getN(), m_rfSecondHeader.getSeqNo(),
m_rfSecondHeader.getHeaderOffset(), m_rfSecondHeader.getLLId());
}
writeNetworkRF(P25_DT_DATA_SEC_HEADER, buffer, P25_PDU_FEC_LENGTH_BYTES);
m_rfUseSecondHeader = true;
offset += P25_PDU_FEC_LENGTH_BITS;
m_rfPDUCount++;
blocksToFollow--;
}
m_rfPDUCount++;
uint32_t bitLength = ((blocksToFollow + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
if (m_rfPDUBits >= bitLength) {
uint32_t dataOffset = 0U;
for (uint32_t i = 0U; i < blocksToFollow; i++) {
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
Utils::getBitRange(m_rfPDU, buffer, offset, P25_PDU_FEC_LENGTH_BITS);
bool ret = m_rfData[i].decode(buffer, (m_rfUseSecondHeader) ? m_rfSecondHeader : m_rfDataHeader);
if (ret) {
if (m_verbose) {
if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR && m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED &&
m_rfData[i].getSerialNo() == 0U) {
LogMessage(LOG_RF, P25_PDU_STR ", block %u, fmt = $%02X, sap = $%02X, llId = %u",
m_rfData[i].getSerialNo(), m_rfData[i].getFormat(), m_rfData[i].getSAP(), m_rfData[i].getLLId());
m_rfSecondHeader.reset();
m_rfSecondHeader.setFormat(m_rfData[i].getFormat());
m_rfSecondHeader.setLLId(m_rfData[i].getLLId());
m_rfSecondHeader.setSAP(m_rfData[i].getSAP());
}
else {
LogMessage(LOG_RF, P25_PDU_STR ", block %u, fmt = $%02X",
(m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? m_rfData[i].getSerialNo() : m_rfDataBlockCnt, m_rfData[i].getFormat());
}
}
m_rfData[i].getData(m_pduUserData + dataOffset);
m_rfDataBlockCnt++;
writeNetworkRF(P25_DT_DATA, buffer, P25_PDU_FEC_LENGTH_BYTES);
}
else {
if (m_rfData[i].getConfirmed())
LogWarning(LOG_RF, P25_PDU_STR ", unfixable PDU data (3/4 rate or CRC)");
else
LogWarning(LOG_RF, P25_PDU_STR ", unfixable PDU data (1/2 rate or CRC)");
if (m_dumpPDUData) {
Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES);
}
}
offset += P25_PDU_FEC_LENGTH_BITS;
dataOffset += (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES;
}
if (m_dumpPDUData) {
Utils::dump(1U, "PDU Packet", m_pduUserData, dataOffset);
}
if (m_rfDataBlockCnt < blocksToFollow) {
LogWarning(LOG_RF, P25_PDU_STR ", incomplete PDU (%d / %d blocks)", m_rfDataBlockCnt, blocksToFollow);
}
switch (m_rfDataHeader.getSAP()) {
case PDU_SAP_REG:
{
uint8_t regType = (m_pduUserData[0] >> 4) & 0x0F;
switch (regType) {
case PDU_REG_TYPE_REQ_CNCT:
{
uint32_t llId = (m_pduUserData[1U] << 16) + (m_pduUserData[2U] << 8) + m_pduUserData[3U];
ulong64_t ipAddr = (m_pduUserData[8U] << 24) + (m_pduUserData[9U] << 16) +
(m_pduUserData[10U] << 8) + m_pduUserData[11U];
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_REQ_CNCT (Registration Request Connect), llId = %u, ipAddr = %u", llId, ipAddr);
}
if (!acl::AccessControl::validateSrcId(llId)) {
LogWarning(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_RSP_DENY (Registration Response Deny), llId = %u, ipAddr = %u", llId, ipAddr);
writeRF_PDU_Reg_Response(PDU_REG_TYPE_RSP_DENY, llId, ipAddr);
}
else {
if (!hasLLIdFNEReg(llId)) {
// update dynamic FNE registration table entry
m_fneRegTable[llId] = ipAddr;
}
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_RSP_ACCPT (Registration Response Accept), llId = %u, ipAddr = %u", llId, ipAddr);
