/** * Digital Voice Modem - Host Software * GPLv2 Open Source. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * @package DVM / Host Software * */ // // Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost) // Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0) // /* * Copyright (C) 2012 by Ian Wraith * Copyright (C) 2015 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Defines.h" #include "edac/BPTC19696.h" #include "edac/Hamming.h" #include "Utils.h" using namespace edac; #include #include #include // --------------------------------------------------------------------------- // Public Class Members // --------------------------------------------------------------------------- /// /// Initializes a new instance of the BPTC19696 class. /// BPTC19696::BPTC19696() : m_rawData(NULL), m_deInterData(NULL) { m_rawData = new bool[196]; m_deInterData = new bool[196]; } /// /// Finalizes a instance of the BPTC19696 class. /// BPTC19696::~BPTC19696() { delete[] m_rawData; delete[] m_deInterData; } /// /// Decode BPTC (196,96) FEC. /// /// Input data to decode. /// Decoded data. void BPTC19696::decode(const uint8_t* in, uint8_t* out) { assert(in != NULL); assert(out != NULL); // Get the raw binary decodeExtractBinary(in); // Deinterleave decodeDeInterleave(); // Error check decodeErrorCheck(); // Extract Data decodeExtractData(out); } /// /// Encode BPTC (196,96) FEC. /// /// Input data to encode. /// Encoded data. void BPTC19696::encode(const uint8_t* in, uint8_t* out) { assert(in != NULL); assert(out != NULL); // Extract Data encodeExtractData(in); // Error check encodeErrorCheck(); // Deinterleave encodeInterleave(); // Get the raw binary encodeExtractBinary(out); } // --------------------------------------------------------------------------- // Private Class Members // --------------------------------------------------------------------------- /// /// /// /// void BPTC19696::decodeExtractBinary(const uint8_t* in) { // First block Utils::byteToBitsBE(in[0U], m_rawData + 0U); Utils::byteToBitsBE(in[1U], m_rawData + 8U); Utils::byteToBitsBE(in[2U], m_rawData + 16U); Utils::byteToBitsBE(in[3U], m_rawData + 24U); Utils::byteToBitsBE(in[4U], m_rawData + 32U); Utils::byteToBitsBE(in[5U], m_rawData + 40U); Utils::byteToBitsBE(in[6U], m_rawData + 48U); Utils::byteToBitsBE(in[7U], m_rawData + 56U); Utils::byteToBitsBE(in[8U], m_rawData + 64U); Utils::byteToBitsBE(in[9U], m_rawData + 72U); Utils::byteToBitsBE(in[10U], m_rawData + 80U); Utils::byteToBitsBE(in[11U], m_rawData + 88U); Utils::byteToBitsBE(in[12U], m_rawData + 96U); // Handle the two bits bool bits[8U]; Utils::byteToBitsBE(in[20U], bits); m_rawData[98U] = bits[6U]; m_rawData[99U] = bits[7U]; // Second block Utils::byteToBitsBE(in[21U], m_rawData + 100U); Utils::byteToBitsBE(in[22U], m_rawData + 108U); Utils::byteToBitsBE(in[23U], m_rawData + 116U); Utils::byteToBitsBE(in[24U], m_rawData + 124U); Utils::byteToBitsBE(in[25U], m_rawData + 132U); Utils::byteToBitsBE(in[26U], m_rawData + 140U); Utils::byteToBitsBE(in[27U], m_rawData + 148U); Utils::byteToBitsBE(in[28U], m_rawData + 156U); Utils::byteToBitsBE(in[29U], m_rawData + 164U); Utils::byteToBitsBE(in[30U], m_rawData + 172U); Utils::byteToBitsBE(in[31U], m_rawData + 180U); Utils::byteToBitsBE(in[32U], m_rawData + 188U); } /// /// /// void BPTC19696::decodeDeInterleave() { for (uint32_t i = 0U; i < 196U; i++) m_deInterData[i] = false; // The first bit is R(3) which is not used so can be ignored for (uint32_t a = 0U; a < 196U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 181U) % 196U; // Shuffle the data m_deInterData[a] = m_rawData[interleaveSequence]; } } /// /// /// void BPTC19696::decodeErrorCheck() { bool fixing; uint32_t count = 0U; do { fixing = false; // Run through each of the 15 columns bool col[13U]; for (uint32_t c = 0U; c < 15U; c++) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { col[a] = m_deInterData[pos]; pos = pos + 15U; } if (Hamming::decode1393(col)) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { m_deInterData[pos] = col[a]; pos = pos + 15U; } fixing = true; } } // Run through each of the 9 rows containing data for (uint32_t r = 0U; r < 9U; r++) { uint32_t pos = (r * 15U) + 1U; if (Hamming::decode15113_2(m_deInterData + pos)) fixing = true; } count++; } while (fixing && count < 5U); } /// /// /// /// void BPTC19696::decodeExtractData(uint8_t* data) const { bool bData[96U]; uint32_t pos = 0U; for (uint32_t a = 4U; a <= 11U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 16U; a <= 26U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 31U; a <= 