// SPDX-License-Identifier: AGPL-3.0-only /** * Digital Voice Modem - DVMConsole * AGPLv3 Open Source. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * @package DVM / DVM Console * @license AGPLv3 License (https://opensource.org/licenses/AGPL-3.0) * * Copyright (C) 2025 Caleb, K4PHP * */ // TODO: Move to fnecore using System; using System.Collections.Generic; using System.Security.Cryptography; using System.Linq; namespace DVMConsole { public class P25Crypto { private ProtocolType protocol; private byte algId; private ushort keyId; private byte[] messageIndicator = new byte[9]; private Dictionary keys = new Dictionary(); private byte[] aesKeystream = new byte[240]; // AES buffer private byte[] adpKeystream = new byte[469]; // ADP buffer private int aesPosition; private int adpPosition; public P25Crypto() { this.protocol = ProtocolType.Unknown; this.algId = 0x80; this.keyId = 0; this.aesPosition = 0; this.adpPosition = 0; } public void Reset() { keys.Clear(); } public void AddKey(ushort keyid, byte algid, byte[] key) { if (keyid == 0 || algid == 0x80) return; keys[keyid] = new KeyInfo(algid, key); } public bool HasKey(ushort keyId) { return keys.ContainsKey(keyId); } public bool Prepare(byte algid, ushort keyid, ProtocolType protocol, byte[] MI) { this.algId = algid; this.keyId = keyid; this.protocol = protocol; Array.Copy(MI, this.messageIndicator, Math.Min(MI.Length, this.messageIndicator.Length)); if (!keys.ContainsKey(keyid)) return false; if (algid == 0x84) // AES-256 { this.aesPosition = 0; GenerateAesKeystream(); return true; } else if (algid == 0xAA) // ADP (RC4) { this.adpPosition = 0; GenerateAdpKeystream(); return true; } return false; } public bool Process(byte[] PCW, FrameType frameType, int voiceSubframe) { if (!keys.ContainsKey(keyId)) return false; return algId switch { 0x84 => AesProcess(PCW, frameType, voiceSubframe), 0xAA => AdpProcess(PCW, frameType, voiceSubframe), _ => false }; } /// /// Create ADP key stream /// private void GenerateAdpKeystream() { byte[] adpKey = new byte[13]; byte[] S = new byte[256]; byte[] K = new byte[256]; if (!keys.ContainsKey(keyId)) return; byte[] keyData = keys[keyId].Key; int keySize = keyData.Length; int padding = Math.Max(5 - keySize, 0); int i, j = 0, k; for (i = 0; i < padding; i++) adpKey[i] = 0; for (; i < 5; i++) adpKey[i] = keySize > 0 ? keyData[i - padding] : (byte)0; for (i = 5; i < 13; ++i) { adpKey[i] = messageIndicator[i - 5]; } for (i = 0; i < 256; ++i) { K[i] = adpKey[i % 13]; S[i] = (byte)i; } for (i = 0; i < 256; ++i) { j = (j + S[i] + K[i]) & 0xFF; Swap(S, i, j); } i = j = 0; for (k = 0; k < 469; ++k) { i = (i + 1) & 0xFF; j = (j + S[i]) & 0xFF; Swap(S, i, j); adpKeystream[k] = S[(S[i] + S[j]) & 0xFF]; } } /// /// Preform a swap /// /// /// /// private void Swap(byte[] S, int i, int j) { byte temp = S[i]; S[i] = S[j]; S[j] = temp; } /// /// Process AES256 /// /// /// /// /// private bool AesProcess(byte[] PCW, FrameType frameType, int voiceSubframe) { int offset = 16; switch (frameType) { case FrameType.LDU1: offset += 0; break; case FrameType.LDU2: offset += 101; break; case FrameType.V4_0: offset += 7 * voiceSubframe; break; case FrameType.V4_1: offset += 7 * (voiceSubframe + 4); break; case FrameType.V4_2: offset += 7 * (voiceSubframe + 8); break; case FrameType.V4_3: offset += 7 * (voiceSubframe + 12); break; case FrameType.V2: offset += 7 * (voiceSubframe + 16); break; default: return false; } if (protocol == ProtocolType.P25Phase1) { offset += (aesPosition * 11) + 11 + (aesPosition < 8 ? 