/** * Digital Voice Modem - Host Software * GPLv2 Open Source. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * @package DVM / Host Software * */ // // Based on code from the MMDVMHost project. (https://github.com/g4klx/MMDVMHost) // Licensed under the GPLv2 License (https://opensource.org/licenses/GPL-2.0) // /* * Copyright (C) 2016,2017,2018 by Jonathan Naylor G4KLX * Copyright (C) 2017-2022 by Bryan Biedenkapp N2PLL * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Defines.h" #include "p25/P25Defines.h" #include "p25/packet/Data.h" #include "p25/packet/Trunk.h" #include "p25/acl/AccessControl.h" #include "p25/P25Utils.h" #include "p25/Sync.h" #include "edac/CRC.h" #include "HostMain.h" #include "Log.h" #include "Utils.h" using namespace p25; using namespace p25::data; using namespace p25::packet; #include #include #include #include // --------------------------------------------------------------------------- // Constants // --------------------------------------------------------------------------- const uint32_t CONN_WAIT_TIMEOUT = 1U; // --------------------------------------------------------------------------- // Public Class Members // --------------------------------------------------------------------------- /// /// Resets the data states for the RF interface. /// void Data::resetRF() { m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_rfDataHeader.reset(); } /// /// Process a data frame from the RF interface. /// /// Buffer containing data frame. /// Length of data frame. /// bool Data::process(uint8_t* data, uint32_t len) { assert(data != nullptr); // decode the NID bool valid = m_p25->m_nid.decode(data + 2U); if (m_p25->m_rfState == RS_RF_LISTENING && !valid) return false; if (m_prevRfState != RS_RF_DATA) { m_prevRfState = m_p25->m_rfState; } uint8_t duid = m_p25->m_nid.getDUID(); // are we interrupting a running CC? if (m_p25->m_ccRunning) { m_p25->m_ccHalted = true; } // handle individual DUIDs if (duid == P25_DUID_PDU) { if (m_p25->m_rfState != RS_RF_DATA) { m_rfDataHeader.reset(); m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; ::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U); m_p25->m_rfState = RS_RF_DATA; ::memset(m_pduUserData, 0x00U, P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U); m_pduUserDataLength = 0U; } uint32_t start = m_rfPDUCount * P25_LDU_FRAME_LENGTH_BITS; uint8_t buffer[P25_MAX_PDU_LENGTH]; ::memset(buffer, 0x00U, P25_MAX_PDU_LENGTH); uint32_t bits = P25Utils::decode(data + 2U, buffer, start, start + P25_LDU_FRAME_LENGTH_BITS); m_rfPDUBits = Utils::getBits(buffer, m_rfPDU, 0U, bits); // Utils::dump(2U, "* !!! P25_DUID_PDU - m_rfPDU", m_rfPDU, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U); uint32_t offset = P25_PREAMBLE_LENGTH_BITS + P25_PDU_FEC_LENGTH_BITS; if (m_rfPDUCount == 0U) { ::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES); Utils::getBitRange(m_rfPDU, buffer, P25_PREAMBLE_LENGTH_BITS, P25_PDU_FEC_LENGTH_BITS); bool ret = m_rfDataHeader.decode(buffer); if (!ret) { LogWarning(LOG_RF, P25_PDU_STR ", unfixable RF 1/2 rate header data"); Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES); m_rfDataHeader.reset(); m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_p25->m_rfState = m_prevRfState; return