}
writeRF_PDU_Reg_Response(PDU_REG_TYPE_RSP_ACCPT, llId, ipAddr);
}
}
break;
case PDU_REG_TYPE_REQ_DISCNCT:
{
uint32_t llId = (m_pduUserData[1U] << 16) + (m_pduUserData[2U] << 8) + m_pduUserData[3U];
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_REQ_DISCNCT (Registration Request Disconnect), llId = %u", llId);
}
if (hasLLIdFNEReg(llId)) {
// remove dynamic FNE registration table entry
try {
m_fneRegTable.at(llId);
m_fneRegTable.erase(llId);
}
catch (...) {
// stub
}
}
}
break;
default:
LogError(LOG_RF, "P25 unhandled PDU registration type, regType = $%02X", regType);
break;
}
}
break;
case PDU_SAP_TRUNK_CTRL:
{
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", PDU_SAP_TRUNK_CTRL (AMBT Trunking Packet), lco = $%02X, blocksToFollow = %u",
m_rfDataHeader.getAMBTOpcode(), m_rfDataHeader.getBlocksToFollow());
}
for (uint32_t i = 0; i < blocksToFollow; i++) {
uint8_t data[P25_TSBK_FEC_LENGTH_BYTES + 2U];
::memset(data, 0x00U, P25_TSBK_FEC_LENGTH_BYTES + 2U);
uint32_t len = m_rfData[i].getData(data + 2U);
m_p25->m_trunk->process(data, len, true);
}
}
break;
default:
::ActivityLog("P25", true, "RF data transmission from %u to %u, %u blocks", m_rfDataHeader.getLLId(), m_rfDataHeader.getLLId(), m_rfDataHeader.getBlocksToFollow());
if (m_repeatPDU) {
if (m_verbose) {
LogMessage(LOG_RF, P25_PDU_STR ", repeating PDU, llId = %u", (m_rfUseSecondHeader) ? m_rfSecondHeader.getLLId() : m_rfDataHeader.getLLId());
}
writeRF_PDU(); // re-generate PDU and send it on
}
::ActivityLog("P25", true, "end of RF data transmission");
break;
}
m_rfDataHeader.reset();
m_rfSecondHeader.reset();
m_rfUseSecondHeader = false;
m_rfDataBlockCnt = 0U;
m_rfPDUCount = 0U;
m_rfPDUBits = 0U;
m_p25->m_rfState = m_prevRfState;
}
}
return true;
}
else {
LogError(LOG_RF, "P25 unhandled data DUID, duid = $%02X", duid);
}
return false;
}
/// <summary>
/// Process a data frame from the network.
/// </summary>
/// <param name="data">Buffer containing data frame.</param>
/// <param name="len">Length of data frame.</param>
/// <param name="control"></param>
/// <param name="lsd"></param>
/// <param name="duid"></param>
/// <returns></returns>
bool DataPacket::processNetwork(uint8_t* data, uint32_t len, lc::LC& control, data::LowSpeedData& lsd, uint8_t& duid)
{
if (m_p25->m_rfState != RS_RF_LISTENING && m_p25->m_netState == RS_NET_IDLE)
return false;
switch (duid) {
case P25_DUID_PDU:
{
uint32_t pduLen = control.getDstId(); // PDU's use dstId as the PDU len
::memset(m_netPDU, 0x00U, pduLen + 2U);
::memcpy(m_netPDU, data, pduLen);
uint8_t dataType = control.getLCO();
if (dataType == P25_DT_DATA_HEADER) {
writeNet_PDU_Header();
}
else if (dataType == P25_DT_DATA_SEC_HEADER) {
writeNet_PDU_Sec_Header();
}
else if (dataType == P25_DT_DATA) {
writeNet_PDU();
::ActivityLog("P25", false, "network data transmission from %u to %u, %u blocks", m_netDataHeader.getLLId(), m_netDataHeader.getLLId(), m_netDataHeader.getBlocksToFollow());
}
if (m_p25->m_netState == RS_NET_DATA) {
if (m_netDataBlockCnt >= m_netBlocksToFollow) {
if (m_dumpPDUData) {
Utils::dump(1U, "PDU Packet", m_pduUserData, m_netDataOffset);
}
}
// write data to RF interface?
