add experimental support for split NAC, this change adds a new txNAC configuration option to set the transmit NAC;

pull/12/head
Bryan Biedenkapp 4 years ago
parent cdfac07224
commit 34f8b0407f

@ -98,6 +98,7 @@ system:
- 1
colorCode: 1
nac: 293
# txNAC: 293
pSuperGroup: FFFF
netId: BB800
sysId: 001

@ -1442,6 +1442,11 @@ bool Host::readParams()
m_p25NAC = (uint32_t)::strtoul(rfssConfig["nac"].as<std::string>("293").c_str(), NULL, 16);
m_p25NAC = p25::P25Utils::nac(m_p25NAC);
uint32_t p25TxNAC = (uint32_t)::strtoul(rfssConfig["txNAC"].as<std::string>("F7E").c_str(), NULL, 16);
if (p25TxNAC == m_p25NAC) {
LogWarning(LOG_HOST, "Only use txNAC when split NAC operations are needed. nac and txNAC should not be the same!");
}
m_p25PatchSuperGroup = (uint32_t)::strtoul(rfssConfig["pSuperGroup"].as<std::string>("FFFF").c_str(), NULL, 16);
m_p25NetId = (uint32_t)::strtoul(rfssConfig["netId"].as<std::string>("BB800").c_str(), NULL, 16);
m_p25NetId = p25::P25Utils::netId(m_p25NetId);
@ -1466,6 +1471,11 @@ bool Host::readParams()
LogInfo(" DMR Color Code: %u", m_dmrColorCode);
LogInfo(" DMR Network Id: $%05X", m_dmrNetId);
LogInfo(" P25 NAC: $%03X", m_p25NAC);
if (p25TxNAC != 0xF7EU && p25TxNAC != m_p25NAC) {
LogInfo(" P25 Tx NAC: $%03X", p25TxNAC);
}
LogInfo(" P25 Patch Super Group: $%04X", m_p25PatchSuperGroup);
LogInfo(" P25 Network Id: $%05X", m_p25NetId);
LogInfo(" P25 System Id: $%03X", m_p25SysId);

@ -86,6 +86,7 @@ Control::Control(uint32_t nac, uint32_t callHang, uint32_t queueSize, modem::Mod
m_data(NULL),
m_trunk(NULL),
m_nac(nac),
m_txNAC(nac),
m_timeout(timeout),
m_modem(modem),
m_network(network),
@ -279,6 +280,14 @@ void Control::setOptions(yaml::Node& conf, const std::string cwCallsign, const s
LogInfo(" Unit-to-Unit Availability Check: %s", m_trunk->m_unitToUnitAvailCheck ? "yes" : "no");
}
// are we overriding the NAC for split NAC operations?
uint32_t txNAC = (uint32_t)::strtoul(systemConf["config"]["txNAC"].as<std::string>("F7E").c_str(), NULL, 16);
if (txNAC != 0xF7EU && txNAC != m_nac) {
LogMessage(LOG_P25, "Split NAC operations, setting Tx NAC to $%03X", txNAC);
m_txNAC = txNAC;
m_nid.setTxNAC(m_txNAC);
}
m_voice->resetRF();
m_voice->resetNet();
m_data->resetRF();

@ -119,6 +119,7 @@ namespace p25
TrunkPacket* m_trunk;
uint32_t m_nac;
uint32_t m_txNAC;
uint32_t m_timeout;
modem::Modem* m_modem;