false; } if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", ack = %u, outbound = %u, fmt = $%02X, mfId = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, lastFragment = %u, hdrOffset = %u", m_rfDataHeader.getAckNeeded(), m_rfDataHeader.getOutbound(), m_rfDataHeader.getFormat(), m_rfDataHeader.getMFId(), m_rfDataHeader.getSAP(), m_rfDataHeader.getFullMessage(), m_rfDataHeader.getBlocksToFollow(), m_rfDataHeader.getPadCount(), m_rfDataHeader.getNs(), m_rfDataHeader.getFSN(), m_rfDataHeader.getLastFragment(), m_rfDataHeader.getHeaderOffset()); } // make sure we don't get a PDU with more blocks then we support if (m_rfDataHeader.getBlocksToFollow() >= P25_MAX_PDU_COUNT) { LogError(LOG_RF, P25_PDU_STR ", too many PDU blocks to process, %u > %u", m_rfDataHeader.getBlocksToFollow(), P25_MAX_PDU_COUNT); m_rfDataHeader.reset(); m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_p25->m_rfState = m_prevRfState; return false; } } if (m_p25->m_rfState == RS_RF_DATA) { uint32_t blocksToFollow = m_rfDataHeader.getBlocksToFollow(); // process second header if we're using enhanced addressing if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR && m_rfDataHeader.getFormat() == PDU_FMT_UNCONFIRMED) { ::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES); Utils::getBitRange(m_rfPDU, buffer, offset, P25_PDU_FEC_LENGTH_BITS); bool ret = m_rfSecondHeader.decode(buffer); if (!ret) { LogWarning(LOG_RF, P25_PDU_STR ", unfixable RF 1/2 rate second header data"); Utils::dump(1U, "Unfixable PDU Data", m_rfPDU + offset, P25_PDU_HEADER_LENGTH_BYTES); m_rfDataHeader.reset(); m_rfSecondHeader.reset(); m_rfUseSecondHeader = false; m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_p25->m_rfState = m_prevRfState; return false; } if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", fmt = $%02X, mfId = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, lastFragment = %u, hdrOffset = %u, llId = %u", m_rfSecondHeader.getFormat(), m_rfSecondHeader.getMFId(), m_rfSecondHeader.getSAP(), m_rfSecondHeader.getFullMessage(), m_rfSecondHeader.getBlocksToFollow(), m_rfSecondHeader.getPadCount(), m_rfSecondHeader.getNs(), m_rfSecondHeader.getFSN(), m_rfSecondHeader.getLastFragment(), m_rfSecondHeader.getHeaderOffset(), m_rfSecondHeader.getLLId()); } m_rfUseSecondHeader = true; offset += P25_PDU_FEC_LENGTH_BITS; m_rfPDUCount++; blocksToFollow--; } m_rfPDUCount++; uint32_t bitLength = ((blocksToFollow + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; if (m_rfPDUBits >= bitLength) { // process all blocks in the data stream uint32_t dataOffset = 0U; for (uint32_t i = 0U; i < blocksToFollow; i++) { ::memset(buffer, 0x00U, P25_PDU_FEC_LENGTH_BYTES); Utils::getBitRange(m_rfPDU, buffer, offset, P25_PDU_FEC_LENGTH_BITS); bool ret = m_rfData[i].decode(buffer, (m_rfUseSecondHeader) ? m_rfSecondHeader : m_rfDataHeader); if (ret) { if (m_verbose) { if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR && m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED && m_rfData[i].getSerialNo() == 0U) { LogMessage(LOG_RF, P25_PDU_STR ", block %u, fmt = $%02X, sap = $%02X, llId = %u", m_rfData[i].getSerialNo(), m_rfData[i].getFormat(), m_rfData[i].getSAP(), m_rfData[i].getLLId()); m_rfSecondHeader.reset(); m_rfSecondHeader.setFormat(m_rfData[i].getFormat()); m_rfSecondHeader.setLLId(m_rfData[i].getLLId()); m_rfSecondHeader.setSAP(m_rfData[i].getSAP()); } else { LogMessage(LOG_RF, P25_PDU_STR ", block %u, fmt = $%02X, lastBlock = %u", (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? m_rfData[i].getSerialNo() : m_rfDataBlockCnt, m_rfData[i].getFormat(), m_rfData[i].getLastBlock()); } } m_rfData[i].getData(m_pduUserData + dataOffset); m_pduUserDataLength += (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES; // is this the last block? if (m_rfData[i].getLastBlock()) { bool crcRet = edac::CRC::checkCRC32(m_pduUserData, m_pduUserDataLength); if (!crcRet) { LogWarning(LOG_RF, P25_PDU_STR ", failed CRC-32 check, blocks %u, len %u", blocksToFollow, m_pduUserDataLength); } } writeNetwork(m_rfDataBlockCnt, m_pduUserData + dataOffset, (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES); m_rfDataBlockCnt++; } else { if (m_rfData[i].getFormat() == PDU_FMT_CONFIRMED) LogWarning(LOG_RF, P25_PDU_STR ", unfixable PDU data (3/4 rate or CRC)"); else LogWarning(LOG_RF, P25_PDU_STR ", unfixable PDU data (1/2 rate or CRC)"); if (m_dumpPDUData) { Utils::dump(1U, "Unfixable PDU Data", buffer, P25_PDU_FEC_LENGTH_BYTES); } } offset += P25_PDU_FEC_LENGTH_BITS; dataOffset += (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES; } if (m_dumpPDUData && m_rfDataBlockCnt > 0U) { Utils::dump(1U, "PDU Packet", m_pduUserData, dataOffset); } if (m_rfDataBlockCnt < blocksToFollow) { LogWarning(LOG_RF, P25_PDU_STR ", incomplete PDU (%d / %d blocks)", m_rfDataBlockCnt, blocksToFollow); } // did we receive a response header? if (m_rfDataHeader.getFormat() == PDU_FMT_RSP) { if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", response, fmt = $%02X, rspClass = $%02X, rspType = $%02X, rspStatus = $%02X", m_rfDataHeader.getFormat(), m_rfDataHeader.getResponseClass(), m_rfDataHeader.getResponseType(), m_rfDataHeader.getResponseStatus()); } } else { // handle standard P25 service access points switch (m_rfDataHeader.getSAP()) { case PDU_SAP_REG: { uint8_t regType = (m_pduUserData[0] >> 4) & 0x0F; switch (regType) { case PDU_REG_TYPE_REQ_CNCT: { uint32_t llId = (m_pduUserData[1U] << 16) + (m_pduUserData[2U] << 8) + m_pduUserData[3U]; ulong64_t ipAddr = (m_pduUserData[8U] << 24) + (m_pduUserData[9U] << 16) + (m_pduUserData[10U] << 8) + m_pduUserData[11U]; if (m_rfDataHeader.getAckNeeded()) { writeRF_PDU_Ack_Response(PDU_ACK_CLASS_ACK, PDU_ACK_TYPE_ACK, llId); } if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_REQ_CNCT (Registration Request Connect), llId = %u, ipAddr = %s", llId, __IP_FROM_ULONG(ipAddr).c_str()); } m_connQueueTable[llId] = ipAddr; m_connTimerTable[llId] = Timer(1000U, CONN_WAIT_TIMEOUT); m_connTimerTable[llId].start(); } break; case PDU_REG_TYPE_REQ_DISCNCT: { uint32_t llId = (m_pduUserData[1U] << 16) + (m_pduUserData[2U] << 8) + m_pduUserData[3U]; if (m_rfDataHeader.getAckNeeded()) { writeRF_PDU_Ack_Response(PDU_ACK_CLASS_ACK, PDU_ACK_TYPE_ACK, llId); } if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_REQ_DISCNCT (Registration Request Disconnect), llId = %u", llId); } if (hasLLIdFNEReg(llId)) { // remove dynamic FNE registration table entry try { m_fneRegTable.at(llId); m_fneRegTable.erase(llId); } catch (...) { // stub } } } break; default: LogError(LOG_RF, "P25 unhandled PDU registration type, regType = $%02X", regType); break; } } break; case PDU_SAP_TRUNK_CTRL: { if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", PDU_SAP_TRUNK_CTRL (Alternate MBT Packet), lco = $%02X, blocksToFollow = %u", m_rfDataHeader.getAMBTOpcode(), m_rfDataHeader.getBlocksToFollow()); } m_p25->m_trunk->processMBT(m_rfDataHeader, m_rfData); } break; default: ::ActivityLog("P25", true, "RF data transmission from %u to %u, %u blocks", m_rfDataHeader.getLLId(), m_rfDataHeader.getLLId(), m_rfDataHeader.getBlocksToFollow()); if (m_repeatPDU) { if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", repeating PDU, llId = %u", (m_rfUseSecondHeader) ? m_rfSecondHeader.getLLId() : m_rfDataHeader.getLLId()); } writeRF_PDU_Buffered(); // re-generate buffered PDU and send it on } ::ActivityLog("P25", true, "end of RF data transmission"); break; } } m_rfDataHeader.reset(); m_rfSecondHeader.reset(); m_rfUseSecondHeader = false; m_rfDataBlockCnt = 0U; m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_p25->m_rfState = m_prevRfState; } // switch (m_rfDataHeader.getSAP()) } return true; } else { LogError(LOG_RF, "P25 unhandled data DUID, duid = $%02X", duid); } return false; } /// /// Process a data frame from the network. /// /// Buffer containing data frame. /// Length of data frame. /// /// /// /// bool Data::processNetwork(uint8_t* data, uint32_t len, lc::LC& control, data::LowSpeedData& lsd, uint8_t& duid) { if (m_p25->m_rfState != RS_RF_LISTENING && m_p25->m_netState == RS_NET_IDLE) return false; switch (duid) { case P25_DUID_PDU: { if (m_p25->m_netState != RS_NET_DATA) { m_netDataHeader.reset(); m_netSecondHeader.reset(); m_netDataOffset = 0U; m_netDataBlockCnt = 0U; m_netPDUCount = 0U; m_p25->m_netState = RS_NET_DATA; uint8_t blocksToFollow = data[20U]; bool confirmed = (data[4U] & 0x80U) == 0x80U; //bool response = (data[4U] & 0x40U) == 0x40U; uint8_t sap = data[4U] & 0x3FU; m_netDataHeader.setAckNeeded(confirmed); m_netDataHeader.setOutbound(true); m_netDataHeader.setFormat((confirmed) ? PDU_FMT_CONFIRMED : PDU_FMT_UNCONFIRMED); m_netDataHeader.setSAP(sap); m_netDataHeader.setFullMessage(true); m_netDataHeader.setBlocksToFollow(blocksToFollow); if (m_verbose) { LogMessage(LOG_NET, P25_PDU_STR ", ack = %u, outbound = %u, fmt = $%02X, sap = $%02X, fullMessage = %u, blocksToFollow = %u, padCount = %u, n = %u, seqNo = %u, hdrOffset = %u", m_netDataHeader.getAckNeeded(), m_netDataHeader.getOutbound(), m_netDataHeader.getFormat(), m_netDataHeader.getSAP(), m_netDataHeader.getFullMessage(), m_netDataHeader.getBlocksToFollow(), m_netDataHeader.getPadCount(), m_netDataHeader.getNs(), m_netDataHeader.getFSN(), m_netDataHeader.getHeaderOffset()); } // make sure we don't get a PDU with more blocks then we support if (m_netDataHeader.getBlocksToFollow() >= P25_MAX_PDU_COUNT) { LogError(LOG_NET, P25_PDU_STR ", too many PDU blocks to process, %u > %u", m_netDataHeader.getBlocksToFollow(), P25_MAX_PDU_COUNT); m_netDataHeader.reset(); m_netDataOffset = 0U; m_netDataBlockCnt = 0U; m_netPDUCount = 0U; m_p25->m_netState = RS_NET_IDLE; return false; } if (m_netDataHeader.getSAP() == PDU_SAP_EXT_ADDR && m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) { LogWarning(LOG_NET, P25_PDU_STR ", unsupported confirmed enhanced addressing"); m_netDataHeader.reset(); m_netSecondHeader.reset(); m_netDataOffset = 0U; m_netDataBlockCnt = 0U; m_netPDUCount = 0U; m_p25->m_netState = RS_NET_IDLE; return false; } ::ActivityLog("P25", false, "network data transmission from %u to %u, %u blocks", m_netDataHeader.getLLId(), m_netDataHeader.getLLId(), m_netDataHeader.getBlocksToFollow()); } if (m_p25->m_netState == RS_NET_DATA) { uint32_t pduLen = control.getDstId(); // PDU's use dstId as the PDU len ::memset(m_netPDU, 0x00U, pduLen + 2U); ::memcpy(m_netPDU, data, pduLen); if (m_netDataBlockCnt >= m_netDataHeader.getBlocksToFollow()) { if (m_dumpPDUData) { Utils::dump(1U, "PDU Packet", m_pduUserData, m_netDataOffset); } writeNet_PDU_Buffered(); ::ActivityLog("P25", true, "end of RF data transmission"); m_netDataHeader.reset(); m_netSecondHeader.reset(); m_netDataOffset = 0U; m_netDataBlockCnt = 0U; m_netPDUCount = 0U; m_p25->m_netState = RS_NET_IDLE; } else { uint32_t len = __GET_UINT16(data, 8U); ::memcpy(m_pduUserData, data + 24U, len); m_netDataOffset += len; m_netDataBlockCnt++; } } } break; default: return false; } return true; } /// /// Helper to check if a logical link ID has registered with data services. /// /// Logical Link ID. /// True, if ID has registered, otherwise false. bool Data::hasLLIdFNEReg(uint32_t llId) const { // lookup dynamic FNE registration table entry try { ulong64_t tblIpAddr = m_fneRegTable.at(llId); if (tblIpAddr != 0U) { return true; } else { return false; } } catch (...) { return false; } } /// /// Helper to write user data as a P25 PDU packet. /// /// /// /// void Data::writeRF_PDU_User(data::DataHeader dataHeader, const uint8_t* pduUserData, bool clearBeforeWrite) { assert(pduUserData != nullptr); uint32_t bitLength = ((dataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; uint32_t offset = P25_PREAMBLE_LENGTH_BITS; uint8_t data[bitLength / 8U]; ::memset(data, 0x00U, bitLength / 8U); uint8_t block[P25_PDU_FEC_LENGTH_BYTES]; ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); // Generate the PDU header and 1/2 rate Trellis dataHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; // Generate the PDU data DataBlock rspBlock = DataBlock(); uint32_t dataOffset = 0U; for (uint8_t i = 0; i < dataHeader.getBlocksToFollow(); i++) { rspBlock.setFormat(PDU_FMT_UNCONFIRMED); rspBlock.setSerialNo(0U); rspBlock.setData(pduUserData + dataOffset); ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); rspBlock.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; dataOffset += P25_PDU_UNCONFIRMED_LENGTH_BYTES; } if (clearBeforeWrite) { m_p25->m_modem->clearP25Data(); m_p25->m_queue.clear(); } writeRF_PDU(data, bitLength); } /// /// Updates the processor by the passed number of milliseconds. /// /// void Data::clock(uint32_t ms) { // clock all the connect timers std::vector connToClear = std::vector(); for (auto it = m_connQueueTable.begin(); it != m_connQueueTable.end(); ++it) { uint32_t llId = it->first; m_connTimerTable[llId].clock(ms); if (m_connTimerTable[llId].isRunning() && m_connTimerTable[llId].hasExpired()) { connToClear.push_back(llId); } } // handle PDU connection registration for (auto it = connToClear.begin(); it != connToClear.end(); ++it) { uint32_t llId = *it; uint64_t ipAddr = m_connQueueTable[llId]; if (!acl::AccessControl::validateSrcId(llId)) { LogWarning(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_RSP_DENY (Registration Response Deny), llId = %u, ipAddr = %s", llId, __IP_FROM_ULONG(ipAddr).c_str()); writeRF_PDU_Reg_Response(PDU_REG_TYPE_RSP_DENY, llId, ipAddr); } else { if (!hasLLIdFNEReg(llId)) { // update dynamic FNE registration table entry m_fneRegTable[llId] = ipAddr; } if (m_verbose) { LogMessage(LOG_RF, P25_PDU_STR ", PDU_REG_TYPE_RSP_ACCPT (Registration Response Accept), llId = %u, ipAddr = %s", llId, __IP_FROM_ULONG(ipAddr).c_str()); } writeRF_PDU_Reg_Response(PDU_REG_TYPE_RSP_ACCPT, llId, ipAddr); } m_connQueueTable.erase(llId); } } // --------------------------------------------------------------------------- // Private Class Members // --------------------------------------------------------------------------- /// /// Initializes a new instance of the Data class. /// /// Instance of the Control class. /// Instance of the BaseNetwork class. /// /// /// Flag indicating whether P25 debug is enabled. /// Flag indicating whether P25 verbose logging is enabled. Data::Data(Control* p25, network::BaseNetwork* network, bool dumpPDUData, bool repeatPDU, bool debug, bool verbose) : m_p25(p25), m_network(network), m_prevRfState(RS_RF_LISTENING), m_rfData(nullptr), m_rfDataHeader(), m_rfSecondHeader(), m_rfUseSecondHeader(false), m_rfDataBlockCnt(0U), m_rfPDU(nullptr), m_rfPDUCount(0U), m_rfPDUBits(0U), m_netData(nullptr), m_netDataHeader(), m_netSecondHeader(), m_netUseSecondHeader(false), m_netDataOffset(0U), m_netDataBlockCnt(0U), m_netPDU(nullptr), m_netPDUCount(0U), m_pduUserData(nullptr), m_pduUserDataLength(0U), m_fneRegTable(), m_connQueueTable(), m_connTimerTable(), m_dumpPDUData(dumpPDUData), m_repeatPDU(repeatPDU), m_verbose(verbose), m_debug(debug) { m_rfData = new data::DataBlock[P25_MAX_PDU_COUNT]; m_rfPDU = new uint8_t[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U]; ::memset(m_rfPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U); m_netData = new data::DataBlock[P25_MAX_PDU_COUNT]; m_netPDU = new uint8_t[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U]; ::memset(m_netPDU, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U); m_pduUserData = new uint8_t[P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U]; ::memset(m_pduUserData, 0x00U, P25_MAX_PDU_COUNT * P25_PDU_CONFIRMED_LENGTH_BYTES + 2U); m_fneRegTable.clear(); m_connQueueTable.clear(); m_connTimerTable.clear(); } /// /// Finalizes a instance of the Data class. /// Data::~Data() { delete[] m_rfPDU; delete[] m_netPDU; delete[] m_pduUserData; } /// /// Write data processed from RF to the network. /// /// /// /// void Data::writeNetwork(const uint8_t currentBlock, const uint8_t *data, uint32_t len) { assert(data != nullptr); if (m_network == nullptr) return; if (m_p25->m_rfTimeout.isRunning() && m_p25->m_rfTimeout.hasExpired()) return; m_network->writeP25PDU(m_rfDataHeader, m_rfSecondHeader, currentBlock, data, len); } /// /// Helper to write a P25 PDU packet. /// /// /// /// /// This simply takes data packed into m_rfPDU and transmits it. void Data::writeRF_PDU(const uint8_t* pdu, uint32_t bitLength, bool noNulls) { assert(pdu != nullptr); assert(bitLength > 0U); uint8_t data[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U]; ::memset(data, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES + 2U); if (m_debug) { Utils::dump(2U, "!!! *Raw PDU Frame Data - P25_DUID_PDU", pdu, bitLength / 8U); } // Add the data uint32_t newBitLength = P25Utils::encode(pdu, data + 2U, bitLength); uint32_t newByteLength = newBitLength / 8U; if ((newBitLength % 8U) > 0U) newByteLength++; // Regenerate Sync Sync::addP25Sync(data + 2U); // Regenerate NID m_p25->m_nid.encode(data + 2U, P25_DUID_PDU); // Add busy bits P25Utils::addBusyBits(data + 2U, newBitLength, false, true); if (m_p25->m_duplex) { data[0U] = modem::TAG_DATA; data[1U] = 0x00U; m_p25->addFrame(data, newByteLength + 2U); } // add trailing null pad; only if control data isn't being transmitted if (!m_p25->m_ccRunning && !noNulls) { m_p25->writeRF_Nulls(); } } /// /// Helper to write a network P25 PDU packet. /// /// This will take buffered network PDU data and repeat it over the air. void Data::writeNet_PDU_Buffered() { uint32_t bitLength = ((m_netDataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; uint32_t offset = P25_PREAMBLE_LENGTH_BITS; uint8_t data[bitLength / 8U]; ::memset(data, 0x00U, bitLength / 8U); uint8_t block[P25_PDU_FEC_LENGTH_BYTES]; ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); uint32_t blocksToFollow = m_netDataHeader.getBlocksToFollow(); // Generate the PDU header and 1/2 rate Trellis m_netDataHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; // Generate the second PDU header if (m_netUseSecondHeader) { ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); m_netSecondHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; blocksToFollow--; } // Generate the PDU data uint32_t dataOffset = 0U; for (uint32_t i = 0U; i < blocksToFollow; i++) { m_netData[i].setFormat((m_netUseSecondHeader) ? m_netSecondHeader : m_netDataHeader); m_netData[i].setSerialNo(i); m_netData[i].setData(m_pduUserData + dataOffset); ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); m_netData[i].encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; dataOffset += (m_netDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES; } writeRF_PDU(data, bitLength); } /// /// Helper to re-write a received P25 PDU packet. /// /// This will take buffered received PDU data and repeat it over the air. void Data::writeRF_PDU_Buffered() { uint32_t bitLength = ((m_rfDataHeader.getBlocksToFollow() + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; uint32_t offset = P25_PREAMBLE_LENGTH_BITS; uint8_t data[bitLength / 8U]; ::memset(data, 0x00U, bitLength / 8U); uint8_t block[P25_PDU_FEC_LENGTH_BYTES]; ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); uint32_t blocksToFollow = m_rfDataHeader.getBlocksToFollow(); // Generate the PDU header and 1/2 rate Trellis m_rfDataHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; // Generate the second PDU header if (m_rfUseSecondHeader) { ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); m_rfSecondHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; blocksToFollow--; } // Generate the PDU data uint32_t dataOffset = 0U; for (uint32_t i = 0U; i < blocksToFollow; i++) { m_rfData[i].setFormat((m_rfUseSecondHeader) ? m_rfSecondHeader : m_rfDataHeader); m_rfData[i].setSerialNo(i); m_rfData[i].setData(m_pduUserData + dataOffset); ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); m_rfData[i].encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; dataOffset += (m_rfDataHeader.getFormat() == PDU_FMT_CONFIRMED) ? P25_PDU_CONFIRMED_DATA_LENGTH_BYTES : P25_PDU_UNCONFIRMED_LENGTH_BYTES; } writeRF_PDU(data, bitLength); } /// /// Helper to write a PDU registration response. /// /// /// /// void Data::writeRF_PDU_Reg_Response(uint8_t regType, uint32_t llId, ulong64_t ipAddr) { if ((regType != PDU_REG_TYPE_RSP_ACCPT) && (regType != PDU_REG_TYPE_RSP_DENY)) return; uint32_t bitLength = (2U * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; uint32_t offset = P25_PREAMBLE_LENGTH_BITS; uint8_t data[bitLength / 8U]; ::memset(data, 0x00U, bitLength / 8U); uint8_t block[P25_PDU_FEC_LENGTH_BYTES]; ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); DataHeader rspHeader = DataHeader(); rspHeader.setFormat(PDU_FMT_CONFIRMED); rspHeader.setMFId(m_rfDataHeader.getMFId()); rspHeader.setAckNeeded(true); rspHeader.setOutbound(true); rspHeader.setSAP(PDU_SAP_REG); rspHeader.setLLId(m_rfDataHeader.getLLId()); rspHeader.setBlocksToFollow(1U); // Generate the PDU header and 1/2 rate Trellis rspHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); offset += P25_PDU_FEC_LENGTH_BITS; // build registration response data uint8_t rspData[P25_PDU_CONFIRMED_DATA_LENGTH_BYTES]; ::memset(rspData, 0x00U, P25_PDU_CONFIRMED_DATA_LENGTH_BYTES); rspData[0U] = ((regType & 0x0FU) << 4); // Registration Type & Options rspData[1U] = (llId >> 16) & 0xFFU; // Logical Link ID rspData[2U] = (llId >> 8) & 0xFFU; rspData[3U] = (llId >> 0) & 0xFFU; if (regType == PDU_REG_TYPE_RSP_ACCPT) { rspData[8U] = (ipAddr >> 24) & 0xFFU; // IP Address rspData[9U] = (ipAddr >> 16) & 0xFFU; rspData[10U] = (ipAddr >> 8) & 0xFFU; rspData[11U] = (ipAddr >> 0) & 0xFFU; } edac::CRC::addCRC32(rspData, P25_PDU_CONFIRMED_DATA_LENGTH_BYTES); // Generate the PDU data DataBlock rspBlock = DataBlock(); rspBlock.setFormat(PDU_FMT_CONFIRMED); rspBlock.setSerialNo(0U); rspBlock.setData(rspData); ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); rspBlock.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); writeRF_PDU(data, bitLength); } /// /// Helper to write a PDU acknowledge response. /// /// /// /// /// void Data::writeRF_PDU_Ack_Response(uint8_t ackClass, uint8_t ackType, uint32_t llId, bool noNulls) { if (ackClass == PDU_ACK_CLASS_ACK && ackType != PDU_ACK_TYPE_ACK) return; uint32_t bitLength = (2U * P25_PDU_FEC_LENGTH_BITS) + P25_PREAMBLE_LENGTH_BITS; uint32_t offset = P25_PREAMBLE_LENGTH_BITS; uint8_t data[bitLength / 8U]; ::memset(data, 0x00U, bitLength / 8U); uint8_t block[P25_PDU_FEC_LENGTH_BYTES]; ::memset(block, 0x00U, P25_PDU_FEC_LENGTH_BYTES); DataHeader rspHeader = DataHeader(); rspHeader.setFormat(PDU_FMT_RSP); rspHeader.setMFId(m_rfDataHeader.getMFId()); rspHeader.setOutbound(true); rspHeader.setResponseClass(ackClass); rspHeader.setResponseType(ackType); rspHeader.setResponseStatus(m_rfDataHeader.getNs()); rspHeader.setLLId(llId); if (m_rfDataHeader.getSAP() == PDU_SAP_EXT_ADDR) { rspHeader.setSrcLLId(P25_WUID_FNE); rspHeader.setFullMessage(true); } else { rspHeader.setFullMessage(false); } rspHeader.setBlocksToFollow(0U); // Generate the PDU header and 1/2 rate Trellis rspHeader.encode(block); Utils::setBitRange(block, data, offset, P25_PDU_FEC_LENGTH_BITS); writeRF_PDU(data, bitLength, noNulls); }