/** * Digital Voice Modem - Host Software * GPLv2 Open Source. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * @package DVM / Host Software * */ // // Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost) // Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0) // /* * Copyright (C) 2015,2016 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Defines.h" #include "dmr/lc/ShortLC.h" #include "edac/Hamming.h" #include "Utils.h" using namespace dmr::lc; using namespace dmr; #include #include #include // --------------------------------------------------------------------------- // Public Class Members // --------------------------------------------------------------------------- /// /// Initializes a new instance of the ShortLC class. /// ShortLC::ShortLC() : m_rawData(nullptr), m_deInterData(nullptr) { m_rawData = new bool[72U]; m_deInterData = new bool[68U]; } /// /// Finalizes a instance of the ShortLC class. /// ShortLC::~ShortLC() { delete[] m_rawData; delete[] m_deInterData; } /// /// Decode DMR short-link control data. /// /// /// /// bool ShortLC::decode(const uint8_t* in, uint8_t* out) { assert(in != nullptr); assert(out != nullptr); // Get the raw binary decodeExtractBinary(in); // Deinterleave decodeDeInterleave(); // Error check bool ret = decodeErrorCheck(); if (!ret) return false; // Extract Data decodeExtractData(out); return true; } /// /// Encode DMR short-link control data. /// /// /// void ShortLC::encode(const uint8_t* in, uint8_t* out) { assert(in != nullptr); assert(out != nullptr); // Extract Data encodeExtractData(in); // Error check encodeErrorCheck(); // Deinterleave encodeInterleave(); // Get the raw binary encodeExtractBinary(out); } // --------------------------------------------------------------------------- // Private Class Members // --------------------------------------------------------------------------- /// /// /// /// void ShortLC::decodeExtractBinary(const uint8_t* in) { assert(in != nullptr); Utils::byteToBitsBE(in[0U], m_rawData + 0U); Utils::byteToBitsBE(in[1U], m_rawData + 8U); Utils::byteToBitsBE(in[2U], m_rawData + 16U); Utils::byteToBitsBE(in[3U], m_rawData + 24U); Utils::byteToBitsBE(in[4U], m_rawData + 32U); Utils::byteToBitsBE(in[5U], m_rawData + 40U); Utils::byteToBitsBE(in[6U], m_rawData + 48U); Utils::byteToBitsBE(in[7U], m_rawData + 56U); Utils::byteToBitsBE(in[8U], m_rawData + 64U); } /// /// /// void ShortLC::decodeDeInterleave() { for (uint32_t i = 0U; i < 68U; i++) m_deInterData[i] = false; for (uint32_t a = 0U; a < 67U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 4U) % 67U; // Shuffle the data m_deInterData[a] = m_rawData[interleaveSequence]; } m_deInterData[67U] = m_rawData[67U]; } /// /// /// /// bool ShortLC::decodeErrorCheck() { // Run through each of the 3 rows containing data edac::Hamming::decode17123(m_deInterData + 0U); edac::Hamming::decode17123(m_deInterData + 17U); edac::Hamming::decode17123(m_deInterData + 34U); // Run through each of the 17 columns for (uint32_t c = 0U; c < 17U; c++) { bool bit = m_deInterData[c + 0U] ^ m_deInterData[c + 17U] ^ m_deInterData[c + 34U]; if (bit != m_deInterData[c + 51U]) return false; } return true; } /// /// /// /// void ShortLC::decodeExtractData(uint8_t* data) const { assert(data != nullptr); bool bData[40U]; for (uint32_t i = 0U; i < 40U; i++) bData[i] = false; uint32_t pos = 4U; for (uint32_t a = 0U; a < 12U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 17U; a < 29U; a++, pos++) bData[pos] = m_deInterData[a]; for (uint32_t a = 34U; a < 46U; a++, pos++) bData[pos] = m_deInterData[a]; Utils::bitsToByteBE(bData + 0U, data[0U]); Utils::bitsToByteBE(bData + 8U, data[1U]); Utils::bitsToByteBE(bData + 16U, data[2U]); Utils::bitsToByteBE(bData + 24U, data[3U]); Utils::bitsToByteBE(bData + 32U, data[4U]); } /// /// /// /// void ShortLC::encodeExtractData(const uint8_t* in) const { assert(in != nullptr); bool bData[40U]; Utils::byteToBitsBE(in[0U], bData + 0U); Utils::byteToBitsBE(in[1U], bData + 8U); Utils::byteToBitsBE(in[2U], bData + 16U); Utils::byteToBitsBE(in[3U], bData + 24U); Utils::byteToBitsBE(in[4U], bData + 32U); for (uint32_t i = 0U; i < 68U; i++) m_deInterData[i] = false; uint32_t pos = 4U; for (uint32_t a = 0U; a < 12U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 17U; a < 29U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 34U; a < 46U; a++, pos++) m_deInterData[a] = bData[pos]; } /// /// /// void ShortLC::encodeErrorCheck() { // Run through each of the 3 rows containing data edac::Hamming::encode17123(m_deInterData + 0U); edac::Hamming::encode17123(m_deInterData + 17U); edac::Hamming::encode17123(m_deInterData + 34U); // Run through each of the 17 columns for (uint32_t c = 0U; c < 17U; c++) m_deInterData[c + 51U] = m_deInterData[c + 0U] ^ m_deInterData[c + 17U] ^ m_deInterData[c + 34U]; } /// /// /// void ShortLC::encodeInterleave() { for (uint32_t i = 0U; i < 72U; i++) m_rawData[i] = false; for (uint32_t a = 0U; a < 67U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 4U) % 67U; // Unshuffle the data m_rawData[interleaveSequence] = m_deInterData[a]; } m_rawData[67U] = m_deInterData[67U]; } /// /// /// /// void ShortLC::encodeExtractBinary(uint8_t* data) { assert(data != nullptr); Utils::bitsToByteBE(m_rawData + 0U, data[0U]); Utils::bitsToByteBE(m_rawData + 8U, data[1U]); Utils::bitsToByteBE(m_rawData + 16U, data[2U]); Utils::bitsToByteBE(m_rawData + 24U, data[3U]); Utils::bitsToByteBE(m_rawData + 32U, data[4U]); Utils::bitsToByteBE(m_rawData + 40U, data[5U]); Utils::bitsToByteBE(m_rawData + 48U, data[6U]); Utils::bitsToByteBE(m_rawData + 56U, data[7U]); Utils::bitsToByteBE(m_rawData + 64U, data[8U]); }