41U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 46U; a <= 56U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 61U; a <= 71U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 76U; a <= 86U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 91U; a <= 101U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 106U; a <= 116U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 121U; a <= 131U; a++, pos++) bData[pos] = m_deInterData[a]; Utils::bitsToByteBE(bData + 0U, data[0U]); Utils::bitsToByteBE(bData + 8U, data[1U]); Utils::bitsToByteBE(bData + 16U, data[2U]); Utils::bitsToByteBE(bData + 24U, data[3U]); Utils::bitsToByteBE(bData + 32U, data[4U]); Utils::bitsToByteBE(bData + 40U, data[5U]); Utils::bitsToByteBE(bData + 48U, data[6U]); Utils::bitsToByteBE(bData + 56U, data[7U]); Utils::bitsToByteBE(bData + 64U, data[8U]); Utils::bitsToByteBE(bData + 72U, data[9U]); Utils::bitsToByteBE(bData + 80U, data[10U]); Utils::bitsToByteBE(bData + 88U, data[11U]); } /// /// /// /// void BPTC19696::encodeExtractData(const uint8_t* in) const { bool bData[96U]; Utils::byteToBitsBE(in[0U], bData + 0U); Utils::byteToBitsBE(in[1U], bData + 8U); Utils::byteToBitsBE(in[2U], bData + 16U); Utils::byteToBitsBE(in[3U], bData + 24U); Utils::byteToBitsBE(in[4U], bData + 32U); Utils::byteToBitsBE(in[5U], bData + 40U); Utils::byteToBitsBE(in[6U], bData + 48U); Utils::byteToBitsBE(in[7U], bData + 56U); Utils::byteToBitsBE(in[8U], bData + 64U); Utils::byteToBitsBE(in[9U], bData + 72U); Utils::byteToBitsBE(in[10U], bData + 80U); Utils::byteToBitsBE(in[11U], bData + 88U); for (uint32_t i = 0U; i < 196U; i++) m_deInterData[i] = false; uint32_t pos = 0U; for (uint32_t a = 4U; a <= 11U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 16U; a <= 26U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 31U; a <= 41U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 46U; a <= 56U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 61U; a <= 71U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 76U; a <= 86U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 91U; a <= 101U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 106U; a <= 116U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 121U; a <= 131U; a++, pos++) m_deInterData[a] = bData[pos]; } /// /// /// void BPTC19696::encodeErrorCheck() { // Run through each of the 9 rows containing data for (uint32_t r = 0U; r < 9U; r++) { uint32_t pos = (r * 15U) + 1U; Hamming::encode15113_2(m_deInterData + pos); } // Run through each of the 15 columns bool col[13U]; for (uint32_t c = 0U; c < 15U; c++) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { col[a] = m_deInterData[pos]; pos = pos + 15U; } Hamming::encode1393(col); pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { m_deInterData[pos] = col[a]; pos = pos + 15U; } } } /// /// /// void BPTC19696::encodeInterleave() { for (uint32_t i = 0U; i < 196U; i++) m_rawData[i] = false; // The first bit is R(3) which is not used so can be ignored for (uint32_t a = 0U; a < 196U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 181U) % 196U; // Unshuffle the data m_rawData[interleaveSequence] = m_deInterData[a]; } } /// /// /// /// void BPTC19696::encodeExtractBinary(uint8_t* data) { // First block Utils::bitsToByteBE(m_rawData + 0U, data[0U]); Utils::bitsToByteBE(m_rawData + 8U, data[1U]); Utils::bitsToByteBE(m_rawData + 16U, data[2U]); Utils::bitsToByteBE(m_rawData + 24U, data[3U]); Utils::bitsToByteBE(m_rawData + 32U, data[4U]); Utils::bitsToByteBE(m_rawData + 40U, data[5U]); Utils::bitsToByteBE(m_rawData + 48U, data[6U]); Utils::bitsToByteBE(m_rawData + 56U, data[7U]); Utils::bitsToByteBE(m_rawData + 64U, data[8U]); Utils::bitsToByteBE(m_rawData + 72U, data[9U]); Utils::bitsToByteBE(m_rawData + 80U, data[10U]); Utils::bitsToByteBE(m_rawData + 88U, data[11U]); // Handle the two bits uint8_t byte; Utils::bitsToByteBE(m_rawData + 96U, byte); data[12U] = (data[12U] & 0x3FU) | ((byte >> 0) & 0xC0U); data[20U] = (data[20U] & 0xFCU) | ((byte >> 4) & 0x03U); // Second block Utils::bitsToByteBE(m_rawData + 100U, data[21U]); Utils::bitsToByteBE(m_rawData + 108U, data[22U]); Utils::bitsToByteBE(m_rawData + 116U, data[23U]); Utils::bitsToByteBE(m_rawData + 124U, data[24U]); Utils::bitsToByteBE(m_rawData + 132U, data[25U]); Utils::bitsToByteBE(m_rawData + 140U, data[26U]); Utils::bitsToByteBE(m_rawData + 148U, data[27U]); Utils::bitsToByteBE(m_rawData + 156U, data[28U]); Utils::bitsToByteBE(m_rawData + 164U, data[29U]); Utils::bitsToByteBE(m_rawData + 172U, data[30U]); Utils::bitsToByteBE(m_rawData + 180U, data[31U]); Utils::bitsToByteBE(m_rawData + 188U, data[32U]); }