if (m_repeatPDU) {
if (m_netDataBlockCnt >= m_netBlocksToFollow) {
uint32_t bitLength = ((m_netDataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
uint32_t offset = P25_PREAMBLE_LENGTH_BITS;
::memset(m_netPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
uint32_t blocksToFollow = m_netDataHeader.getBlocksToFollow();
// Generate the PDU header and 1/2 rate Trellis
m_netDataHeader.encode(buffer);
Utils::setBitRange(buffer, m_netPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
// Generate the second PDU header
if (m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR) {
m_netSecondHeader.encode(buffer);
Utils::setBitRange(buffer, m_netPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
blocksToFollow--;
}
// Generate the PDU data
uint32_t dataOffset = 0U;
for (uint32_t i = 0U; i < blocksToFollow; i++) {
m_netData[i].setFormat((m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR) ? m_netSecondHeader : m_netDataHeader);
m_netData[i].setSerialNo(i);
m_netData[i].setData(m_pduUserData + dataOffset);
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
m_netData[i].encode(buffer);
Utils::setBitRange(buffer, m_netPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
dataOffset += (m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES;
}
if (m_debug) {
Utils::dump(2U, "!!! *Raw PDU Frame Data - P25_DUID_PDU", m_netPDU, bitLength / 8U);
}
uint8_t pdu[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
// Add the data
uint32_t newBitLength = P25Utils::encode(m_netPDU, pdu + 2U, bitLength);
uint32_t newByteLength = newBitLength / 8U;
if ((newBitLength % 8U) > 0U)
newByteLength++;
// Regenerate Sync
Sync::addP25Sync(pdu + 2U);
// Regenerate NID
m_p25->m_nid.encode(pdu + 2U, P25_DUID_PDU);
// Add busy bits
m_p25->addBusyBits(pdu + 2U, newBitLength, false, true);
::memset(m_netPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
if (m_p25->m_duplex) {
pdu[0U] = TAG_DATA;
pdu[1U] = 0x00U;
m_p25->writeQueueNet(pdu, newByteLength + 2U);
}
// add trailing null pad; only if control data isn't being transmitted
if (!m_p25->m_ccRunning) {
m_p25->writeRF_Nulls();
}
::ActivityLog("P25", true, "end of RF data transmission");
m_netDataHeader.reset();
m_netSecondHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
m_p25->m_netState = RS_NET_IDLE;
}
}
} // if (m_netState == RS_NET_DATA)
}
break;
default:
return false;
}
return true;
}
/// <summary>
/// Helper to check if a logical link ID has registered with data services.
/// </summary>
/// <param name="llId">Logical Link ID.</param>
/// <returns>True, if ID has registered, otherwise false.</returns>
bool DataPacket::hasLLIdFNEReg(uint32_t llId) const
{
// lookup dynamic FNE registration table entry
try {
ulong64_t tblIpAddr = m_fneRegTable.at(llId);
if (tblIpAddr != 0U) {
return true;
}
else {
return false;
}
} catch (...) {
return false;
}
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/// <summary>
/// Initializes a new instance of the DataPacket class.