0 : 2); aesPosition = (aesPosition + 1) % 9; for (int j = 0; j < 11; ++j) { PCW[j] ^= aesKeystream[j + offset]; } } else if (protocol == ProtocolType.P25Phase2) { for (int j = 0; j < 7; ++j) { PCW[j] ^= aesKeystream[j + offset]; } PCW[6] &= 0x80; } return true; } /// /// Process ADP /// /// /// /// /// private bool AdpProcess(byte[] PCW, FrameType frameType, int voiceSubframe) { int offset = 256; switch (frameType) { case FrameType.LDU1: offset = 0; break; case FrameType.LDU2: offset = 101; break; case FrameType.V4_0: offset += 7 * voiceSubframe; break; case FrameType.V4_1: offset += 7 * (voiceSubframe + 4); break; case FrameType.V4_2: offset += 7 * (voiceSubframe + 8); break; case FrameType.V4_3: offset += 7 * (voiceSubframe + 12); break; case FrameType.V2: offset += 7 * (voiceSubframe + 16); break; default: return false; } if (protocol == ProtocolType.P25Phase1) { offset += (adpPosition * 11) + 267 + (adpPosition < 8 ? 0 : 2); adpPosition = (adpPosition + 1) % 9; for (int j = 0; j < 11; ++j) { PCW[j] ^= adpKeystream[j + offset]; } } else if (protocol == ProtocolType.P25Phase2) { for (int j = 0; j < 7; ++j) { PCW[j] ^= adpKeystream[j + offset]; } PCW[6] &= 0x80; } return true; } /// /// Create AES key stream /// private void GenerateAesKeystream() { if (!keys.ContainsKey(keyId)) return; byte[] key = keys[keyId].Key; byte[] iv = ExpandMiTo128(messageIndicator); using (var aes = Aes.Create()) { aes.KeySize = 256; aes.BlockSize = 128; aes.Key = key.Length == 32 ? key : key.Concat(new byte[32 - key.Length]).ToArray(); aes.Mode = CipherMode.ECB; aes.Padding = PaddingMode.None; using (var encryptor = aes.CreateEncryptor()) { byte[] input = new byte[16]; Array.Copy(iv, input, 16); byte[] output = new byte[16]; for (int i = 0; i < aesKeystream.Length / 16; i++) { encryptor.TransformBlock(input, 0, 16, output, 0); Buffer.BlockCopy(output, 0, aesKeystream, i * 16, 16); Array.Copy(output, input, 16); } } } } /// /// Cycle P25 LFSR /// /// /// public static void CycleP25Lfsr(byte[] MI) { // TODO: use step LFSR if (MI == null || MI.Length < 9) throw new ArgumentException("MI must be at least 9 bytes long."); ulong lfsr = 0; // Load the first 8 bytes into the LFSR for (int i = 0; i < 8; i++) { lfsr = (lfsr << 8) | MI[i]; } // Perform 64-bit LFSR cycling using the polynomial: // C(x) = x^64 + x^62 + x^46 + x^38 + x^27 + x^15 + 1 for (int cnt = 0; cnt < 64; cnt++) { ulong bit = ((lfsr >> 63) ^ (lfsr >> 61) ^ (lfsr >> 45) ^ (lfsr >> 37) ^ (lfsr >> 26) ^ (lfsr >> 14)) & 0x1; lfsr = (lfsr << 1) | bit; } // Store the result back into MI for (int i = 7; i >= 0; i--) { MI[i] = (byte)(lfsr & 0xFF); lfsr >>= 8; } MI[8] = 0; // Last byte is always set to zero } /// /// Step LFSR /// /// /// private static ulong StepP25Lfsr(ref ulong lfsr) { // Extract overflow bit (bit 63) ulong ovBit = (lfsr >> 63) & 0x1; // Compute feedback bit using polynomial: x^64 + x^62 + x^46 + x^38 + x^27 + x^15 + 1 ulong fbBit = ((lfsr >> 63) ^ (lfsr >> 61) ^ (lfsr >> 45) ^ (lfsr >> 37) ^ (lfsr >> 26) ^ (lfsr >> 14)) & 0x1; // Shift LFSR left and insert feedback bit lfsr = (lfsr << 1) | fbBit; return ovBit; } /// /// Expland MI to 128 IV /// /// /// /// private static byte[] ExpandMiTo128(byte[] mi) { if (mi == null || mi.Length < 8) throw new ArgumentException("MI must be at least 8 bytes long."); byte[] iv = new byte[16]; // Copy first 64 bits of MI into LFSR ulong lfsr = 0; for (int i = 0; i < 8; i++) { lfsr = (lfsr << 8) | mi[i]; } // Use LFSR routine to compute the expansion ulong overflow = 0; for (int i = 0; i < 64; i++) { overflow = (overflow << 1) | StepP25Lfsr(ref lfsr); } // Copy expansion and LFSR to IV for (int i = 7; i >= 0; i--) { iv[i] = (byte)(overflow & 0xFF); overflow >>= 8; } for (int i = 15; i >= 8; i--) { iv[i] = (byte)(lfsr & 0xFF); lfsr >>= 8; } return iv; } private class KeyInfo { public byte AlgId { get; } public byte[] Key { get; } public KeyInfo(byte algid, byte[] key) { AlgId = algid; Key = key; } } public enum ProtocolType { Unknown = 0, P25Phase1, P25Phase2 } public enum FrameType { Unknown = 0, LDU1, LDU2, V2, V4_0, V4_1, V4_2, V4_3 } } }