@ -12,7 +12,7 @@
//
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Bryan Biedenkapp N2PLL
* Copyright (C) 2017,2022 by Bryan Biedenkapp N2PLL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -54,64 +54,24 @@ const uint32_t MAX_NID_ERRS = 7U;//5U;
/// <param name="nac">P25 Network Access Code.</param>
NID::NID(uint32_t nac) :
m_duid(0U),
m_hdu(NULL),
m_tdu(NULL),
m_ldu1(NULL),
m_pdu(NULL),
m_tsdu(NULL),
m_ldu2(NULL),
m_tdulc(NULL)
m_nac(nac),
m_rxHdu(NULL),
m_rxTdu(NULL),
m_rxLdu1(NULL),
m_rxPdu(NULL),
m_rxTsdu(NULL),
m_rxLdu2(NULL),
m_rxTdulc(NULL),
m_splitNac(false),
m_txHdu(NULL),
m_txTdu(NULL),
m_txLdu1(NULL),
m_txPdu(NULL),
m_txTsdu(NULL),
m_txLdu2(NULL),
m_txTdulc(NULL)
{
edac::BCH bch;
m_hdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_hdu[0U] = (nac >> 4) & 0xFFU;
m_hdu[1U] = (nac << 4) & 0xF0U;
m_hdu[1U] |= P25_DUID_HDU;
bch.encode(m_hdu);
m_hdu[7U] &= 0xFEU; // Clear the parity bit
m_tdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_tdu[0U] = (nac >> 4) & 0xFFU;
m_tdu[1U] = (nac << 4) & 0xF0U;
m_tdu[1U] |= P25_DUID_TDU;
bch.encode(m_tdu);
m_tdu[7U] &= 0xFEU; // Clear the parity bit
m_ldu1 = new uint8_t[P25_NID_LENGTH_BYTES];
m_ldu1[0U] = (nac >> 4) & 0xFFU;
m_ldu1[1U] = (nac << 4) & 0xF0U;
m_ldu1[1U] |= P25_DUID_LDU1;
bch.encode(m_ldu1);
m_ldu1[7U] |= 0x01U; // Set the parity bit
m_pdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_pdu[0U] = (nac >> 4) & 0xFFU;
m_pdu[1U] = (nac << 4) & 0xF0U;
m_pdu[1U] |= P25_DUID_PDU;
bch.encode(m_pdu);
m_pdu[7U] &= 0xFEU; // Clear the parity bit
m_tsdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_tsdu[0U] = (nac >> 4) & 0xFFU;
m_tsdu[1U] = (nac << 4) & 0xF0U;
m_tsdu[1U] |= P25_DUID_TSDU;
bch.encode(m_tsdu);
m_tsdu[7U] &= 0xFEU; // Clear the parity bit
m_ldu2 = new uint8_t[P25_NID_LENGTH_BYTES];
m_ldu2[0U] = (nac >> 4) & 0xFFU;
m_ldu2[1U] = (nac << 4) & 0xF0U;
m_ldu2[1U] |= P25_DUID_LDU2;
bch.encode(m_ldu2);
m_ldu2[7U] |= 0x01U; // Set the parity bit
m_tdulc = new uint8_t[P25_NID_LENGTH_BYTES];
m_tdulc[0U] = (nac >> 4) & 0xFFU;
m_tdulc[1U] = (nac << 4) & 0xF0U;
m_tdulc[1U] |= P25_DUID_TDULC;
bch.encode(m_tdulc);
m_tdulc[7U] &= 0xFEU; // Clear the parity bit
createRxNID(nac);
}
/// <summary>
@ -119,13 +79,23 @@ NID::NID(uint32_t nac) :
/// </summary>
NID::~NID()
{
delete[] m_hdu;
delete[] m_tdu;
delete[] m_ldu1;
delete[] m_pdu;
delete[] m_tsdu;
delete[] m_ldu2;
delete[] m_tdulc;
delete[] m_rxHdu;
delete[] m_rxTdu;
delete[] m_rxLdu1;
delete[] m_rxPdu;
delete[] m_rxTsdu;
delete[] m_rxLdu2;
delete[] m_rxTdulc;
if (m_splitNac) {
delete[] m_txHdu;
delete[] m_txTdu;
delete[] m_txLdu1;
delete[] m_txPdu;
delete[] m_txTsdu;
delete[] m_txLdu2;
delete[] m_txTdulc;
}
}
/// <summary>
@ -140,43 +110,43 @@ bool NID::decode(const uint8_t* data)
uint8_t nid[P25_NID_LENGTH_BYTES];
P25Utils::decode(data, nid, 48U, 114U);
uint32_t errs = P25Utils::compare(nid, m_ldu1, P25_NID_LENGTH_BYTES);
uint32_t errs = P25Utils::compare(nid, m_rxLdu1, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_LDU1;
return true;
}
errs = P25Utils::compare(nid, m_ldu2, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxLdu2, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_LDU2;
return true;
}
errs = P25Utils::compare(nid, m_tdu, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxTdu, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TDU;
return true;
}
errs = P25Utils::compare(nid, m_tdulc, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxTdulc, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TDULC;
return true;
}
errs = P25Utils::compare(nid, m_pdu, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxPdu, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_PDU;
return true;
}
errs = P25Utils::compare(nid, m_tsdu, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxTsdu, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_TSDU;
return true;
}
errs = P25Utils::compare(nid, m_hdu, P25_NID_LENGTH_BYTES);
errs = P25Utils::compare(nid, m_rxHdu, P25_NID_LENGTH_BYTES);
if (errs < MAX_NID_ERRS) {
m_duid = P25_DUID_HDU;
return true;
@ -194,29 +164,191 @@ void NID::encode(uint8_t* data, uint8_t duid) const
{
assert(data != NULL);
switch (duid) {
case P25_DUID_HDU:
P25Utils::encode(m_hdu, data, 48U, 114U);
break;
case P25_DUID_TDU:
P25Utils::encode(m_tdu, data, 48U, 114U);
break;
case P25_DUID_LDU1:
P25Utils::encode(m_ldu1, data, 48U, 114U);
break;
case P25_DUID_PDU:
P25Utils::encode(m_pdu, data, 48U, 114U);
break;
case P25_DUID_TSDU:
P25Utils::encode(m_tsdu, data, 48U, 114U);
break;
case P25_DUID_LDU2:
P25Utils::encode(m_ldu2, data, 48U, 114U);
break;
case P25_DUID_TDULC:
P25Utils::encode(m_tdulc, data, 48U, 114U);
break;
default:
break;
if (m_splitNac) {