/// </summary>
/// <param name="p25">Instance of the Control class.</param>
/// <param name="network">Instance of the BaseNetwork class.</param>
/// <param name="dumpPDUData"></param>
/// <param name="repeatPDU"></param>
/// <param name="debug">Flag indicating whether P25 debug is enabled.</param>
/// <param name="verbose">Flag indicating whether P25 verbose logging is enabled.</param>
DataPacket::DataPacket(Control* p25, network::BaseNetwork* network, bool dumpPDUData, bool repeatPDU, bool debug, bool verbose) :
m_p25(p25),
m_network(network),
m_prevRfState(RS_RF_LISTENING),
m_rfData(NULL),
m_rfDataHeader(),
m_rfSecondHeader(),
m_rfUseSecondHeader(false),
m_rfDataBlockCnt(0U),
m_rfPDU(NULL),
m_rfPDUCount(0U),
m_rfPDUBits(0U),
m_netData(NULL),
m_netDataHeader(),
m_netSecondHeader(),
m_netBlocksToFollow(0U),
m_netDataBlockCnt(0U),
m_netBitOffset(0U),
m_netDataOffset(0U),
m_netPDU(NULL),
m_pduUserData(NULL),
m_fneRegTable(),
m_dumpPDUData(dumpPDUData),
m_repeatPDU(repeatPDU),
m_verbose(verbose),
m_debug(debug)
{
m_rfData = new data::DataBlock[P25_MAX_PDU_COUNT];
m_rfPDU = new uint8_t[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
m_netData = new data::DataBlock[P25_MAX_PDU_COUNT];
m_netPDU = new uint8_t[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
::memset(m_netPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
m_pduUserData = new uint8_t[P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U];
::memset(m_pduUserData, 0x00U, P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U);
m_fneRegTable.clear();
}
/// <summary>
/// Finalizes a instance of the DataPacket class.
/// </summary>
DataPacket::~DataPacket()
{
delete[] m_rfPDU;
delete[] m_netPDU;
delete[] m_pduUserData;
}
/// <summary>
/// Write data processed from RF to the network.
/// </summary>
/// <param name="dataType"></param>
/// <param name="data"></param>
/// <param name="len"></param>
void DataPacket::writeNetworkRF(const uint8_t dataType, const uint8_t *data, uint32_t len)
{
assert(data != NULL);
if (m_network == NULL)
return;
if (m_p25->m_rfTimeout.isRunning() && m_p25->m_rfTimeout.hasExpired())
return;
m_network->writeP25PDU((m_rfUseSecondHeader) ? m_rfSecondHeader.getLLId() : m_rfDataHeader.getLLId(), dataType, data, len);
}
/// <summary>
/// Helper to write a P25 PDU packet.
/// </summary>
void DataPacket::writeRF_PDU()
{
uint32_t bitLength = ((m_rfDataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
uint32_t offset = P25_PREAMBLE_LENGTH_BITS;
::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
uint32_t blocksToFollow = m_rfDataHeader.getBlocksToFollow();
// Generate the PDU header and 1/2 rate Trellis
m_rfDataHeader.encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
// Generate the second PDU header
if (m_rfUseSecondHeader) {
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
m_rfSecondHeader.encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
blocksToFollow--;
}
// Generate the PDU data
uint32_t dataOffset = 0U;
for (uint32_t i = 0U; i < blocksToFollow; i++) {
m_rfData[i].setFormat((m_rfUseSecondHeader) ? m_rfSecondHeader : m_rfDataHeader);
m_rfData[i].setSerialNo(i);
m_rfData[i].setData(m_pduUserData + dataOffset);
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
m_rfData[i].encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
dataOffset += (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES;
}
if (m_debug) {
Utils::dump(2U, "!!! *Raw PDU Frame Data - P25_DUID_PDU", m_rfPDU, bitLength / 8U);
}
uint8_t pdu[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
// Add the data
uint32_t newBitLength = P25Utils::encode(m_rfPDU, pdu + 2U, bitLength);
uint32_t newByteLength = newBitLength / 8U;
if ((newBitLength % 8U) > 0U)
newByteLength++;
// Regenerate Sync
Sync::addP25Sync(pdu + 2U);
// Regenerate NID
m_p25->m_nid.encode(pdu + 2U, P25_DUID_PDU);
// Add busy bits
m_p25->addBusyBits(pdu + 2U, newBitLength, false, true);
::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
if (m_p25->m_duplex) {
pdu[0U] = TAG_DATA;
pdu[1U] = 0x00U;
m_p25->writeQueueRF(pdu, newByteLength + 2U);
}
// add trailing null pad; only if control data isn't being transmitted
if (!m_p25->m_ccRunning) {
m_p25->writeRF_Nulls();
}
}
/// <summary>
/// Helper to write a PDU registration response.
