// SPDX-License-Identifier: GPL-2.0-only
/**
* Digital Voice Modem - Hotspot Firmware
* GPLv2 Open Source. Use is subject to license terms.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* @package DVM / Hotspot Firmware
* @derivedfrom MMDVM_HS (https://github.com/g4klx/MMDVM_HS)
* @license GPLv2 License (https://opensource.org/licenses/GPL-2.0)
*
* Copyright (C) 2009-2017 Jonathan Naylor, G4KLX
* Copyright (C) 2016 Colin Durbridge, G4EML
* Copyright (C) 2017 Andy Uribe, CA6JAU
* Copyright (C) 2021-2022 Bryan Biedenkapp, N2PLL
*
*/
#include "Globals.h"
#include "dmr/DMRSlotType.h"
using namespace dmr;
// ---------------------------------------------------------------------------
// Constants
// ---------------------------------------------------------------------------
// The PR FILL and BS Data Sync pattern.
const uint8_t IDLE_DATA[] = {
0x53U, 0xC2U, 0x5EU, 0xABU, 0xA8U, 0x67U, 0x1DU, 0xC7U, 0x38U, 0x3BU, 0xD9U,
0x36U, 0x00U, 0x0DU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xD0U, 0x03U, 0xF6U,
0xE4U, 0x65U, 0x17U, 0x1BU, 0x48U, 0xCAU, 0x6DU, 0x4FU, 0xC6U, 0x10U, 0xB4U
};
const uint8_t CACH_INTERLEAVE[] = {
1U, 2U, 3U, 5U, 6U, 7U, 9U, 10U, 11U, 13U, 15U, 16U, 17U, 19U, 20U, 21U, 23U,
25U, 26U, 27U, 29U, 30U, 31U, 33U, 34U, 35U, 37U, 39U, 40U, 41U, 43U, 44U, 45U, 47U,
49U, 50U, 51U, 53U, 54U, 55U, 57U, 58U, 59U, 61U, 63U, 64U, 65U, 67U, 68U, 69U, 71U,
73U, 74U, 75U, 77U, 78U, 79U, 81U, 82U, 83U, 85U, 87U, 88U, 89U, 91U, 92U, 93U, 95U
};
const uint8_t EMPTY_SHORT_LC[] = {
0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U
};
const uint32_t STARTUP_COUNT = 20U;
const uint32_t ABORT_COUNT = 6U;
// ---------------------------------------------------------------------------
// Public Class Members
// ---------------------------------------------------------------------------
///
/// Initializes a new instance of the DMRTX class.
///
DMRTX::DMRTX() :
m_fifo(),
m_state(DMRTXSTATE_IDLE),
m_idle(),
m_cachPtr(0U),
m_shortLC(),
m_newShortLC(),
m_markBuffer(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_frameCount(0U),
m_abortCount(),
m_abort(),
m_cachATControl(0U),
m_controlPrev(MARK_NONE)
{
m_fifo[0U].reinitialize(DMR_TX_BUFFER_LEN);
m_fifo[1U].reinitialize(DMR_TX_BUFFER_LEN);
::memcpy(m_newShortLC, EMPTY_SHORT_LC, 12U);
::memcpy(m_shortLC, EMPTY_SHORT_LC, 12U);
m_abort[0U] = false;
m_abort[1U] = false;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 0U;
}
///
/// Process local buffer and transmit on the air interface.
///
void DMRTX::process()
{
if (m_state == DMRTXSTATE_IDLE)
return;
if (m_poLen == 0U) {
switch (m_state) {
case DMRTXSTATE_SLOT1:
createData(0U);
m_state = DMRTXSTATE_CACH2;
break;
case DMRTXSTATE_CACH2:
createCACH(1U, 0U);
m_state = DMRTXSTATE_SLOT2;
break;
case DMRTXSTATE_SLOT2:
createData(1U);
m_state = DMRTXSTATE_CACH1;
break;
case DMRTXSTATE_CAL:
createCal();
break;
default:
createCACH(0U, 1U);
m_state = DMRTXSTATE_SLOT1;
break;
}
}
if (m_poLen > 0U) {
uint16_t space = io.getSpace();
while (space > 8U) {
uint8_t c = m_poBuffer[m_poPtr];
uint8_t m = m_markBuffer[m_poPtr];
m_poPtr++;
writeByte(c, m);
space -= 8U;
if (m_poPtr >= m_poLen) {
m_poPtr = 0U;
m_poLen = 0U;
return;
}
}
}
}
///
/// Write slot 1 data to the local buffer.