switch (duid) {
case P25_DUID_HDU:
P25Utils::encode(m_txHdu, data, 48U, 114U);
break;
case P25_DUID_TDU:
P25Utils::encode(m_txTdu, data, 48U, 114U);
break;
case P25_DUID_LDU1:
P25Utils::encode(m_txLdu1, data, 48U, 114U);
break;
case P25_DUID_PDU:
P25Utils::encode(m_txPdu, data, 48U, 114U);
break;
case P25_DUID_TSDU:
P25Utils::encode(m_txTsdu, data, 48U, 114U);
break;
case P25_DUID_LDU2:
P25Utils::encode(m_txLdu2, data, 48U, 114U);
break;
case P25_DUID_TDULC:
P25Utils::encode(m_txTdulc, data, 48U, 114U);
break;
default:
break;
}
}
else {
switch (duid) {
case P25_DUID_HDU:
P25Utils::encode(m_rxHdu, data, 48U, 114U);
break;
case P25_DUID_TDU:
P25Utils::encode(m_rxTdu, data, 48U, 114U);
break;
case P25_DUID_LDU1:
P25Utils::encode(m_rxLdu1, data, 48U, 114U);
break;
case P25_DUID_PDU:
P25Utils::encode(m_rxPdu, data, 48U, 114U);
break;
case P25_DUID_TSDU:
P25Utils::encode(m_rxTsdu, data, 48U, 114U);
break;
case P25_DUID_LDU2:
P25Utils::encode(m_rxLdu2, data, 48U, 114U);
break;
case P25_DUID_TDULC:
P25Utils::encode(m_rxTdulc, data, 48U, 114U);
break;
default:
break;
}
}
}
/// <summary>
/// Helper to configure a separate Tx NAC.
/// </summary>
/// <param name="nac"></param>
void NID::setTxNAC(uint32_t nac)
{
if (nac == m_nac) {
return;
}
m_splitNac = true;
createTxNID(nac);
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
/// <summary>
///
/// </summary>
/// <param name="nac"></param>
void NID::createRxNID(uint32_t nac)
{
edac::BCH bch;
m_rxHdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxHdu[0U] = (nac >> 4) & 0xFFU;
m_rxHdu[1U] = (nac << 4) & 0xF0U;
m_rxHdu[1U] |= P25_DUID_HDU;
bch.encode(m_rxHdu);
m_rxHdu[7U] &= 0xFEU; // Clear the parity bit
m_rxTdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTdu[0U] = (nac >> 4) & 0xFFU;
m_rxTdu[1U] = (nac << 4) & 0xF0U;
m_rxTdu[1U] |= P25_DUID_TDU;
bch.encode(m_rxTdu);
m_rxTdu[7U] &= 0xFEU; // Clear the parity bit
m_rxLdu1 = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxLdu1[0U] = (nac >> 4) & 0xFFU;
m_rxLdu1[1U] = (nac << 4) & 0xF0U;
m_rxLdu1[1U] |= P25_DUID_LDU1;
bch.encode(m_rxLdu1);
m_rxLdu1[7U] |= 0x01U; // Set the parity bit
m_rxPdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxPdu[0U] = (nac >> 4) & 0xFFU;
m_rxPdu[1U] = (nac << 4) & 0xF0U;
m_rxPdu[1U] |= P25_DUID_PDU;
bch.encode(m_rxPdu);
m_rxPdu[7U] &= 0xFEU; // Clear the parity bit
m_rxTsdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTsdu[0U] = (nac >> 4) & 0xFFU;
m_rxTsdu[1U] = (nac << 4) & 0xF0U;
m_rxTsdu[1U] |= P25_DUID_TSDU;
bch.encode(m_rxTsdu);
m_rxTsdu[7U] &= 0xFEU; // Clear the parity bit
m_rxLdu2 = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxLdu2[0U] = (nac >> 4) & 0xFFU;
m_rxLdu2[1U] = (nac << 4) & 0xF0U;
m_rxLdu2[1U] |= P25_DUID_LDU2;
bch.encode(m_rxLdu2);
m_rxLdu2[7U] |= 0x01U; // Set the parity bit
m_rxTdulc = new uint8_t[P25_NID_LENGTH_BYTES];
m_rxTdulc[0U] = (nac >> 4) & 0xFFU;
m_rxTdulc[1U] = (nac << 4) & 0xF0U;
m_rxTdulc[1U] |= P25_DUID_TDULC;
bch.encode(m_rxTdulc);
m_rxTdulc[7U] &= 0xFEU; // Clear the parity bit
}
/// <summary>
///
/// </summary>
/// <param name="nac"></param>
void NID::createTxNID(uint32_t nac)
{
edac::BCH bch;
m_txHdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_txHdu[0U] = (nac >> 4) & 0xFFU;
m_txHdu[1U] = (nac << 4) & 0xF0U;
m_txHdu[1U] |= P25_DUID_HDU;
bch.encode(m_txHdu);
m_txHdu[7U] &= 0xFEU; // Clear the parity bit
m_txTdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_txTdu[0U] = (nac >> 4) & 0xFFU;
m_txTdu[1U] = (nac << 4) & 0xF0U;
m_txTdu[1U] |= P25_DUID_TDU;
bch.encode(m_txTdu);
m_txTdu[7U] &= 0xFEU; // Clear the parity bit
m_txLdu1 = new uint8_t[P25_NID_LENGTH_BYTES];
m_txLdu1[0U] = (nac >> 4) & 0xFFU;
m_txLdu1[1U] = (nac << 4) & 0xF0U;
m_txLdu1[1U] |= P25_DUID_LDU1;
bch.encode(m_txLdu1);
m_txLdu1[7U] |= 0x01U; // Set the parity bit
m_txPdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_txPdu[0U] = (nac >> 4) & 0xFFU;
m_txPdu[1U] = (nac << 4) & 0xF0U;
m_txPdu[1U] |= P25_DUID_PDU;
bch.encode(m_txPdu);
m_txPdu[7U] &= 0xFEU; // Clear the parity bit
m_txTsdu = new uint8_t[P25_NID_LENGTH_BYTES];
m_txTsdu[0U] = (nac >> 4) & 0xFFU;
m_txTsdu[1U] = (nac << 4) & 0xF0U;
m_txTsdu[1U] |= P25_DUID_TSDU;
bch.encode(m_txTsdu);
m_txTsdu[7U] &= 0xFEU; // Clear the parity bit
m_txLdu2 = new uint8_t[P25_NID_LENGTH_BYTES];
m_txLdu2[0U] = (nac >> 4) & 0xFFU;
m_txLdu2[1U] = (nac << 4) & 0xF0U;
m_txLdu2[1U] |= P25_DUID_LDU2;
bch.encode(m_txLdu2);
m_txLdu2[7U] |= 0x01U; // Set the parity bit
m_txTdulc = new uint8_t[P25_NID_LENGTH_BYTES];
m_txTdulc[0U] = (nac >> 4) & 0xFFU;
m_txTdulc[1U] = (nac << 4) & 0xF0U;
m_txTdulc[1U] |= P25_DUID_TDULC;
bch.encode(m_txTdulc);
m_txTdulc[7U] &= 0xFEU; // Clear the parity bit
}