/// </summary>
/// <param name="regType"></param>
/// <param name="llId"></param>
/// <param name="ipAddr"></param>
void DataPacket::writeRF_PDU_Reg_Response(uint8_t regType, uint32_t llId, ulong64_t ipAddr)
{
if ((regType != PDU_REG_TYPE_RSP_ACCPT) && (regType != PDU_REG_TYPE_RSP_DENY))
return;
uint32_t bitLength = (2U * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
uint32_t offset = P25_PREAMBLE_LENGTH_BITS;
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
DataRspHeader rspHeader = DataRspHeader();
rspHeader.setOutbound(true);
rspHeader.setClass(PDU_ACK_CLASS_ACK);
rspHeader.setType(PDU_ACK_TYPE_ACK);
rspHeader.setLLId(llId);
if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR) {
rspHeader.setSrcLLId(P25_WUID_FNE);
rspHeader.setExtended(true);
}
else {
rspHeader.setExtended(false);
}
rspHeader.setBlocksToFollow(1U);
// Generate the PDU header and 1/2 rate Trellis
rspHeader.encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
offset += P25_PDU_FEC_LENGTH_BITS;
// build registration response data
::memset(buffer, 0x00U, P25_PDU_CONFIRMED_DATA_LENGTH_BYTES);
buffer[0U] = (regType << 4); // Registration Type & Options
buffer[1U] = (llId >> 16) & 0xFFU; // Logical Link ID
buffer[2U] = (llId >> 8) & 0xFFU;
buffer[3U] = (llId >> 0) & 0xFFU;
if (regType == PDU_REG_TYPE_RSP_ACCPT) {
buffer[8U] = (ipAddr >> 24) & 0xFFU; // IP Address
buffer[9U] = (ipAddr >> 16) & 0xFFU;
buffer[10U] = (ipAddr >> 8) & 0xFFU;
buffer[11U] = (ipAddr >> 0) & 0xFFU;
}
edac::CRC::addCRC32(buffer, P25_PDU_CONFIRMED_DATA_LENGTH_BYTES);
// Generate the PDU data
m_rfData[0].setFormat(PDU_FMT_RSP);
m_rfData[0].setConfirmed(true);
m_rfData[0].setSerialNo(0U);
m_rfData[0].setData(buffer);
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
m_rfData[0].encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
if (m_debug) {
Utils::dump(2U, "!!! *Raw PDU Frame Data - P25_DUID_PDU", m_rfPDU, bitLength / 8U);
}
uint8_t pdu[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
// Add the data
uint32_t newBitLength = P25Utils::encode(m_rfPDU, pdu + 2U, bitLength);
uint32_t newByteLength = newBitLength / 8U;
if ((newBitLength % 8U) > 0U)
newByteLength++;
// Regenerate Sync
Sync::addP25Sync(pdu + 2U);
// Regenerate NID
m_p25->m_nid.encode(pdu + 2U, P25_DUID_PDU);
// Add busy bits
m_p25->addBusyBits(pdu + 2U, newBitLength, false, true);
::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
if (m_p25->m_duplex) {
pdu[0U] = TAG_DATA;
pdu[1U] = 0x00U;
m_p25->writeQueueRF(pdu, newByteLength + 2U);
}
}
/// <summary>
/// Helper to write a PDU acknowledge response.