///
///
///
///
uint8_t DMRTX::writeData1(const uint8_t* data, uint8_t length)
{
if (length != (DMR_FRAME_LENGTH_BYTES + 1U))
return RSN_ILLEGAL_LENGTH;
uint16_t space = m_fifo[0U].getSpace();
DEBUG3("DMRTX::writeData1() dataLength/fifoLength", length, space);
if (space < DMR_FRAME_LENGTH_BYTES)
return RSN_RINGBUFF_FULL;
if (m_abort[0U]) {
m_fifo[0U].reset();
m_abort[0U] = false;
}
for (uint8_t i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++)
m_fifo[0U].put(data[i + 1U]);
// Start the TX if it isn't already on
if (!m_tx)
m_state = DMRTXSTATE_SLOT1;
return RSN_OK;
}
///
/// Write slot 2 data to the local buffer.
///
///
///
///
uint8_t DMRTX::writeData2(const uint8_t* data, uint8_t length)
{
if (length != (DMR_FRAME_LENGTH_BYTES + 1U))
return RSN_ILLEGAL_LENGTH;
uint16_t space = m_fifo[1U].getSpace();
DEBUG3("DMRTX::writeData2() dataLength/fifoLength", length, space);
if (space < DMR_FRAME_LENGTH_BYTES)
return RSN_RINGBUFF_FULL;
if (m_abort[1U]) {
m_fifo[1U].reset();
m_abort[1U] = false;
}
for (uint8_t i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++)
m_fifo[1U].put(data[i + 1U]);
// Start the TX if it isn't already on
if (!m_tx)
m_state = DMRTXSTATE_SLOT1;
return RSN_OK;
}
///
/// Write short LC data to the local buffer.
///
///
///
///
uint8_t DMRTX::writeShortLC(const uint8_t* data, uint8_t length)
{
if (length != 9U)
return RSN_ILLEGAL_LENGTH;
::memset(m_newShortLC, 0x00U, 12U);
for (uint8_t i = 0U; i < 68U; i++) {
bool b = _READ_BIT(data, i);
uint8_t n = CACH_INTERLEAVE[i];
_WRITE_BIT(m_newShortLC, n, b);
}
return RSN_OK;
}
///
/// Write abort data to the local buffer.
///
///
///
///
uint8_t DMRTX::writeAbort(const uint8_t* data, uint8_t length)
{
if (length != 1U)
return RSN_ILLEGAL_LENGTH;
switch (data[0U]) {
case 1U:
m_abort[0U] = true;
m_abortCount[0U] = 0U;
return RSN_OK;
case 2U:
m_abort[1U] = true;
m_abortCount[1U] = 0U;
return RSN_OK;
default:
return RSN_INVALID_DMR_SLOT;
}
}
///
/// Helper to set the start state for Tx.
///
///
void DMRTX::setStart(bool start)
{
m_state = start ? DMRTXSTATE_SLOT1 : DMRTXSTATE_IDLE;
m_frameCount = 0U;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 1U;
m_abort[0U] = false;
m_abort[1U] = false;
}
///
/// Helper to set the calibration state for Tx.
///
///
void DMRTX::setCal(bool start)
{
m_state = start ? DMRTXSTATE_CAL : DMRTXSTATE_IDLE;
}
///
/// Helper to get how much space the slot 1 ring buffer has for samples.
///
///
uint8_t DMRTX::getSpace1() const
{
return m_fifo[0U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
///
/// Helper to get how much space the slot 2 ring buffer has for samples.
///
///
uint8_t DMRTX::getSpace2() const
{
return m_fifo[1U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
///
/// Sets the ignore flags for setting the CACH Access Type bit.
///
///
void DMRTX::setIgnoreCACH_AT(uint8_t slot)
{
m_cachATControl = slot;
if (m_cachATControl > 3U) {
m_cachATControl = 0U;
}
}
///
/// Sets the DMR color code.
///
/// Color code.
void DMRTX::setColorCode(uint8_t colorCode)
{
::memcpy(m_idle, IDLE_DATA, DMR_FRAME_LENGTH_BYTES);
DMRSlotType slotType;
slotType.encode(colorCode, DT_IDLE, m_idle);
}
///
/// Helper to reset data values to defaults for slot 1 FIFO.
///
void DMRTX::resetFifo1()
{
m_fifo[0U].reset();
}
///
/// Helper to reset data values to defaults for slot 2 FIFO.
///
void DMRTX::resetFifo2()
{
m_fifo[1U].reset();
}
///
/// Helper to resize the FIFO buffer.