@ -12,7 +12,7 @@
//
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Bryan Biedenkapp N2PLL
* Copyright (C) 2017,2022 by Bryan Biedenkapp N2PLL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -52,18 +52,38 @@ namespace p25
/// <summary>Encodes P25 network identifier data.</summary>
void encode(uint8_t* data, uint8_t duid) const;
/// <summary>Helper to configure a separate Tx NAC.</summary>
void setTxNAC(uint32_t nac);
public:
/// <summary>Data unit ID.</summary>
__READONLY_PROPERTY(uint8_t, duid, DUID);
private:
uint8_t* m_hdu;
uint8_t* m_tdu;
uint8_t* m_ldu1;
uint8_t* m_pdu;
uint8_t* m_tsdu;
uint8_t* m_ldu2;
uint8_t* m_tdulc;
uint32_t m_nac;
uint8_t* m_rxHdu;
uint8_t* m_rxTdu;
uint8_t* m_rxLdu1;
uint8_t* m_rxPdu;
uint8_t* m_rxTsdu;
uint8_t* m_rxLdu2;
uint8_t* m_rxTdulc;
bool m_splitNac;
uint8_t* m_txHdu;
uint8_t* m_txTdu;
uint8_t* m_txLdu1;
uint8_t* m_txPdu;
uint8_t* m_txTsdu;
uint8_t* m_txLdu2;
uint8_t* m_txTdulc;
/// <summary></summary>
void createRxNID(uint32_t nac);
/// <summary></summary>
void createTxNID(uint32_t nac);
};
} // namespace p25

Loading…
Cancel
Save

Powered by TurnKey Linux.