/// </summary>
/// <param name="ackClass"></param>
/// <param name="ackType"></param>
/// <param name="llId"></param>
void DataPacket::writeRF_PDU_Ack_Response(uint8_t ackClass, uint8_t ackType, uint32_t llId)
{
if (ackClass == PDU_ACK_CLASS_ACK && ackType != PDU_ACK_TYPE_ACK)
return;
uint32_t bitLength = (2U * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
uint32_t offset = P25_PREAMBLE_LENGTH_BITS;
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
DataRspHeader rspHeader = DataRspHeader();
rspHeader.setOutbound(true);
rspHeader.setClass(ackClass);
rspHeader.setType(ackType);
rspHeader.setLLId(llId);
rspHeader.setSrcLLId(P25_WUID_FNE);
rspHeader.setBlocksToFollow(0U);
// Generate the PDU header and 1/2 rate Trellis
rspHeader.encode(buffer);
Utils::setBitRange(buffer, m_rfPDU, offset, P25_PDU_FEC_LENGTH_BITS);
if (m_debug) {
Utils::dump(2U, "!!! *Raw PDU Frame Data - P25_DUID_PDU", m_rfPDU, bitLength / 8U);
}
uint8_t pdu[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U];
// Add the data
uint32_t newBitLength = P25Utils::encode(m_rfPDU, pdu + 2U, bitLength);
uint32_t newByteLength = newBitLength / 8U;
if ((newBitLength % 8U) > 0U)
newByteLength++;
// Regenerate Sync
Sync::addP25Sync(pdu + 2U);
// Regenerate NID
m_p25->m_nid.encode(pdu + 2U, P25_DUID_PDU);
// Add busy bits
m_p25->addBusyBits(pdu + 2U, newBitLength, false, true);
::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U);
if (m_p25->m_duplex) {
pdu[0U] = TAG_DATA;
pdu[1U] = 0x00U;
m_p25->writeQueueRF(pdu, newByteLength + 2U);
}
}
/// <summary>
/// Helper to write a network P25 PDU header packet.
/// </summary>
void DataPacket::writeNet_PDU_Header()
{
if (m_p25->m_netState != RS_NET_DATA) {
m_netDataHeader.reset();
m_netSecondHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
m_p25->m_netState = RS_NET_DATA;
::memset(m_pduUserData, 0x00U, P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U);
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
::memcpy(buffer, m_netPDU, P25_PDU_FEC_LENGTH_BYTES);
bool ret = m_netDataHeader.decode(buffer);
if (!ret) {
LogWarning(LOG_NET, P25_PDU_STR ", unfixable RF 1/2 rate header data");
Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES);
m_netDataHeader.reset();
m_netSecondHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
m_p25->m_netState = RS_NET_IDLE;
return;
}
if (m_verbose) {
LogMessage(LOG_NET, P25_PDU_STR ", ack = %u, outbound = %u, fmt = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, hdrOffset = %u",
m_netDataHeader.getAckNeeded(), m_netDataHeader.getOutbound(), m_netDataHeader.getFormat(), m_netDataHeader.getSAP(), m_netDataHeader.getFullMessage(),
m_netDataHeader.getBlocksToFollow(), m_netDataHeader.getPadCount(), m_netDataHeader.getN(), m_netDataHeader.getSeqNo(),
m_netDataHeader.getHeaderOffset());
}
// make sure we don't get a PDU with more blocks then we support
if (m_netDataHeader.getBlocksToFollow() >= P25_MAX_PDU_COUNT) {
LogError(LOG_NET, P25_PDU_STR ", too many PDU blocks to process, %u > %u", m_netDataHeader.getBlocksToFollow(), P25_MAX_PDU_COUNT);
m_netDataHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
return;
}
if (m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR &&
m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) {
LogWarning(LOG_NET, P25_PDU_STR ", unsupported confirmed enhanced addressing");
m_netDataHeader.reset();
m_netSecondHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
m_p25->m_netState = RS_NET_IDLE;
return;
}
m_netBlocksToFollow = m_netDataHeader.getBlocksToFollow();
//uint32_t bitLength = ((m_netDataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS;
m_netBitOffset = P25_PREAMBLE_LENGTH_BITS;
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
// Generate the PDU header and 1/2 rate Trellis
m_netDataHeader.encode(buffer);
Utils::setBitRange(buffer, m_netPDU, m_netBitOffset, P25_PDU_FEC_LENGTH_BITS);
m_netBitOffset += P25_PDU_FEC_LENGTH_BITS;
}
}
/// <summary>
/// Helper to write a network P25 PDU secondary header packet.