///
///
void DMRTX::resizeBuffer(uint16_t size)
{
m_fifo[0U].reset();
m_fifo[1U].reset();
m_fifo[0U].reinitialize(size);
m_fifo[1U].reinitialize(size);
}
///
///
///
///
uint32_t DMRTX::getFrameCount()
{
return m_frameCount;
}
// ---------------------------------------------------------------------------
// Private Class Members
// ---------------------------------------------------------------------------
///
///
///
///
void DMRTX::createData(uint8_t slotIndex)
{
if (m_fifo[slotIndex].getData() > 0U && m_frameCount >= STARTUP_COUNT) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = m_fifo[slotIndex].get();
if (i == 8U)
m_markBuffer[i] = slotIndex == 0U ? MARK_SLOT1 : MARK_SLOT2;
else
m_markBuffer[i] = MARK_NONE;
}
}
else {
m_abort[slotIndex] = false;
// Transmit an idle message
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = m_idle[i];
if (i == 8U)
m_markBuffer[i] = slotIndex == 0U ? MARK_SLOT1 : MARK_SLOT2;
else
m_markBuffer[i] = MARK_NONE;
}
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
m_poPtr = 0U;
}
///
///
///
void DMRTX::createCal()
{
// 1.2 kHz sine wave generation
if (m_modemState == STATE_DMR_CAL) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = DMR_START_SYNC;
m_markBuffer[i] = MARK_NONE;
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
}
// 80 Hz square wave generation
if (m_modemState == STATE_DMR_LF_CAL) {
for (unsigned int i = 0U; i < 7U; i++) {
m_poBuffer[i] = 0x55U; // +3, +3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poBuffer[7U] = 0x5FU; // +3, +3, -3, -3 pattern
for (unsigned int i = 8U; i < 15U; i++) {
m_poBuffer[i] = 0xFFU; // -3, -3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poLen = 15U;
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
m_poPtr = 0U;
}
///
///
///
///
///
void DMRTX::createCACH(uint8_t txSlotIndex, uint8_t rxSlotIndex)
{
m_frameCount++;
m_abortCount[0U]++;
m_abortCount[1U]++;
if (m_cachPtr >= 12U)
m_cachPtr = 0U;
if (m_cachPtr == 0U) {
if (m_fifo[0U].getData() == 0U && m_fifo[1U].getData() == 0U)
::memcpy(m_shortLC, EMPTY_SHORT_LC, 12U);
else
::memcpy(m_shortLC, m_newShortLC, 12U);
}
::memcpy(m_poBuffer, m_shortLC + m_cachPtr, 3U);
m_markBuffer[0U] = MARK_NONE;
m_markBuffer[1U] = MARK_NONE;
m_markBuffer[2U] = rxSlotIndex == 1U ? MARK_SLOT1 : MARK_SLOT2;
bool at = false;
if (m_frameCount >= STARTUP_COUNT) {
if (m_cachATControl == 0U) {
at = m_fifo[rxSlotIndex].getData() > 0U;
} else {
if (m_cachATControl != 3U && m_cachATControl != (rxSlotIndex + 1U)) {
at = m_fifo[rxSlotIndex].getData() > 0U;
}
}
}
bool tc = txSlotIndex == 1U;
bool ls0 = true; // For 1 and 2
bool ls1 = true;
if (m_cachPtr == 0U) // For 0
ls1 = false;
else if (m_cachPtr == 9U) // For 3
ls0 = false;
bool h0 = at ^ tc ^ ls1;
bool h1 = tc ^ ls1 ^ ls0;
bool h2 = at ^ tc ^ ls0;
m_poBuffer[0U] |= at ? 0x80U : 0x00U;
m_poBuffer[0U] |= tc ? 0x08U : 0x00U;
m_poBuffer[1U] |= ls1 ? 0x80U : 0x00U;
m_poBuffer[1U] |= ls0 ? 0x08U : 0x00U;
m_poBuffer[1U] |= h0 ? 0x02U : 0x00U;
m_poBuffer[2U] |= h1 ? 0x20U : 0x00U;
m_poBuffer[2U] |= h2 ? 0x02U : 0x00U;
m_poLen = DMR_CACH_LENGTH_BYTES;
m_poPtr = 0U;
m_cachPtr += 3U;
}
///
///
///
///
///
void DMRTX::writeByte(uint8_t c, uint8_t control)
{
uint8_t bit;
uint8_t mask = 0x80U;
uint8_t controlToWrite = m_controlPrev;
for (uint8_t i = 0U; i < 8U; i++, c <<= 1) {
if ((c & mask) == mask)
bit = 1U;
else
bit = 0U;
if (i == 7U) {
if (control == MARK_SLOT2)
controlToWrite = true;
else if (control == MARK_SLOT1)
controlToWrite = false;
m_controlPrev = controlToWrite;
}
io.write(&bit, 1, &controlToWrite);
}
}