/// </summary>
void DataPacket::writeNet_PDU_Sec_Header()
{
if (m_p25->m_netState == RS_NET_DATA) {
// process second header if we're using enhanced addressing
if (m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR) {
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
::memcpy(buffer, m_netPDU, P25_PDU_FEC_LENGTH_BYTES);
bool ret = m_netSecondHeader.decode(buffer);
if (!ret) {
LogWarning(LOG_NET, P25_PDU_STR ", unfixable RF 1/2 rate second header data");
Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_HEADER_LENGTH_BYTES);
m_netDataHeader.reset();
m_netSecondHeader.reset();
m_netBlocksToFollow = 0U;
m_netDataBlockCnt = 0U;
m_netBitOffset = 0U;
m_netDataOffset = 0U;
m_p25->m_netState = RS_NET_IDLE;
return;
}
if (m_verbose) {
LogMessage(LOG_NET, P25_PDU_STR ", fmt = $%02X, sap = $%02X, llId = %u",
m_netSecondHeader.getFormat(), m_netSecondHeader.getSAP(), m_netSecondHeader.getLLId());
}
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
// Generate the PDU header and 1/2 rate Trellis
m_netDataHeader.encode(buffer);
Utils::setBitRange(buffer, m_netPDU, m_netBitOffset, P25_PDU_FEC_LENGTH_BITS);
m_netBitOffset += P25_PDU_FEC_LENGTH_BITS;
m_netBlocksToFollow--;
}
}
}
/// <summary>
/// Helper to write a network P25 PDU data packet.
/// </summary>
void DataPacket::writeNet_PDU()
{
if (m_p25->m_netState == RS_NET_DATA) {
uint8_t buffer[P25_PDU_FEC_LENGTH_BYTES];
::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES);
::memcpy(buffer, m_netPDU, P25_PDU_FEC_LENGTH_BYTES);
bool ret = m_netData[m_netDataBlockCnt].decode(buffer, (m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR) ? m_netSecondHeader : m_netDataHeader);
if (ret) {
if (m_verbose) {
LogMessage(LOG_NET, P25_PDU_STR ", block %u, fmt = $%02X",
(m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? m_netData[m_netDataBlockCnt].getSerialNo() : m_netDataBlockCnt, m_netData[m_netDataBlockCnt].getFormat());
}
m_netData[m_netDataBlockCnt].getData(m_pduUserData + m_netDataOffset);
m_netDataBlockCnt++;
}
else {
if (m_netData[m_netDataBlockCnt].getConfirmed())
LogWarning(LOG_NET, P25_PDU_STR ", unfixable PDU data (3/4 rate or CRC)");
else
LogWarning(LOG_NET, P25_PDU_STR ", unfixable PDU data (1/2 rate or CRC)");
if (m_dumpPDUData) {
Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES);
}
}
m_netBitOffset += P25_PDU_FEC_LENGTH_BITS;
m_netDataOffset += (m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES;
}
}

Powered by TurnKey Linux.